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The definition, analysis, and implementation of in-vehicle monitoring systems that
collect data which are informative of the status of the joint driver-vehicle system,
represent a topic of strong interest from both academic players and industrial man-
ufacturers. Many external factors, such as road design, road layout, traffic flow
and weather can influence and increase driving-related stress, potentially increas-
ing risks. The ubiquitous diffusion of Internet of Things (IoT) technologies al-
lows to collect heterogeneous data that can build the foundation for driver’s psycho-
physiological characterization, with the aim of improving safety and security while
driving. This chapter evaluates and discusses the feasibility and usefulness of a non-
invasive IoT-oriented driver monitoring infrastructure aiming at collecting physio-
logical parameters (such as Heart Rate Variability, HRV) that may be adopted as
biomarkers of the driver’s psycho-physiological state in different driving scenarios.

1.1 Introduction

Driving is one of the major experiences linking together people: every day, while
travelling by car, drivers are exposed to different events and situations, which can
impact on their psycho-physiological state. External factors such as road design
(motorways vs. rural roads vs. city roads, etc.), road layout (straight vs. curves,
steep road vs. downhill road, etc.), traffic flow (high vs. low) and weather can
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influence and increase driving-related stress. To this end, literature studies examined
the relationship between traffic conditions and stress levels and, as expected, they
found that driving-related stress is greater in high traffic jam areas rather than in
low congestion ones [1, 2, 3]. Moreover, it has been observed that these stressful
situations may alter the driver’s psycho-physiological state.

In this regard, Heart Rate Variability (HRV) represents an indirect and non-
invasive measurement of beat-to-beat temporal changes in Heart Rate (HR), which
reflects cardiac autonomic influences, particularly of vagal origin, at the sinoatrial
node of the heart. HRV analysis has been extensively applied in various research
fields, including psycho-physiology, cardiology and psychiatry, and has been in-
creasingly recognized as a biomarker of health and stress. In fact, a healthy subject
is characterized by higher levels of resting HRV, which are in turn associated with
better flexibility and adaptability to environmental challenges [4]. Moreover, HRV
analysis is able to index psycho-physiological states during stressful conditions or
mental efforts (such as during driving activities) [4]. Indeed, lower tonic HRV has
been associated with psycho-social stress and mental workload [5, 6, 7], whereas
higher HRV reflects the capability of an individual to successfully adapt to external
stimuli and manifesting itself in a reduction in daily performance [8]. An example of
the potential utility of HRV as a biomarker of physiological driver’s state is shown
in [9], where driving-related stress is associated with a reduction in HRV indexes of
vagal tone.

From a more technological perspective, the definition and analysis of monitor-
ing systems inside vehicles which are able to simultaneously collect physiological
indexes and useful data to determine the status of the driver-vehicle system is a topic
of strong interest. The final aim for both academic players and industrial manufac-
turer is to improve safety and security while driving for both drivers and passen-
gers [10]. Furthermore, recent technological progress has introduced new possibili-
ties with respect to traditional manual driving, especially with regard to mechanisms
aiming at vehicle—e.g., cars, trucks, etc.—driving assistance, such as on-board
Advanced Driver-Assistance Systems (ADAS) [11]. In detail, examples of ADAS
mechanisms equipping modern vehicles are Anti-lock Braking System (ABS) [12],
Adaptive Cruise Control (ACC) [13], Electronic Stability Control (ESC) [14], Lane
Departure Warning System (LDWS) [15], Forward Collision Warnings (FCW) [16],
Traffic Sign Recognition (TSR) [17], automotive night vision [18], alcohol ignition
interlock devices [19], collision avoidance systems [20], and driver drowsiness de-
tection [21]. Then, as a common objective, all these ADAS aim to compensate for
human errors, in order to reduce road fatalities—activating alarms or, when neces-
sary, taking control of the vehicle itself.

Furthermore, focusing on a more general perspective, in the last years the ubiq-
uitous diffusion of the Internet of Things (IoT) paradigm [22] has influenced and
changed our lifestyle, thanks to the ability to interconnect heterogeneous devices
(such as sensors, actuators, or more in general, smart objects [23, 24]), combin-
ing different technologies and communication protocols to build services for end
users [25]. Thanks to this heterogeneity, IoT applications are innumerable—nowadays
often requiring to outsource some processing efforts to Cloud-based infrastructures [26]—
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and, among different possible scenarios, one of the most relevant is linked to the au-
tomotive industry, with the aim of acquiring a better knowledge of the driver-vehicle
system as a whole.

Then, looking at the interaction level of all these paradigms, the majority of
existing ADAS do not take into account aspects related to the psycho-physiological
state of the driver. This would require continuous monitoring and understanding of
the the driver’s physical, emotional, and physiological state, an effective communica-
tion of the ADAS decisions to the driver, or a direct action on the vehicle. Although
a monitoring system with these characteristics is very challenging to obtain, ADAS
provided with information about the driver’s psycho-physiological state could take
more contextualized actions, implementing complex decisions that are compatible
with the driver’s possible reactions. Another aspect that should be considered in
the field of in-vehicle monitoring systems, is the degree of intrusiveness of the sen-
sors employed for collecting driver’s physiological parameters, which in fact should
not interfere—or minimize as much as possible their interference—with the driving
activity, and therefore should be selected accordingly.

Due to these premises, the aim of this chapter is twofold: (i) propose a non-
invasive IoT driver monitoring infrastructure, aiming at collecting data useful to es-
timate the psycho-physiological status of the driver, as a base for subsequent ac-
tions, and (ii) evaluate the usefulness of HRV parameters as biomarkers of a driver’s
psycho-physiological state in different driving scenarios.

The rest of the chapter is organized as follows. A review of heterogeneous
technologies for human driver monitoring is presented in Section 1.2. Section 1.3
describes the in-vehicle IoT monitoring system and the experimental setup. In Sec-
tion 1.4 a preliminary evaluation of collected data is presented. Finally, some con-
clusions and propose future research directions are drawn in Section 1.5.

1.2 Heterogeneous Driver Monitoring

When considering technologies for human driver monitoring activities, a focal point
that should be taken into account is the extent to which the end user (i.e., the driver)
takes up these technologies. This is strictly dependent on their unobtrusiveness, i.e.,
their capacity to be perceived by the user as not infringing upon his/her privacy or
interfering with his/her driving activity. Taking these aspects into account, IoT sens-
ing devices can be adopted as monitoring technologies and could be selected on the
basis of their mobility degree. Mobile sensors (e.g., wearable and sensors-equipped
smartphones), have become practical and appealing—thanks to the miniaturization
of the components—and could also be exploited for monitoring driver’s behavior and
physiology [27]. On the other hand, stationary sensors are typically installed in the
environment that needs be monitored (e.g., in the vehicle’s cabin) and act without any
physical contact with the user, thus being well suited for unobtrusive monitoring—
an example of a stationary sensor may be a video and/or thermal camera positioned
in the vehicle’s cabin.



4 The Internet of Medical Things: Enabling Technologies and Emerging Applications

1.2.1 Wearable and Inertial Sensors
One of the uprising unobtrusive ways to monitor individual physiological parame-
ters while driving is through the collection and analysis of biological signals. For
example, the Electrocardiogram (ECG) gives uniqueness, universality, and perma-
nence [28] in the measurement, thanks to its working principle by which the biomet-
ric signal is the result of the electrical conduction through the heart needed for its
contraction [29]. Then, ECG analysis directly inside the vehicle’s cabin may be use-
ful for assessing parameters (e.g., HRV) related to both mental and physical stress,
and workload [30, 31, 32] for automatic vehicle settings customization (e.g., bio-
metric authentication for ignition lock [33]). Moreover, the respiratory signal may
be exploited in order to obtain additional physiological indicators (e.g., the Respi-
ratory Rate, RR) that are useful in the automotive scenarios. In particular, these
data could be informative of the driver’s workload and stress status. Nevertheless, it
could be interesting to investigate how the combination of these measurements with
vision data (either by normal or thermal cameras) would allow to estimate a clas-
sification index for workload or stress level of the driver [34]. Additional mobile
sensing elements (often worn by the person to be monitored) are Inertial Measure-
ment Units (IMUs), which allow the estimation of the driver motion level through
3-axes internal accelerometers and gyroscopes. More in detail, IMUs allow both
motion and attitude/pose estimations, but they require to be carefully chosen and
calibrated—because of bias instability, scaling, alignment, and temperature depen-
dence. All these issues should be carefully considered especially in operating areas
which require limitations in IMU’s size, weight and cost limitations.

With particular regard to the automotive field, inertial sensing mechanisms can
intervene in different scenarios, from driver’s movements monitoring when seated in
the vehicle’s cabin to safety areas—like vehicle dynamics control (e.g., Electronic
Stability Control, ESC) and passenger restraint systems (e.g., seat-belt pretensioner
and airbags).

1.2.2 Camera Sensors
With regards to unobtrusive and stationary sensing technologies to be used in driver
monitoring contexts, a particularly interesting one can be found in imaging-based so-
lutions, such as video cameras. Unfortunately, as for sensing mechanisms discussed
in Section 1.2.1, even video cameras are not exempt from drawbacks, especially de-
pending on swinging lighting and atmospheric conditions—which may interfere with
driver’s movements monitoring and physiological signal recognition. Considering
these aspects, a way to overcome this limitations is the deployment of thermal cam-
eras, being more robust to adverse light conditions compared to canonical imaging
sensors. More in detail, Long Wavelength Infrared (LWIR) cameras [35] can detect
objects in different environmental conditions (e.g., rain, darkness, in the presence of
fog, etc.), are unaffected by sun glare (improving situational awareness [36]), and are
more robust against reflections, shadows and car headlights [37]. Even in this case,
the price to be paid is that the thermal camera’s video resolution is typically lower
than that of traditional video sensors. Nevertheless, more recent thermal cameras
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Figure 1.1 In-vehicle IoT-oriented monitoring architecture.

are able to produce high quality video streams. Finally, in addition to the driver’s
monitoring based on thermal cameras, a useful integration could involve the use of
normal and general-purpose imaging sensors, such as in-vehicle fixed cameras, or
the front camera of a smartphone [38, 39]. In detail, these additional video sensing
elements can integrate the experimental data obtained by thermal cameras, thanks to
their well-known portability, thus representing an optimal way for gathering infor-
mation [40].

1.3 In-Vehicle IoT-oriented Monitoring Architecture

1.3.1 Experimental Setup
Given the different monitoring entities discussed in Section 1.2, the non-invasive
IoT-oriented driver monitoring architecture proposed in this chapter is shown in
Figure 1.1. In order to collect the driver’s physiological data, an Equivital EQ02
LifeMonitor [41] sensor belt has been adopted. This wearable sensing device is
composed by two elements: (i) a chest belt containing fabric electrodes placed in
good contact with the driver’s skin, and (ii) a Sensor Electronics Module (SEM)
collecting ECG and respiratory signals, skin temperature, and 3-axis accelerometer
data. Then, as shown in Figure 1.2, on a practical side the belt securely holds the
SEM on the driver’s body through a specific pocket on the left side of the belt itself.

Moreover, in order to collect thermal information from the body (i.e., face) of
the driver and the surrounding environment, a FLIR One Pro LT [42] thermal cam-
era has been included in the experimental IoT-oriented monitoring architecture. In
detail, this video-capturing device is intended to work as an external “dongle” to be
plugged into a smartphone (running either Android or iOS as operating system) and
subsequently positioned and installed inside the vehicle, as shown in Figure 1.3. To
this end, it is necessary to carefully and accurately define the position of the smart-
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Figure 1.2 Equivital EQ02 LifeMonitor sensor belt positioning.

Figure 1.3 FLIR One Pro LT thermal camera positioning inside the vehicle.

phone connected with the thermal camera; this is as much true as it represents a
trade-off between the quality of the framing—further image processing and analysis
tasks require a frontal viewpoint—and the degree of obtrusiveness for the driver’s
perspective toward the windscreen.

1.3.2 HRV Analysis
The experimental testbed has been used to obtain high quality ECG recordings un-
der stationary conditions, in order to perform a first HRV analysis. In detail, ECG
signals are digital waves converted through specific processing tasks and, aiming at
obtaining a good time resolution, a sampling rate of at least 250 Hz is recommended.
Then, HRV is quantified by analyzing the variations of time intervals between con-
secutive normal heart beats. To this end, an inter-beat interval may be defined as the
time between consecutive R waves peaks of the ECG (R-R interval), while the time-
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Table 1.1 HRV indexes considered in the time domain.

Variable Description Physiological Origin

SDNN Standard Deviation of the R-R inter-
vals

Cyclic components responsible for
heart rate variability

RMSSD Root Mean Square of Successive Dif-
ferences between adjacent R-R inter-
vals

Vagal tone

pNN50 Percentage of successive RR interval
differences exceeding 50 ms

Vagal tone

Table 1.2 HRV indexes considered in the frequency domain.

Variable Description Physiological Origin

VLF Very Low Frequency (< 0.04 Hz) Long-term regulation mechanisms, ther-
moregulation and hormonal mechanism

LF Low Frequency (0.04÷0.15 Hz) Mix of sympathetic and vagal activity
HF High Frequency (0.15÷0.4 Hz) Vagal tone

course of the R-R interval is called tachogram and further quantitative analysis of
this curve will allow the estimation of HRV parameters. HRV analysis is performed
by applying time-domain and frequency-domain methods.

Time-domain parameters are calculated with mathematical approaches to mea-
sure the amount of variability present in a specific time period in a continuous ECG
signal. The most frequent time domain indexes adopted for HRV analysis are de-
tailed in Table 1.1: (i) Standard Deviation of the R-R intervals (SDNN), (ii) Root
Mean Square of Successive Difference between adjacent R-R intervals (RMSSD),
and (iii) percentage of successive RR interval differences exceeding 50 ms (pNN50).
In detail, the SDNN estimates overall HRV and includes the contribution of both
branches of the Autonomic Nervous System (ANS) to HR variations. The RMSSD
estimates vagally-mediated changes in HR [43]. Finally, the pNN50 quantifies the
percentage of successive R-R interval differences that are larger than 50 ms and re-
flects the vagal tone [43].

Instead, frequency-domain analysis requires to filter the signal into different
bands. In fact, the power spectral analysis decomposes a time-dependent fluctuating
signal into its sinusoidal components, allowing to detect and quantify the amount
of cyclical variation present at different frequencies [44]. Moreover, it provides in-
formation on how the power is distributed as a function of frequency. Thus, in a
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Figure 1.4 Operating driving protocol adopted in the experimental driver
monitoring.

typical power spectral density curve, three main frequency bands can be identified,
as detailed in Table 1.2: (i) Very Low Frequency (VLF), (ii) Low Frequency (LF),
and (iii) High Frequency (HF) bands. The VLF component reflects R-R interval
variations that are due to long-term regulation mechanisms (e.g., thermoregulation
and hormonal mechanisms). The LF band reflects a mix between sympathetic and
vagal influences. The HF band reflects vagal tone and is linked to respiratory-related
changes in cardiac autonomic modulation [45].

1.4 Experimental Performance Evaluation

1.4.1 Operating Protocol for Data Collection
In order to collect information on the driver’s psycho-physiological state in differ-
ent driving scenarios, driving tests should be performed according to a well-defined
operating protocol. Both smooth and fast driving should be included in the analysis
to evaluate the driver’s response to different external stimuli, associated to different
amount of perceived stress. All these tests should then take place on both urban and
highway roads in situations of smooth and heavy traffic.

The experimental driver monitoring has been conducted on a 26-years-old Ital-
ian female subject, separating the driving protocol into six time intervals, as shown in
Figure 1.4: (i) baseline, (ii) first city driving, (iii) first highway driving, (iv) second
city driving, (v) second highway driving, and (vi) rest phase. Each driving period
had a duration of at least 5 min, in the end resulting in a total driving time of 30 min.
In order to collect driver’s physiological data, the Equivital EQ02 LifeMonitor sen-
sor was worn by the subject throughout the driving test and the FLIR One Pro LT
thermal camera was used to simultaneously record temperature-related information.

The overall route covered during the experimental campaign inside the city of
Parma, Italy, is shown in Figure 1.5. During the baseline period, the vehicle’s engine
was off and the subject was asked to sit still inside the vehicle to acquire baseline
data. During city and highway driving phases, urban and ring roads were covered
with an average speed of 50 km/h and 90 km/h, respectively. Finally, at the end of the
route, data recording continued for at least 5 min during recovery conditions, with
the driver inside the car.
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Figure 1.5 Urban and highway roads traveled in the city of Parma, Italy, during
the experimental driver monitoring.

1.4.2 HR and HRV Data
ECG and respiratory signals were exported from the wearable sensor by means of
its software manager, denoted as Equivital Manager. Then, raw ECG and respiratory
data obtained from the EQ02 LifeMonitor equipment were amplified, digitized, and
analyzed by means of the LabChart Pro 5.0 software [46]. More in detail, each
raw ECG signal was manually inspected to ensure that all R-waves were correctly
detected and to exclude artifacts before further analysis. Then, for each recording
period, ECG signals were split in 5-min epochs and, for each epoch, HR has been
calculated by plotting the number of R waves per time unit (dim: beats per minute
[bpm]), together with the estimation of time- and frequency-domain HRV indexes
(namely, RMSSD and HF). Finally, as for the ECG signals, for each recording period,
respiratory signals were split in 5-min epochs, and RR was calculated for each epoch.

1.4.3 Experimental Results
In Figure 1.6, average HR temporal dynamics (dim: [bpm]) are shown. In detail,
at the beginning of the recording session, the subject showed a HR value equal to
85 bpm. Then, HR increased during the first city driving phase and remained con-
stant throughout the rest of the drive. Finally, at the end of the driving session, in the
rest phase, HR returned back to baseline levels.

RMSSD values (dim: [ms]) are shown in Figure 1.7. At the beginning of the
driving session, the average RMSSD was equal to 34 ms. Then, the RMSSD de-
creased during both city and highway driving phases, till increasing back to baseline
levels during the rest phase, similar to what was observed for HR.
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Figure 1.6 Experimental HR values obtained during the driving route.

Figure 1.7 Experimental RMSSD values obtained during the driving route.

In Figure 1.8, the values of HF (dim: [ms2]) are shown. As for RMSSD, the
driving phase was characterized by a reduction of HF values in both city and highway
scenarios, thus suggesting a decrease in parasympathetic modulation.

Finally, the average RR values (dim: counts per minute [cpm]) are shown in
Figure 1.9. RR interval was steady during the overall recording session.

These preliminary results suggest that the driving experience can modulate the
psycho-physiological state of the driver, as hinted by the reduction in HRV parame-
ters associated with the increase of HR. Therefore, further driving recording sessions
with a larger sample size are needed to confirm these results and indicate the extent to
which HRV parameters may vary according to the psycho-physiological state of the
driver in different driving scenarios. Moreover, future integration of thermal imag-
ing data would provide a clearer picture of the physiological correlates of drivers’
mental effort.
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Figure 1.8 Experimental HF values obtained during the driving route.

Figure 1.9 Experimental RR values obtained during the driving route.

1.5 Conclusions and Future Works

In this chapter, a preliminary non-invasive infrastructure for in-vehicle driver mon-
itoring of the psycho-physiological status of the driver is presented. This infras-
tructure is based on an IoT sensor network composed by a wearable sensor belt,
worn by the driver, and a thermal camera, installed in the vehicle’s cabin framing
the driver. Then, the protocol adopted for experimental data acquisition campaigns,
together with ECG and respiratory signals collection and analysis during different
driving scenarios, have been described. While additional experimental recordings
are needed to confirm these experimental results and to allow a better investigation
on the effects of driving activities on autonomic neural modulation of the cardiac
function, the preliminary results on the utility of HRV parameters as biomarkers of a
driver’s psycho-physiological state are promising.

Future activities will involve the integration of thermal camera-based data and
the improvement of the IoT communication infrastructure in order to integrate addi-
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tional data sources, e.g., data collected directly from the on-board vehicular bus and
emitted from the vehicle’s Electronic Control Unit, ECU, possibly in real time.
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