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Abstract In this paper, we study sensor networks with decentralized detection of aspa-
tially non-constantphenomenon, whose statusmight changeindependently from
sensor to sensor. In particular, we considerbinary phenomena characterized by
a fixednumber of status changes (from state “0” to state “1”) acrossthe sensors.
This is realistic for sensor networking scenarios where abrupt spatial variations
of the phenomenon under observation need to be estimated, e.g., an abrupt tem-
perature increase, as could be the case in the presence of a fire in a specific
zone of the monitored surface. In such scenarios, we derive the minimum mean
square error (MMSE) fusion algorithm at the access point (AP). The improve-
ment brought by the use of quantization at the sensors is investigated. Finally,
we derive simplified (sub-optimum) fusion algorithms at theAP, with a compu-
tational complexity lower than that of schemes with MMSE fusion at the AP.

Keywords: Decentralized detection, non-constant phenomena, minimum mean square error
(MMSE), simplified fusion rule, computational complexity.

1. INTRODUCTION

Sensor networks have been an active research field in the lastyears [1]. In
particular, a lot of civilian applications have been developed on the basis of this
technology, especially for environmental monitoring [2].Several frameworks
have been proposed for the analysis of sensor networks with acommon binary
phenomenon under observation [3, 4]. In [5], noisy communication links are
modeled as binary symmetric channels (BSCs) and a few techniques, such
as the use of multiple observations or selective decentralized detection, are
proposed in order to make the system more robust against the noise.
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While in [5] the focus is on decentralized detection of a binary phenomenon
commonfor all sensors, it is of interest to extend this approach to ascenario
where the status of the phenomenon may vary from sensor to sensor. In [6],
the authors consider a scenario with a single phenomenon status change (de-
noted, in the following, asboundary) and propose a framework, based on a
minimum mean square error (MMSE) detection strategy, to determine the po-
sition of the boundary. In [7], under the assumption of proper regularity of the
observed boundary, a reduced-complexity MMSE decoder is proposed. In [8],
the authors show that an MMSE decoder is unfeasible for largescale sensor
networks, due to its computational complexity, and proposea distributed de-
tection strategy based on factor graphs and the sum-productalgorithm. Finally,
MMSE-based distributed detection schemes have also been investigated in sce-
narios with a common binary phenomenon under observation and bandwidth
constraints [9].

In this paper, we propose an analytical approach to the design of decentral-
ized detection schemes in scenarios withspatially non-constantbinary phe-
nomena, i.e., phenomena with status (either “0” or “1”) which may vary from
sensor to sensor. First, we focus on phenomena with asingleboundary, i.e.,
scenarios where there is a single (spatial) position in correspondence to which
the phenomenon status changes. Then, we analyze scenarios with a generic
number of boundaries, i.e., more realistic scenarios wherethe number of phe-
nomenon status changes may be larger than one. For both thesescenarios, we
derive the MMSE fusion algorithms1 at the AP, considering various quantiza-
tion strategies at the sensors [10]. In order to make our approach practical,
we derive simplified fusion algorithms with a computationalcomplexity much
lower than that of the MMSE fusion rules. Although heuristic, the simplified
fusion algorithms guarantee alimited performance loss for sufficiently high
values of the sensor SNR.

This paper is structured as follows. In Section 2, we derive MMSE and sim-
plified fusion rules in a scenario where the observed phenomenon is character-
ized by a single boundary. In Section 3, we extend our framework to the case
with a spatially non-constant phenomenon with a generic number of bound-
aries. In Section 4, numerical results associated with the proposed fusion rules
are presented. In Section 5, a simple computational complexity analysis, based
on the number of operations required by the derived algorithms, is proposed.
Finally, in Section 6 concluding remarks are given.

1Note that the proposed MMSE distributed detection schemes are optimal in the processing performed at
the AP. However, the use of quantization at the sensors makesthe overall schemes sub-optimal. Overall
optimality holds only for a scenario with no quantization atthe sensors.
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2. PHENOMENA WITH A SINGLE BOUNDARY

2.1 MMSE FUSION RULE

Consider a network scenario whereN sensors observe a (spatially) non-
constant binary phenomenon characterized by a single status change across
the sensors. The phenomenon status can be expressed asHHH = [H1,H2, . . . ,HN],
with

Hi ,

{
0 if i < α
1 if i ≥ α i = 1, . . . ,N

where the indexα is the position of theboundaryin correspondence to which
the phenomenon status changes (from “0” to “1”). The position of the bound-
ary is modeled as uniformly distributed across the sensors,i.e., P(α = ℓ) =
1/N, ℓ = 1, . . . ,N.

The signal observed at thei-th sensor can be expressed as

r i = cE,i +ni i = 1, . . . ,N

where

cE,i ,

{
0 if Hi = 0
s if Hi = 1

and{ni} are additive observation noise samples. Assuming that the noise sam-
ples{ni} are independent with the same Gaussian distributionN (0,σ2), the
common signal-to-noise ratio (SNR) at the sensors can be defined as follows:

SNRsensor=
[E{cE,i |Hi = 1}−E{cE,i|Hi = 0}]2

σ2 =
s2

σ2 .

Each sensor quantizes the observed signal and the value output by thei-th sen-
sor is denoted asdi , fquant(r i), where the functionfquant(·) depends on the
specific quantization strategy. In the following, we consider (i) binary quanti-
zation, (ii) multi-level quantization, and (iii) absence of quantization (i.e., the
observations{r i} are sent to the AP). Based on the messages sent by the sen-
sors, the goal of the AP is to reconstruct, through an MMSE fusion strategy,
the status of the distributed binary phenomenonHHH. More precisely, in the con-
sidered setting the AP needs to estimate correctly the position of the boundary.

2.1.1 Binary Quantization. In this scenario, thei-th sensor makes a
decision comparing its observationr i with a threshold valueτi , and computes
a local decisiondi ∈ {0,1}, i.e., fquant(r i) = U(r i − τi), whereU(·) is the unit
step function. In order to optimize the system performance,the thresholds{τi}
need to be properly selected. In this paper, a common valueτ at all sensors
is considered. This choice is intuitively motivated by the fact that the sensor
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SNR is constant across the sensors. While in a scenario with acommon binary
phenomenon the relation betweenτ ands is well known [11], in the presence
of a non-constant phenomenon the thresholdτ needs to be optimized in order
to minimize the probability of decision error at the AP. Thisoptimization will
be carried out for all the considered scenarios (see the beginning of Section 4
for more details).

The estimated boundary position, denoted asα̂, can be reasonably chosen
as the minimizing value for the mean square error (MSE), i.e.,

α̂ , argmin
α̃=1,...,N

E
[
|α − α̃|2|ddd

]
(1)

whereddd , [d1,d2, . . . ,dN] is the vector of sensors’ decisions. The solution of
the MMSE problem (1) is well known [12, ch.10]:

α̂ = E [α |ddd] =
N

∑
m=1

mP(α = m|ddd) (2)

where each conditional probabilityP(α = m|ddd) can be expressed, using the
Bayes formula and the total probability theorem [13], as

P(α = m|ddd) =
P(ddd|α = m)P(α = m)

∑N
ℓ=1P(ddd|α = ℓ)P(α = ℓ)

. (3)

At this point, one has to calculate the probabilities{P(ddd|α = m)}m in (3).
Since the noise samples are independent, conditionally on the value of the
boundary position the sensors’ decisions are also independent. Therefore, one
obtains:

P(ddd|α = m) =
N

∏
k=1

P(dk|α = m) (4)

where

P(dk|α = m) =






P

(
nk

dk = 0
>
<

dk = 1

τ

)
k < m

P

(

nk

dk = 0
>
<

dk = 1

τ −s

)

k≥ m.

(5)

One should note that expression (5)—and, consequently, theestimated bound-
ary positionα̂ in (2)—depends on the particular sequenceddd of sensors’ deci-
sions.

The computational complexity required for the evaluation of (2) is very
high. For this reason, in the following MMSE-based detection schemes will
be applied only in scenarios with a (relatively) small number of sensors. In
Section 2.2, we will derive a simplified fusion rule, in orderto analyze scenar-
ios with larger numbers of sensors.
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2.1.2 Multi-level Quantization. Consideringnb quantization bits, we
set the 2nb −1 quantization thresholds as follows:

s
2
,
s
2
±∆,

s
2
±2∆, . . . ,

s
2
±
(
2nb−1−1

)
∆

where∆ is a system parameter which needs to be properly optimized—more
details on its optimization will be provided in Section 4.1.The central thresh-
old corresponds toτ = s/2, so that ifnb = 1, one obtains the scenario with
binary quantization [5]. In this case, the sensors’ quantized decisions are taken
according to the following rule:

di =






0 if r i < s/2−
(
2nb−1−1

)
∆

1 if s/2−
(
2nb−1−1

)
∆ ≤ r i < s/2−

(
2nb−1−2

)
∆

· · · · · ·
2nb −2 if s/2+

(
2nb−1−3

)
∆ ≤ r i < s/2+

(
2nb−2−1

)
∆

2nb −1 if r i > s/2+
(
2nb−1−1

)
∆ .

(6)

The MMSE fusion algorithm at the AP is similar to that in Section 2.1.1. How-
ever, one needs to properly compute the probabilities{P(ddd|α = m)}m in (4).
According to (6), expression (5) can be generalized as follows:

P(dk = j|α = m)=






Φ
(
τ −

(
2nb−1−1

)
∆−s·U(m−k+1)

)
if j = 0

Φ
(
τ −

((
2nb−1−1

)
− j
)

∆−s·U(m−k+1)
)

−Φ
(
τ −

((
2nb−1−1

)
− j +1

)
∆−s·U(m−k+1)

)

if j = 1, . . . ,2nb −2

1−Φ
(
τ +

(
2nb−1−1

)
∆−s·U(m−k+1)

)

if j = 2nb −1
(7)

whereΦ(x) ,
∫ x
−∞

1√
2π exp(−y2/2)dy. Obviously, the computational complex-

ity of the fusion algorithm at the AP increases with the use ofmulti-level quan-
tization. In fact, from (7) one can conclude that 2nb probability values have to
be evaluated—they reduce to 21 = 2 values in the presence of binary quantiza-
tion.

2.1.3 Absence of Quantization. In this case, the observations at the
sensors are not quantized and a local likelihood value, suchas the conditional
probability density function (PDF) of the observable, is transmitted from each
sensor to the AP. Obviously, this is not a realistic scenario, since an infinite
bandwidth would be required to transmit a PDF value. However, investigating
this case allows to derive useful information about the limiting performance of
the considered decentralized detection schemes, since transmission of the PDF
of the observables does not entail any information loss at the sensors.
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The MMSE estimate of the boundary position can now be writtenas

α̂ = argmin
α̃=1,...,N

E
[
|α − α̃|2|rrr

]
= E [α |rrr] =

N

∑
m=1

mP(α = m|rrr) (8)

whererrr = [r1, r2, . . . , rN] is the vector of the observed signals (rather than the
vector of decisionsddd as in (1)). The a posteriori probabilities in (8) can be
expressed similarly to (3), i.e.,2

P(α = m|rrr) =
p(rrr |α = m)P(α = m)

∑N
ℓ=1 p(rrr |α = ℓ)P(α = ℓ)

where, owing to the independence of the observations,p(rrr |α = m)= ∏N
i=1 p(r i |α =

m) and

p(r i |α = m) =

{
pN (r i) i < m

pN (r i −s) i ≥ m

with pN (n) , 1√
2πσ2

exp
(
− n2

2σ2

)
.

2.2 SIMPLIFIED FUSION RULE

Since the computational complexity of the MMSE fusion strategy rapidly
increases with the number of sensors [6], in this section we derive a simplified
low-complexity fusion algorithm. The key idea of this simplified algorithm
consists in approximating the MMSE boundary estimateα̂ in (2) (and, simi-
larly, in (8)), which involves astatisticalaverage, with a simplerdeterministic
expression. As in Section 2.1, various quantization levelsat the sensors are
considered. Note that the proposed approach relies on the fact that our goal
is to estimate asingle boundary. However, extensions of this approach to a
scenario with multiple boundaries will be considered in Section 3.

2.2.1 Binary Quantization. In this case, the boundary position can be
estimated as follows:

α̂ = argmin
1≤ j≤N

{
j−1

∑
i=1

|di |2 +
N

∑
i= j

|di −1|2
}

. (9)

The intuition behind (9) is based on the fact that there is a single boundary: the
initial sensors’ decisions (from the first to the( j − 1)-th) are compared with
“0,” whereas the others (from thej-th to theN-th) are compared with “1.” The

2Note that the uppercaseP is used to denote the probability of an event, whereas the lowercasep is used to
denote the PDF of a random variable.
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estimated boundary minimizes the simplified cost function|ddd−ddd j |2, where
ddd j , [0, . . . ,0, 1︸︷︷︸

jth position

, . . . ,1], over all possible values ofj.

2.2.2 Multi-level Quantization. The approach proposed in Section 2.2.1
can be extended to scenarios with multi-level quantizationat the sensors. In
particular, we propose the following decision rule at the AP:

α̂ = argmin
1≤ j≤N

{
j−1

∑
i=1

f1(di)+
N

∑
i= j

f2(di)

}

(10)

where

f1(di) , min{|di |2, |di −1|2, . . . , |di − (2nb−1−1)|2}
f2(di) , min{|di −2nb−1|2, |di − (2nb−1 +1)|2, . . . , |di − (2nb −1)|2}.

The rationale behind (10) is the following. Assuming that the boundary is in
the j-th position, we compare the firstj−1 decisions with the “low” half of the
quantization levels (i.e., from 0 to 2nb−1−1), whereas the remainingN− j +1
decisions are compared with the “high” half of the quantization levels (i.e.,
from 2nb−1 to 2nb − 1). In both groups, the quantization levels closest to the
corresponding decisions are selected (through the functions f1 and f2).

As an aside, we remark that for sufficiently large sensor SNR the estimation
strategy in (10) (and, as a special case, in (9)) leads to the same performance
obtained with the MMSE fusion strategy.

2.2.3 Absence of Quantization. In this scenario, one can use thea
posterioriprobabilities of the two hypotheses at each sensor, conditionally on
the observables, to derive the proper objective function. In this case, one can
write3

α̂ = argmax
1≤ j≤N

{
j−1

∑
i=1

P(Hi = 0|r i)+
N

∑
i= j

P(Hi = 1|r i)

}

(11)

where, using Bayes formula and assumingP(Hi = 0) = P(Hi = 1), ∀i, one has

P(Hi = ℓ|r i) =
p(r i |Hi = ℓ)

p(r i |Hi = 0)+ p(r i |Hi = 1)
=

p(ni − ℓ ·s)
p(ni)+ p(ni −s)

ℓ = 0,1.

3Note that in (11) the “argmax” function is used, instead of the “argmin” function used in (9) and (10), since
the objective function needs to be maximized.
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3. PHENOMENA WITH GENERIC NUMBERS OF
BOUNDARIES

In this section, we focus on a network scenario where the status of the phe-
nomenon under observation is characterized by agenericnumber, denoted as
as Nbs, of boundaries.4 This scenario is more realistic than that considered
in Section 2, since a generic phenomenon (e.g., the humiditylevel) could
change its status from “0” (e.g., low humidity) to “1” (e.g.,high humidity),
or vice-versa, in correspondence to more than one sensor. Note that the case
with Nbs = 1 corresponds to the previously investigated scenario witha single
boundary. The following assumptions are expedient to simplify the derivation
of the MMSE detection strategy:

changes of the phenomenon status are not admitted in correspondence to
the first and last sensors, i.e., 1≤ Nbs≤ N−2;

the phenomenon status is perfectly known at the first sensor (H1 = 0)
and there is no change at the last sensor (i.e.,HN = HN−1).

According to the considered assumptions, theNbs boundaries{α1, . . . ,αNbs}
have to satisfy the following relation:

2≤ α1 < α2 < .. . < αk−1 < αk < .. . < αNbs ≤ N−1.

Therefore, between 1 andα1 − 1 the phenomenon status is “0,” betweenα1

andα2−1 the phenomenon status is “1,” and so on. In order for the boundary
distribution to be realistic, the following condition mustnecessarily hold:

αk−1 < αk ≤ (N−1)− (Nbs−k) = N−Nbs+k−1 k = 2, . . . ,Nbs. (12)

Condition (12) formalizes the intuitive idea that thek-th boundary cannot fall
beyond the(N−1−Nbs+ k)-th position, in order for the successive (remain-
ing) Nbs−k boundaries to have admissible positions.

3.1 MMSE FUSION RULE

3.1.1 Binary Quantization. Denoting asααα the sequence of bound-
aries(α1, . . . ,αNbs), the MMSE fusion strategy can be determined by directly
extending the derivation in Section 2.1.1, obtainingα̂αα = E [ααα |ddd]. On the basis
of the assumptions introduced at the beginning of this section, the generic term

4We remark that throughout this paper the status of the phenomenon will be supposed independent from
sensor to sensor. The existence ofcorrelationsbetween sensors would require an extension of the derived
algorithms. However, this extension goes beyond the scope of this paper.
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of the vectorα̂αα can be written as5

α̂k = E [αk|ddd] =
N

∑
αk=1

P(αk|ddd) =
N−Nbs+k−1

∑
αk=k+1

αkP(αk|ddd) k= 1, . . . ,Nbs (13)

where the upper and lower bounds of the sum in the last term areproperly mod-
ified in order to take into account the constraint (12). The computation of (13)
can be carried out by extending (in a multi-dimensional sense) the approach
in Section 2.1.1. The probabilityP(αk|ddd) (k = 1, . . . ,Nbs) can be obtained by
marginalizing the joint probabilities of proper boundaries’ sequences. By ap-
plying the Bayes formula and the total probability theorem [13], after a few
manipulations one obtains

P(ααα |ddd) = P(ddd|ααα)P(ααα)




N−Nbs

∑
α1=2

. . .
N−Nbs+k−1

∑
αk=k+1

. . .
N−1

∑
αNbs=Nbs+1

P(ddd|ααα)P(ααα)




−1

. (14)

The first multiplicative term at the right-hand side of (14) can be written as

P(ddd|ααα) =
N

∏
i=1

P(di|ααα) =
α1−1

∏
i=1

P(di |ααα)︸ ︷︷ ︸
Hi=0

α2−1

∏
j=α1

P(d j |ααα)
︸ ︷︷ ︸

H j=1

· · ·
N

∏
q=αNbs

P(dq|ααα)
︸ ︷︷ ︸
Hq=0 or 1

(15)

where we have used the fact that the sensors’ decisions are independent. Note
that, in the lastN−αNbs + 1 terms,Hi = 0 if Nbs is even, whereasHi = 1 if
Nbs is odd. As in Section 2.1.1, the component conditional probabilities at the
right-hand side of (15) can be written as

P(di |ααα) =






P

(
ni

di = 0
<
>

di = 1

τ

)
if i ∈ I0(ααα)

P

(

ni

di = 0
<
>

di = 1

τ −s

)

if i ∈ I1(ααα)

(16)

where
Iℓ(ααα) , {indexesi such thatHi = ℓ|ααα} ℓ = 0,1. (17)

The second multiplicative term at the right-hand side of (14), instead, can
be written, using the chain rule [13], as

P(ααα) =
Nbs

∏
i=1

P(αi |αi−1, . . . ,α1) = P(α1)
Nbs

∏
i=2

P(αi |αi−1) (18)

5Note that for ease of notational simplicity, in (13) we use the same notationαk to denote both the ran-
dom variable (in the second term) and its realization (in thethird and fourth terms). The same simplified
notational approach will be considered in the remainder of Section 3.1. The context should eliminate any
ambiguity.
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where we have used the fact that the position of thei-th boundary depends only
on the position of the previous(i − 1)-th boundary. Each multiplicative term
at the right-hand side of (18) can be written by observing that each boundary
is uniformly distributed among the sensors according to theconstraints intro-
duced in (13). In particular, by using combinatorics, one obtains

P(α1) =
1

N−Nbs+1

P(αk|αk−1) =
1

N−Nbs+k−αk−1
k = 2, . . . ,Nbs.

The last term at the right-hand side of (14) (i.e., the denominator) can be
easily obtained by observing that it is composed by terms similar to those eval-
uated in (15) and (18).

Finally, the a posteriori probabilities of the boundaries’positions{P(αk|ddd)}
(k = 1, . . . ,Nbs) in (13) can be obtained by proper marginalization of (14):

P(αk|ddd) = ∑
∼{αk}

P(α1, . . . ,αNbs|ddd) k = 1, . . . ,Nbs

where the notationf (yi) = ∑∼{yi} f (y1,y2, . . . ,yn) (i = 1, . . . ,n) means that the
marginal functionf (yi) is obtained from the joint functionf (y1,y2, . . . ,yn) by
summing over all variables

{
y j
}

, with j 6= i [14].

3.1.2 Multi-level Quantization. The derivation of the MMSE fusion
algorithm for a scenario with multi-level quantization (with nb quantization
bits) at the sensors is the same of that provided in Section 3.1.1 for the case
with binary quantization. However, as in Section 2.1.2, 2nb possible values for
the decisions at the sensors are admissible (see (6)) and 2nb probabilities have
to be computed (see (7)).

3.1.3 Absence of Quantization. Let us finally consider the scenario
with no quantization at the sensors, i.e., with the sensors transmitting the PDFs
of their observables. As in Section 2.1.3, the estimated boundaries can be
written, according to the assumptions outlined at the beginning of Section 3,
as

α̂k = E [αk|rrr ] =
N−Nbs+k−1

∑
αk=k+1

αkP(αk|rrr) k = 1, . . . ,Nbs. (19)

The probabilities in (19) can be obtained, as in Section 3.1.1, through proper
marginalization of joint conditional probabilities of thefollowing type:

P(ααα |rrr) = p(rrr |ααα)P(ααα) ·




N−Nbs

∑
α1=2

. . .
N−Nbs+i−1

∑
αi+1

. . .
N−1

∑
αNbs=αNbs−1+1

p(rrr |ααα)P(ααα)




−1

.
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Since sensors’ observations are independent, it holds that

p(rrr |ααα) =
N

∏
i=1

p(r i |ααα)

where, similarly to Section 2.1.3,

p(r i |ααα) =

{
pN (r i) if i ∈ I0(ααα)

pN (r i −s) if i ∈ I1(ααα)

whereI0(ααα) andI1(ααα) are defined as in (17).

3.2 SIMPLIFIED FUSION RULE

Obviously, the computational complexity of the MMSE distributed detec-
tion strategy in scenarios with an arbitrary number of phenomenon boundaries
increases more rapidly than in scenarios with a single phenomenon boundary
(for more details see Section 5). Therefore, the derivationof simplified fusion
algorithms with low complexity (but limited performance loss) is crucial.

A first possible choice is a direct extension of the sub-optimal approach, pre-
sented in Section 2.2, for scenarios with a single phenomenon status change.
However, this class of simplified fusion algorithms are not efficient in a sce-
nario with multiple boundaries, since the number of comparisons with all pos-
sible sequences of boundaries rapidly increases with the number of sensors.
Therefore, in the following we introduce another class of reduced-complexity
fusion algorithms, which do not make use of these comparisons. As before,
depending on the quantization strategy at the sensors, we distinguish three pos-
sible scenarios.

3.2.1 Binary Quantization. Define the following function:

fbq(k,ddd
k
1) ,

k

∑
i=1

[P(Hi = 0|di)−P(Hi = 1|di)] k = 1, . . . ,N (20)

wheredddk
1 = (d1, . . . ,dk). The key idea of our approach is the following. The

function fbq(k,dddk
1) is monotonically increasing (or decreasing), with respectto

k, while the phenomenon does not change its status. In correspondence to each
change of the phenomenon status, the functionfbq(k,dddk

1) changes its mono-
tonic behavior. More precisely, a phenomenon variation from “0” to “1” corre-
sponds to a change, trend-wise, from increasing to decreasing; a phenomenon
variation from “1” to “0” corresponds to a change, trend-wise, from decreasing
to increasing. Therefore, by detecting the changes of the monotonic behavior
of fbq one can estimate the positions of the boundaries.
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The probabilityP(Hi = ℓ|di) (ℓ = 0,1; i = 1, . . . ,N) in (20) can be written,
by applying the Bayes formula and following an approach similar to that in
Section 2.2.3, as

P(Hi = ℓ|di) =
P(di |Hi = ℓ)

P(di |Hi = 0)+P(di|Hi = 1)

where we have used the fact thatP(Hi = 0) = P(Hi = 1) and

P(di |Hi = ℓ) =

{
P(s· ℓ+ni < τ) = P(ni < τ −s· ℓ) if di = 0

P(s· ℓ+ni > τ) = P(ni > τ −s· ℓ) if di = 1.

3.2.2 Multi-level Quantization. A simplified fusion algorithm for a
scenario with multi-level quantization at the sensors can be directly obtained
from the one just introduced for the case with binary quantization, with the
difference that the probabilityP(di |Hi = ℓ) (ℓ = 0,1; i = 1, . . . ,N) can assume
2nb ≥ 2 values:

P(di |Hi = ℓ)=






P(s· ℓ+ni < τ − (2nb−1−1))∆) if di = 0

P(τ − (2nb−1−1) ≤ s· ℓ+ni < τ − (2nb−1−2)∆) if di = 1

...
P(τ +(2nb−1−2)∆ ≤ s· ℓ+ni < τ +(2nb−1−1)∆)

if di = 2nb −2

P(s· ℓ+ni ≥ τ +(2nb−1−1)∆) if di = 2nb −1.

3.2.3 Absence of Quantization. In the absence of quantization at the
sensors, one can use the probabilityP(Hi = ℓ|r i) (ℓ = 0,1; i = 1, . . . ,N) and
introduce the following function:

fnq(k,rrr
k
1) ,

k

∑
i=1

[P(Hi = 0|r i)−P(Hi = 1|r i)] k = 1, . . . ,N

whererrrk
1 = (r1, . . . , rk). The fusion algorithm at the AP is then the same of

that presented in the case with binary quantization, but forthe use offnq at the
place of fbq.

4. NUMERICAL RESULTS

We now analyze, through Monte Carlo simulations, the performance of
sensor networks using the decentralized detection algorithms previously de-
scribed. We preliminary denote asD(HHH,ĤHH) the quadratic distance between the
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observed phenomenonHHH and its estimatêHHH:

D(HHH,ĤHH) ,

∣∣∣< (HHH ⊕ĤHH);(HHH ⊕ĤHH) >
∣∣∣
2

(21)

where the notation⊕ stands for bit-by-bit ex-or. Note that̂HHH is the estimated
phenomenon, directly derived from the estimated boundaries positionsα̂αα . We
will simply refer toD as “distance.” We remark that equation (21) reduces to
D(HHH,ĤHH) = |α − α̂|2 in the case of single-boundary phenomena.

The Monte Carlo simulation results are obtained through thefollowing steps:

1. the number of boundaries and their positions are randomlygenerated (in
the case of a single boundary, only its position is randomly generated);

2. the sensors’ decisions (or the PDFs of the observables, according to the
chosen quantization strategy at the sensors) are taken and transmitted to
the AP;

3. the AP estimates the boundaries’ positions through either MMSE or sim-
plified fusion algorithms;

4. the distanceD (between the true phenomenon and its estimate) is evalu-
ated on the basis of the estimated sequence of boundaries;

5. steps 1÷4 are repeated a sufficiently large number of times;

6. the average distanceD is finally computed.

4.1 SINGLE-BOUNDARY PHENOMENA

In Figure 1.1, the distanceD is shown, as a function of the decision threshold
τ at the sensors, for three different values of the numberN of sensors: (i) 8,
(ii) 16, and (iii) 32. The sensor SNR is set to 0 dB. As expected, the optimum
value ofτ , which will be selected, corresponds tos/2 (s= 1 in the considered
simulations). When the number of sensors is small, e.g.,N = 8, the results in
Figure 1.1 show thatD depends onτ in a limited way, and there is not a well-
pronounced minimum. The minimum (in correspondence toτ = 0.5) becomes
more pronounced whenN increases—obviously, the larger is the number of
sensors, the larger is the distanceD, sinceα can assume a wider set of values.
In all numerical results presented in the following, the thresholdτ is optimized
in order to minimize the probability of decision error.

In Figure 1.2, the distanceD is shown, as a function of the sensor SNR,
in scenarios with binary quantization at the sensors (dashed lines) and, for
comparison, with no quantization (solid lines). Three possible values for the
numberN of sensors are considered: (i) 8, (ii) 16, and (iii) 32. As expected, the
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Figure 1.1. Distance, as a function of the decision thresholdτ at the sensors, in a scenario
with a single boundaryphenomenon, binary quantization, MMSE fusion rule at the AP, and
SNRsensor= 0 dB. Three possible values of the numberN of sensors are considered: (i) 8, (ii)
16, and (iii) 32.
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Figure 1.2. Distance, as a function of the sensor SNR, in a scenario with asingle boundary
phenomenon and MMSE fusion rule at the AP. Three possible values for the numberN of
sensors are considered: (i) 8, (ii) 16, and (iii) 32. Solid lines correspond to no quantization at
the sensors, whereas dashed lines are associated with binary quantization.
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Figure 1.3. Distance, as a function of the quantization parameter∆, in a scenario with asingle
boundaryphenomenon, MMSE fusion rule at the AP, multi-level quantization at the sensors,
and SNRsensor= 0 dB. Three possible values for the numberN of sensors are considered: (i) 8,
(ii) 16, and (iii) 32. Solid lines correspond to 2-bit quantization at the sensors, whereas dashed
lines are associated with 3-bit quantization.

distance is a decreasing function of the sensor SNR. In fact,when the accuracy
of the sensors’ observations increases, the decisions sentby the sensors to the
AP are more reliable and, consequently, the estimated phenomenon at the AP
is closer and closer to the true phenomenon. Note also that the performance
degradation incurred by the use of quantization, with respect to the unquantized
case, increases for increasing number of sensors.

Let us now turn our attention to a scenario with multi-level quantization at
the sensors. First, one needs to optimize the value of∆ in (6) for the multi-level
quantization scheme. As for the decision thresholdτ , the optimization is car-
ried out by minimizing the distanceD. In Figure 1.3, the distanceD is shown,
as a function of∆, in a scenario with MMSE fusion strategy at the AP and
multi-level quantization at the sensors. The sensor SNR is set to 5 dB. As in
Figure 1.1 and Figure 1.2, three possible values for the numberN of sensors are
considered: (i) 8, (ii) 16, and (iii) 32. In each case, the performance with 2-bit
quantization (solid lines) is compared with that with 3-bitquantization (dashed
lines). One can observe that in the case withN = 8 sensors, the performance
remains the same regardless of the value of∆. As will be shown later, this is
due to the fact that more than one quantization bit at the sensors does not lead
to any performance improvement when the number of sensors istoo small. On
the other hand, the minimum exists in the cases withN = 16 andN = 32. In
the following, for any value ofN the corresponding optimized value of∆ will
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Figure 1.4. Distance, as a function of the sensor SNR, in a scenario withN = 32 sensors,single
boundaryphenomenon, and MMSE fusion rule at the AP. Two possible values for the number of
quantization bits at the sensors are considered: (i) 1 and (ii) 2. For comparison, the performance
in a scenario with no quantization at the sensors is also shown.

be used. Note that a value of∆ slightly larger than 0.5 is practically the best
for all considered values ofN.

In Figure 1.4, the distance is shown, as a function of the sensor SNR, in a
scenario withN = 32 sensors, MMSE fusion algorithm at the AP, and various
quantization levels at the sensors. As expected, the largeris the number of
quantization bits, the better is the performance. In fact, alarger amount of in-
formation about the observed phenomenon is collected at thesensors and, con-
sequently, the reconstruction of the phenomenon at the AP ismore reliable—
obviously, the performance in a scenario with no quantization at the sensors
represents a lower bound for the distanceD. Obviously, there is a price to pay
in order to improve the performance through multi-level quantization. In fact,
transmission of a larger number of bits leads to higher energy and/or bandwidth
consumption.

We now focus on a decentralized detection scheme where the simplified fu-
sion rule derived in Section 2.2 is applied to estimate the boundary position. In
Figure 1.5 (a), the distance between the true boundary position and its estimate
is shown, as a function of the sensor SNR, in scenarios with noquantization
(solid lines) and binary quantization (dashed lines) at thesensors, respectively.
Three different values for the numberN of sensors are considered: (i) 8, (ii)
16, and (iii) 32. From the results in Figure 1.5 (a), one can observe that the
simplified fusion rule leads to a performance loss with respect to the case with
MMSE fusion rule (compare the results in Figure 1.5 (a), for instance, with
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Figure 1.5. Performance, as a function of the sensor SNR, in a scenario with asingle boundary
phenomenon and simplified fusion algorithm at the AP: (a) distance and (b) percentage loss
with respect to the MMSE fusion algorithm. Three different values for the numberN of sensors
are considered: (i) 8, (ii) 16, and (iii) 32. The performancein the presence of no quantization
(solid lines) is compared with that using binary quantization at the sensors (dashed lines).

those in Figure 1.2). However, in the region of interest (SNRsensor> 0 dB) the
performance with the simplified fusion algorithm is close tothat of the MMSE
scheme. Moreover, the distance goes to zero with the same trend observed in
Figure 1.2 for the MMSE fusion rule.

In order to evaluate the loss incurred by the use of the simplified fusion
algorithm, define the following percentage loss:

L ,

√√√√√
Dsimp−DMMSE

DMMSE︸ ︷︷ ︸
Term1

· Dsimp−DMMSE

N2
︸ ︷︷ ︸

Term2

. (22)

The intuition behind the definition of (22), given by the geometric average of
Term1 and Term2, is the following. Term1 represents the relative loss of the
simplified fusion rule with respect to the MMSE fusion rule. However, using
only this term could be misleading. In fact, for high sensor SNR, the terms
Dsimp andDMMSE are much lower thanN2 (the maximum possible quadratic
distance). Therefore, even ifDsimp > DMMSE (for example,Dsimp = 4 and
DMMSE = 1 with N = 32), both algorithms might perform very well. The intro-
duction of Term2 eliminates this ambiguity, since it represents the relative loss
(between MMSE and simplified fusion algorithms) with respect to the maxi-
mum (quadratic) distance, i.e.,N2. In Figure 1.5 (b), the behavior ofL is shown
as a function of the sensor SNR. In the region of interest (SNRsensor≥ 0 dB),
one can observe thatL is lower than 15%, i.e., the proposed simplified fusion
algorithm is effective.

In Figure 1.6, we compare directly the performance of MMSE (solid lines)
and simplified (dashed lines) fusion algorithms in a scenario with N = 16 sen-
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Figure 1.6. Distance, as a function of the sensor SNR, in a scenario withsingle boundary
phenomenon andN = 16 sensors. Two possible values of quantization bits at the sensors are
considered: (i) 2 bits (circles) and (ii) 3 bits (triangles). The performance with the MMSE fusion
rule (solid lines) is compared to that with the simplified fusion rule (dashed lines).

sors and multi-level quantization. Two possible quantization levels at the sen-
sors are considered: (i) 2-bit (curves with circles) and (ii) 3-bit (curves with
triangles). One can observe that, as in Figure 1.4, the performance improves
for increasing number of quantization bits. Using a 3-bit quantization level
is sufficient to achieve the performance limit corresponding to the absence of
quantization—the improvement, with respect to a scenario with 2-bit quanti-
zation, is minor.

4.2 PHENOMENA WITH MULTIPLE BOUNDARIES

In Figure 1.7, the distance is shown, as a function of the sensor SNR, in a
scenario with a multi-boundary phenomenon, for (a)N = 8 sensors and (b)N =
32 sensors. No quantization is considered at the sensors andthe performance
with the simplified fusion algorithm at the AP is compared directly with that
obtained using the MMSE fusion rule. As expected, the distance D reduces
to zero for increasing values of the sensor SNR and the performance with the
MMSE fusion algorithm is better than that with the simplifiedfusion algorithm.
We recall that the performance with the MMSE fusion rule is evaluated only
with N = 8, since the computational complexity becomes unbearable for values
of N larger than 8 (the simulations are too lengthy).

In order to investigate scenarios with larger numbers of sensors, the use
of the reduced-complexity simplified fusion algorithms derived in Section 3.2
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Figure 1.7. Distance, as a function of the sensor SNR, in a scenario with amulti-boundary
phenomenon, considering (a)N = 8 sensors and absence of quantization (MMSE and simpli-
fied fusion algorithms at the AP are considered) is considered and (b)N = 32 and multi-level
quantization (only the sub-optimum fusion algorithm at theAP is considered).

is mandatory. In Figure 1.7 (b), the distance is shown, as a function of the
sensor SNR, in a scenario withN = 32 sensors and using the simplified fusion
algorithm at the AP. Four different quantization scenariosat the sensors are
considered: (i) no quantization, (ii) 1-bit quantization,(iii) 2-bit quantization,
and (iii) 3-bit quantization. All curves overlap, i.e., theperformance does not
improve by using more than one quantization bit at the sensors. It remains
to be investigated what is the relative loss of the simplifiedfusion algorithm,
with respect to the MMSE fusion algorithm, in scenarios withmulti-boundary
phenomena. The fact that the quantization strategy at the sensors has little
impact suggests that this relative loss might not be negligible.

Finally, we investigate the impact of the number of sensorsN on the system
performance. In Figure 1.8, the distance is shown, as a function of the sensor
SNR, considering three different values forN: (i) 8, (ii) 16, and (iii) 32. The
simplified fusion algorithm at the AP and 3-bit quantizationat the sensors are
considered—we remark that similar results hold also for other quantization
scenarios. As expected, the smaller is the number of sensors, the smaller is the
distance between the observed phenomenon and its estimate.In fact, when the
number of sensors increases, the number of phenomenon boundaries increases
as well and, consequently, the distance can assume larger values. However, as
expected, the distance reduces to zero for sufficiently highvalues of the sensor
SNR.

5. COMPUTATIONAL COMPLEXITY

It is now of interest to evaluate the improvement, in terms ofcomputational
complexity with respect to the MMSE fusion rule, brought by the use of the
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Figure 1.8. Distance, as a function of the sensor SNR, in a scenario with amulti-boundary
phenomenon, simplified fusion algorithm at the AP, and 3-bitquantization at the sensors. Three
different values for the number of sensorsN are considered: (i) 8, (ii) 16, and (iii) 32.

simplified fusion algorithms introduced in Section 2.2 and Section 3.2. As
complexity indicators, we choose the numbers of additions and multiplications
(referred to asNs andNm, respectively) required by the considered fusion al-
gorithms.

In a scenario withsingle-boundaryphenomena and MMSE fusion rule at the
AP, by analyzing (2), (3), and (4), it is possible to show thatNopt

s = Θ(N2) and
Nopt

m = Θ(N3), where the notationf (n) = Θ(g(n)) means that there exists ann0

such that forn> n0, ∃c1 ∈ (0,1), c2 > 1 such thatc1g(n)≤ f (n)≤ c2g(n) [15].
In a scenario with the simplified fusion algorithm introduced in Section 2.2
(for single-boundary phenomena), instead, by analyzing (9), (10), and (11), it
is possible to show thatNsub−opt

s = Θ(N2) andNsub−opt
m = Θ(N2). Therefore,

one can conclude that the complexity of this simplified fusion algorithm is
lower than that of the MMSE fusion algorithm only in terms of the number of
multiplications.

Let us now turn our attention to a scenario characterized by phenomena
with multiple boundaries. By reasoning as in the cases with single-boundary
phenomena, the number of operations (in terms of additions and multiplica-
tions) required by the MMSE fusion algorithm isNopt

s = Θ(N2Nbs) andNopt
m =

Θ(N2Nbs+1), respectively—recall thatNbs is the number of boundaries. As de-
scribed at the beginning of Section 4, in the considered simulation set-up the
numberNbs of boundaries is chosen randomly between 1 andN− 2. There-
fore, one can assume that the phenomenon is characterized, on average, by
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N−2
2 = N/2− 1 boundaries. Under this assumption, the computational com-

plexity of the MMSE fusion algorithm would beNopt
s = Θ(NN−2) andNopt

m =
Θ(NN−1). On the other hand, the reduced-complexity fusion algorithm re-
quires onlyN additions, since no multiplication has to be performed. There-
fore, the complexity of the proposed simplified fusion algorithm isNsub−opt

m = 0
and Nsub−opt

s = N, showing a significant complexity reduction with respect
to the MMSE fusion algorithm—this also justifies the non-negligible perfor-
mance loss for small values of the sensor SNR.

6. CONCLUDING REMARKS

In this paper, we have analyzed the problem of decentralizeddetection of
spatially non-constant binary phenomena, i.e., phenomenawith statuses char-
acterized by single or multiple boundaries. An analytical framework has been
developed to attack this problem, distinguishing between:(i) binary quanti-
zation at the sensors, (ii) multi-level quantization, and (iii) no quantization.
In all cases, the MMSE fusion algorithm at the AP has been derived and the
impacts of relevant network parameters (e.g., the decisionthreshold at the sen-
sors, the interval of quantization, the sensor SNR, and the number of sensors)
have been investigated. Then, we have turned our attention to low-complexity
fusion rules. In particular, we have proposed a suboptimal fusion rule, based
on a deterministic approximation of the MMSE strategy, in scenarios where the
phenomenon has a single boundary. We have further simplifiedthis approach
in scenarios with multi-boundary phenomena. Our results show that the perfor-
mance penalty introduced by the simplified fusion algorithms is asymptotically
(for high sensor SNR) negligible. Finally, we have comparedthe computa-
tional complexities of MMSE and simplified fusion algorithms, in terms of
required numbers of additions and multiplications. Our results underline that
the simplified fusion algorithms allow to reduce the numbersof operations,
especially in scenarios with multi-boundary phenomena.
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