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Abstract In this paper, we study sensor networks with decentraliztdation of aspa-
tially non-constanphenomenon, whose statusght changendependently from
sensor to sensor. In particular, we considerary phenomena characterized by
afixednumber of status changes (from state “0” to state “1") actiessensors.
This is realistic for sensor networking scenarios whereigtspatial variations
of the phenomenon under observation need to be estimatedae abrupt tem-
perature increase, as could be the case in the presence efia &rspecific
zone of the monitored surface. In such scenarios, we dére&/eninimum mean
square error (MMSE) fusion algorithm at the access point)(ARe improve-
ment brought by the use of quantization at the sensors istigeged. Finally,
we derive simplified (sub-optimum) fusion algorithms at &® with a compu-
tational complexity lower than that of schemes with MMSEidusat the AP.

Keywords:  Decentralized detection, non-constant phenomena, mmimean square error
(MMSE), simplified fusion rule, computational complexity.

1. INTRODUCTION

Sensor networks have been an active research field in thedast [1]. In
particular, a lot of civilian applications have been depeld on the basis of this
technology, especially for environmental monitoring [Sleveral frameworks
have been proposed for the analysis of sensor networks witinanon binary
phenomenon under observation [3, 4]. In [5], noisy commation links are
modeled as binary symmetric channels (BSCs) and a few tgobsi such
as the use of multiple observations or selective decemtdlidetection, are
proposed in order to make the system more robust againsbibe. n



While in [5] the focus is on decentralized detection of a hinpghenomenon
commonfor all sensors, it is of interest to extend this approach soenario
where the status of the phenomenon may vary from sensor swiseim [6],
the authors consider a scenario with a single phenomentus sthange (de-
noted, in the following, avoundary and propose a framework, based on a
minimum mean square error (MMSE) detection strategy, terdghe the po-
sition of the boundary. In [7], under the assumption of prapgularity of the
observed boundary, a reduced-complexity MMSE decodeioggsed. In [8],
the authors show that an MMSE decoder is unfeasible for latgée sensor
networks, due to its computational complexity, and propmshstributed de-
tection strategy based on factor graphs and the sum-pratharithm. Finally,
MMSE-based distributed detection schemes have also beestigated in sce-
narios with a common binary phenomenon under observatidrbandwidth
constraints [9].

In this paper, we propose an analytical approach to the wledigecentral-
ized detection schemes in scenarios vd@fatially non-constanbinary phe-
nomena, i.e., phenomena with status (either “0” or “1”) vihmsay vary from
sensor to sensor. First, we focus on phenomena wdingle boundary, i.e.,
scenarios where there is a single (spatial) position inespwndence to which
the phenomenon status changes. Then, we analyze scendtios generic
number of boundaries, i.e., more realistic scenarios wter@umber of phe-
nomenon status changes may be larger than one. For bothsitesarios, we
derive the MMSE fusion algorithmsat the AP, considering various quantiza-
tion strategies at the sensors [10]. In order to make ourcagpr practical,
we derive simplified fusion algorithms with a computationaimplexity much
lower than that of the MMSE fusion rules. Although heuristlee simplified
fusion algorithms guaranteel@nited performance loss for sufficiently high
values of the sensor SNR.

This paper is structured as follows. In Section 2, we deriV3E and sim-
plified fusion rules in a scenario where the observed phenomé& character-
ized by a single boundary. In Section 3, we extend our framlewmnthe case
with a spatially hon-constant phenomenon with a genericbamof bound-
aries. In Section 4, numerical results associated with tbpgsed fusion rules
are presented. In Section 5, a simple computational corntplexalysis, based
on the number of operations required by the derived algusthis proposed.
Finally, in Section 6 concluding remarks are given.

INote that the proposed MMSE distributed detection schemesmimalin the processing performed at
the AP. However, the use of quantization at the sensors nthkesverall schemes sub-optimal. Overall
optimality holds only for a scenario with no quantizatiortte sensors.



2. PHENOMENA WITH A SINGLE BOUNDARY
21 MMSE FUSION RULE

Consider a network scenario whekesensors observe a (spatially) non-
constant binary phenomenon characterized by a singlesstitange across
the sensors. The phenomenon status can be expredded #4;,Ho, ..., Hy],

with
a0 ifi<a .
H'_{l ifi> o i=1,....,N
where the indexy is the position of thdsoundaryin correspondence to which
the phenomenon status changes (from “0” to “1”). The pasitbthe bound-
ary is modeled as uniformly distributed across the sens@sP(a = /) =
1/N,¢=1,...,N.
The signal observed at tl¢th sensor can be expressed as

N =Cgj+n i:]_,...,N
where
E17 ) s ifHi=1

and{n;} are additive observation noise samples. Assuming thatdise sam-
ples{n;} are independent with the same Gaussian distributi6(0, ?), the
common signal-to-noise ratio (SNR) at the sensors can beetkés follows:

[E{cei|Hi = 1} — E{cg;|H; = 0}]2 _ &

SN Rsensor: o2 o2’

Each sensor quantizes the observed signal and the valug bytphei-th sen-

sor is denoted ad, £ fquan(ri), where the functionfquand-) depends on the
specific quantization strategy. In the following, we coesifl) binary quanti-
zation, (ii) multi-level quantization, and (iii) absenckquantization (i.e., the
observationgr;} are sent to the AP). Based on the messages sent by the sen-
sors, the goal of the AP is to reconstruct, through an MMSkbfustrategy,

the status of the distributed binary phenomehhrMore precisely, in the con-
sidered setting the AP needs to estimate correctly theiposif the boundary.

211 Binary Quantization. In this scenario, thé-th sensor makes a
decision comparing its observationwith a threshold value;, and computes
a local decisiord; € {0,1}, i.e., fquan(ri) = U (r; — 7;), whereU (-) is the unit
step function. In order to optimize the system performatteethresholdg; }
need to be properly selected. In this paper, a common vakteall sensors
is considered. This choice is intuitively motivated by thetfthat the sensor
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SNR is constant across the sensors. While in a scenario wiimanon binary
phenomenon the relation betweemndsis well known [11], in the presence
of a non-constant phenomenon the threshoigkeds to be optimized in order
to minimize the probability of decision error at the AP. Thigimization will
be carried out for all the considered scenarios (see thahiegi of Section 4
for more details).
The estimated boundary position, denotedragan be reasonably chosen

as the minimizing value for the mean square error (MSE), i.e.

~ A . ~ 2

as %r:gml’r’hE o —al*|d] N
whered £ [dy,dy, ..., d\] is the vector of sensors’ decisions. The solution of
the MMSE problem (1) is well known [12, ch.10]:

N
a=E[ald]= ) mP(a=mld) (2)
m=1
where each conditional probabilif§(a = m/d) can be expressed, using the
Bayes formula and the total probability theorem [13], as

P(d|a =m)P(a =m)
St Pla =0)P(a =)
At this point, one has to calculate the probabilitiB(d|a =m)},, in (3).
Since the noise samples are independent, conditionalyhervdlue of the

boundary position the sensors’ decisions are also indepgndherefore, one
obtains:

P(a =md) = (3)

P(dja =m) =[] P(dda =m) (4)
k=1
where
de=0
P(nk z r> k<m
dk=1
P(dk|ar = m) = W0 (5)
P ng z T—s k> m.
d=1

One should note that expression (5)—and, consequentlgstimated bound-
ary positiona in (2)—depends on the particular sequedoef sensors’ deci-
sions.

The computational complexity required for the evaluatidn(2) is very
high. For this reason, in the following MMSE-based detattichemes will
be applied only in scenarios with a (relatively) small numbgsensors. In
Section 2.2, we will derive a simplified fusion rule, in orderanalyze scenar-
ios with larger numbers of sensors.
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2.1.2  Multi-level Quantization. Consideringn, quantization bits, we
set the 2 — 1 quantization thresholds as follows:
S

S S S -1
Z,ZiA,ziZA,...,Zi(Z 1)A
whereA is a system parameter which needs to be properly optimizedre-m
details on its optimization will be provided in Section 4The central thresh-

old corresponds t@ = s/2, so that ifn, = 1, one obtains the scenario with
binary quantization [5]. In this case, the sensors’ quantidecisions are taken
according to the following rule:

0 ifrj <s/2— (2 1-1)A
1 if s/2— (2® 1 —1)A<ri<s/2— (2 1-2)A
d=1{ - (6)
2% —2 if s/2+ (znb—1—32A§ r<s/2+ (2w 2-1)A
2% —1 if rj >s/2+ (221 —1)A.

The MMSE fusion algorithm at the AP is similar to that in Sent2.1.1. How-
ever, one needs to properly compute the probabilifle@|a = m)} ., in (4).
According to (6), expression (5) can be generalized asvistio

®(r— (2% 1-1)A-s-Um—k+1)) if j=0
P(r—((2»1-1)-j)A—s-U(m—k+1))
—®(1—((2»1-1)-j+1)A-s-U(m-k+1))
if j=1,...,2% -2
1-®(14 (2 1-1)A-s-U(m—k+1))
if j=2%—1

P(dk=jla=m)=

(7
whered(x) £ [* \/%Texp(—yz/Z)dy. Obviously, the computational complex-
ity of the fusion algorithm at the AP increases with the usenafti-level quan-
tization. In fact, from (7) one can conclude th&t probability values have to
be evaluated—they reduce tb2 2 values in the presence of binary quantiza-
tion.

2.1.3 Absence of Quantization. In this case, the observations at the
sensors are not quantized and a local likelihood value, aa¢he conditional
probability density function (PDF) of the observable, &smitted from each
sensor to the AP. Obviously, this is not a realistic scenagilace an infinite
bandwidth would be required to transmit a PDF value. Howeameestigating
this case allows to derive useful information about thetiimgi performance of
the considered decentralized detection schemes, simstission of the PDF
of the observables does not entail any information losseasémsors.



The MMSE estimate of the boundary position can now be wriggn

a:%r:glmirlllEUa—&\z\r] =Elalr] = % mP(a = mr) (8)

""" m=1

wherer = [ry,r2,...,rn] is the vector of the observed signals (rather than the
vector of decisiond as in (1)). The a posteriori probabilities in (8) can be
expressed similarly to (3), i.8.,

p(rja =m)P(a =m)
-1 P(fla = 0P(a =10)

where, owing to the independence of the observatipfrsg = m) =[N, p(ri|a =
m) and

Pla=mr)=

Py (ri) i<m
Py (ri—s) i>m

p(rila =m) = {

with p_y-(n) £ ﬁexp(—%).
2.2 SIMPLIFIED FUSION RULE

Since the computational complexity of the MMSE fusion sggt rapidly
increases with the number of sensors [6], in this sectionavivel a simplified
low-complexity fusion algorithm. The key idea of this sinfigid algorithm
consists in approximating the MMSE boundary estimat® (2) (and, simi-
larly, in (8)), which involves atatisticalaverage, with a simplateterministic
expression. As in Section 2.1, various quantization leaglhe sensors are
considered. Note that the proposed approach relies on thehfat our goal
is to estimate aingle boundary. However, extensions of this approach to a
scenario with multiple boundaries will be considered intiec3.

221 Binary Quantization. In this case, the boundary position can be
estimated as follows:

-1 N
G— i 12 112
a_a{gjrgll\?{i;]d.\ +i;]d, 1 } )

The intuition behind (9) is based on the fact that there isglsiboundary: the
initial sensors’ decisions (from the first to titg— 1)-th) are compared with
“0,” whereas the others (from thieth to theN-th) are compared with “1.” The

?Note that the uppercageis used to denote the probability of an event, whereas thertmgep is used to
denote the PDF of a random variable.
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estimated boundary minimizes the simplified cost functidr- d;|?, where
d;=10,...,0, 1 ,...,1], over all possible values gf
N~
jth position

2.2.2  Multi-level Quantization.  The approach proposed in Section 2.2.1

can be extended to scenarios with multi-level quantizaéibthe sensors. In
particular, we propose the following decision rule at the AP

a= argmin{ Jii fa(di) + % fz(di)} (10)
i= i=)

1Zj<N

where
fi(d) £ min{|di|?|d—1%...,|d— (2™ - 1)[*}
fo(d) 2 min{|di —2% 112 |d — (2% 1+ 1))%, ..., |di — (2™ — 1)|?}.

The rationale behind (10) is the following. Assuming that Houndary is in
the j-th position, we compare the firgt- 1 decisions with the “low” half of the
quantization levels (i.e., from 0 td"2'1 — 1), whereas the remaining— j + 1
decisions are compared with the “high” half of the quantatevels (i.e.,
from 2%~1 to 2% —1). In both groups, the quantization levels closest to the
corresponding decisions are selected (through the furetioand f,).

As an aside, we remark that for sufficiently large sensor SidRestimation
strategy in (10) (and, as a special case, in (9)) leads toame performance
obtained with the MMSE fusion strategy.

2.2.3  Absence of Quantization. In this scenario, one can use the
posteriori probabilities of the two hypotheses at each sensor, condily on
the observables, to derive the proper objective functionthis case, one can
write?

-1 N
a= aggg;@%x{ i; P(Hi =0Jri) +i; P(Hi = 1|ri)} (11)
where, using Bayes formula and assumitigl; = 0) = P(H; = 1), Vi, one has
p(ri[Hi = ¢) p(ni —¢-s)
P(Hi =/|ri) = = (=01
=)= =0+ plH =1 p)+ -9

3Note that in (11) the “argmax” function is used, instead ef‘targmin” function used in (9) and (10), since
the objective function needs to be maximized.



3. PHENOMENA WITH GENERIC NUMBERS OF
BOUNDARIES

In this section, we focus on a network scenario where thestdtthe phe-
nomenon under observation is characterized grericnumber, denoted as
asNys, of boundaried. This scenario is more realistic than that considered
in Section 2, since a generic phenomenon (e.g., the humiehil) could
change its status from “0” (e.g., low humidity) to “1” (e.dnigh humidity),
or vice-versa, in correspondence to more than one sensade thiat the case
with Nps = 1 corresponds to the previously investigated scenario avitimgle
boundary. The following assumptions are expedient to sfynghle derivation
of the MMSE detection strategy:

m changes of the phenomenon status are not admitted in conesipce to
the first and last sensors, i.e.<INps < N — 2;

= the phenomenon status is perfectly known at the first sem$pe=(0)
and there is no change at the last sensor fg.+~ Hn_1).

According to the considered assumptions, Mg boundaries{as,...,an,.}
have to satisfy the following relation:

2< 01 <0< ... <01 <0< ...<0ONg <N-1

Therefore, between 1 anah — 1 the phenomenon status is “0,” between
anda, — 1 the phenomenon status is “1,” and so on. In order for the dhayn
distribution to be realistic, the following condition mustcessarily hold:

k-1 <0k < (N—1)— (Nps— k) =N —Nps+k—1 k=2,...,Nps. (12)

Condition (12) formalizes the intuitive idea that tkéh boundary cannot fall
beyond thg N — 1 — Nps+ k)-th position, in order for the successive (remain-
ing) Nps— k boundaries to have admissible positions.

31 MMSE FUSION RULE

3.1.1 Binary Quantization. Denoting asa the sequence of bound-
aries(as, ..., an,,), the MMSE fusion strategy can be determined by directly
extending the derivation in Section 2.1.1, obtainahg- E [a|d]. On the basis

of the assumptions introduced at the beginning of thissegcthe generic term

4We remark that throughout this paper the status of the phenomwill be supposed independent from
sensor to sensor. The existencecofrelationsbetween sensors would require an extension of the derived
algorithms. However, this extension goes beyond the scbitesgaper.



of the vectord can be written &s
N—Nps+k—1
ak=E[axd] = Z P(akd) = % kP (a|d) k=1,...,Nps (13)
ax=1 +1

where the upper and lower bounds of the sum in the last terpraperly mod-
ified in order to take into account the constraint (12). Thepotation of (13)
can be carried out by extending (in a multi-dimensional egtise approach
in Section 2.1.1. The probability (ax|d) (k= 1,...,Npg) can be obtained by
marginalizing the joint probabilities of proper boundatisequences. By ap-
plying the Bayes formula and the total probability theorel8]] after a few
manipulations one obtains

-1
N—Nps N—Nps+k—1 N-1

P(a|d) = Pdla)P(a) | T ... Zl Zn 1P(d|a)P(a) . (14)
+ ONps=Nbs+

01:2

The first muItipIicative term at the right-hand side of (14)1d)e written as

a—1 ax—1

Pd|a) = |'lPd|a |‘lPd.|a |‘| P( J|a |‘| P(dgla) (15)

o g=an,. "
eyt aanent Hj=1 b =0 or 1

where we have used the fact that the sensors’ decisionsaggpandent. Note
that, in the lasiN — oy, + 1 terms,H; = O if Nys is even whereasH; = 1 if
Npsis odd As in Section 2.1.1, the component conditional probaédiat the
right-hand side of (15) can be written as

P(dija) = (16)

where
(a) = {indexes such thaH; = /jla}  ¢=0,1. (17)
The second multiplicative term at the right-hand side of)(ldstead, can
be written, using the chain rule [13], as

Nos Nos

— u P(ai|ai-1,...,a1) = P(a) |1 P(ai|ai-1) (18)

5Note that for ease of notational simplicity, in (13) we use #ame notatiom to denote both the ran-
dom variable (in the second term) and its realization (inttikel and fourth terms). The same simplified
notational approach will be considered in the remaindereafin 3.1. The context should eliminate any
ambiguity.



10

where we have used the fact that the position ofitieboundary depends only
on the position of the previousg — 1)-th boundary. Each multiplicative term
at the right-hand side of (18) can be written by observing #a&h boundary
is uniformly distributed among the sensors according tocthestraints intro-

duced in (13). In particular, by using combinatorics, ontants

_r
N —Nps+1
1
Plaxlak-1) = N ——— k=2,...,Nps

The last term at the right-hand side of (14) (i.e., the demamor) can be
easily obtained by observing that it is composed by terméasiito those eval-
uated in (15) and (18).

Finally, the a posteriori probabilities of the boundaripssitions{P(ax|d) }
(k=1,...,Nps) in (13) can be obtained by proper marginalization of (14):

P(akld) = z P(ag,...,an,/d) k=1,...,Nps
~{ ok}
where the notatiorf (yi) = ¥ .y f(Y1,¥2,---,¥n) (i=1,...,n) means that the

marginal functionf (y;) is obtained from the joint functiofi(y1,y2,...,Yn) by
summing over all variable$y; }, with j i [14].

P(Gl) =

3.1.2  Multi-level Quantization. The derivation of the MMSE fusion
algorithm for a scenario with multi-level quantization tkvin, quantization

bits) at the sensors is the same of that provided in Sectibd ®or the case
with binary quantization. However, as in Section 2.1™,@ssible values for
the decisions at the sensors are admissible (see (6))"amidbabilities have
to be computed (see (7)).

3.1.3  Absence of Quantization. Let us finally consider the scenario
with no quantization at the sensors, i.e., with the sensarsinitting the PDFs
of their observables. As in Section 2.1.3, the estimatechtiaties can be
written, according to the assumptions outlined at the beggqof Section 3,

as
N—Nps+k—1

ak =K [C{k|f] = Z akP(crk|r) k= 1,...,Nps (19)
ag=k+1

The probabilities in (19) can be obtained, as in Sectionl3through proper
marginalization of joint conditional probabilities of tifi@lowing type:

-1
N—Nps  N—Nps+i—1 N-1

Pajr)=p(rla)P@)-| 5 ... > ... > p(rla)P(a)

a;=2 ai+1 ONps=0Np-1+1
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Since sensors’ observations are independent, it holds that

N

pirle) = 1 plifr)

where, similarly to Section 2.1.3,

Py (ri) ifi € %(a)
p(rila) :{ .
py(ri—s) ifie.Z(a)

where%y(a) and.#;(a) are defined as in (17).
32 SIMPLIFIED FUSION RULE

Obviously, the computational complexity of the MMSE distried detec-
tion strategy in scenarios with an arbitrary number of pnesiwon boundaries
increases more rapidly than in scenarios with a single pinenon boundary
(for more details see Section 5). Therefore, the derivaticgsimplified fusion
algorithms with low complexity (but limited performancesk) is crucial.

A first possible choice is a direct extension of the sub-oatiapproach, pre-
sented in Section 2.2, for scenarios with a single phenomstaius change.
However, this class of simplified fusion algorithms are rifitient in a sce-
nario with multiple boundaries, since the number of congma$ with all pos-
sible sequences of boundaries rapidly increases with thebau of sensors.
Therefore, in the following we introduce another class oueed-complexity
fusion algorithms, which do not make use of these compasisd@s before,
depending on the quantization strategy at the sensors,stwegliish three pos-
sible scenarios.

3.21 Binary Quantization.  Define the following function:

qu<k,d§>éi{P(Hizordn—P(Hi:l\di)] k=1...N  (20)

whered'{ = (dg,...,dk). The key idea of our approach is the following. The
function qu(k,d'j) is monotonically increasing (or decreasing), with respect
k, while the phenomenon does not change its status. In camdspce to each
change of the phenomenon status, the funcfwﬁk,d'{) changes its mono-
tonic behavior. More precisely, a phenomenon variatiomft@” to “1” corre-
sponds to a change, trend-wise, from increasing to deagasiphenomenon
variation from “1” to “0” corresponds to a change, trend-eyifom decreasing
to increasing. Therefore, by detecting the changes of theotoaic behavior
of fyq one can estimate the positions of the boundaries.
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The probabilityP(H; = ¢|d;) (¢ =0,1;i=1,...,N) in (20) can be written,
by applying the Bayes formula and following an approach Isinto that in
Section 2.2.3, as

P(di|Hi =)
(di|Hi = 0)—|—P(di|Hi = 1)

P(Hi={|d) = 5

where we have used the fact thH; = 0) = P(H; = 1) and

P(sl+nm<1)=PN<1—5Y) ifd =0
P(di|Hi =/¢) = _
P(s-l+n>T1)=Pn>T1-5-{) if di =1.
3.2.2 Multi-level Quantization. A simplified fusion algorithm for a

scenario with multi-level quantization at the sensors canlipectly obtained
from the one just introduced for the case with binary quatiin, with the
difference that the probabilit(d;|H; = ¢) (¢ =0,1;i = 1,...,N) can assume
2 > 2 values:

P(s-£4+n<1— (2% 1 -1))A) ifd=0
Pr—(2»1-1)<s/l4+n<1-(2®1-2)p) ifd =1

P(di|Hi=/¢)= N : .
P(T+ (2t —2)A<s-l+n<T+ (2" +—1)A)
if dg=2%—-2
P(s-¢+n>T1+ (2% 1-1)p) if d =2%—1.
3.2.3 Absence of Quantization. In the absence of quantization at the

sensors, one can use the probabifH; = ¢|rj) (/=0,1;i=1,...,N) and
introduce the following function:

faq(k,r§) 2 i[P(Hi =0r))—P(Hi=1Jr;y)] k=1,...,N

wherer‘{ = (rq,...,rg). The fusion algorithm at the AP is then the same of
that presented in the case with binary quantization, butfeuse off,q at the
place offyg.

4. NUMERICAL RESULTS

We now analyze, through Monte Carlo simulations, the parforce of
sensor networks using the decentralized detection atgositpreviously de-
scribed. We preliminary denote B§H,H) the quadratic distance between the
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observed phenomendt and its estimatél:
DH,H) £ |< HoH);(H®H) > (21)

where the notatiom stands for bit-by-bit ex-or. Note thét is the estimated
phenomenon, directly derived from the estimated bounslaisitionsar. We
will simply refer toD as “distance.” We remark that equation (21) reduces to
D(H,H) = |a — a|? in the case of single-boundary phenomena.

The Monte Carlo simulation results are obtained througtidh@wving steps:

1. the number of boundaries and their positions are randgergrated (in
the case of a single boundary, only its position is randomalyegated);

2. the sensors’ decisions (or the PDFs of the observablesrding to the
chosen quantization strategy at the sensors) are takemaarsirtitted to
the AP;

3. the AP estimates the boundaries’ positions throughreith@SE or sim-
plified fusion algorithms;

4. the distanc® (between the true phenomenon and its estimate) is evalu-
ated on the basis of the estimated sequence of boundaries;

5. steps 14 are repeated a sufficiently large number of times;

6. the average distané®is finally computed.
41 SINGLE-BOUNDARY PHENOMENA

In Figure 1.1, the distand® is shown, as a function of the decision threshold
T at the sensors, for three different values of the nunhberf sensors: (i) 8,
(i) 16, and (iii) 32. The sensor SNR is set to 0 dB. As expectied optimum
value oft, which will be selected, correspondsg2 (s= 1 in the considered
simulations). When the number of sensors is small, 8lg-,8, the results in
Figure 1.1 show thad depends orr in a limited way, and there is not a well-
pronounced minimum. The minimum (in correspondence+00.5) becomes
more pronounced wheN increases—obviously, the larger is the number of
sensors, the larger is the distai@esincea can assume a wider set of values.
In all numerical results presented in the following, theeiiroldr is optimized
in order to minimize the probability of decision error.

In Figure 1.2, the distancB is shown, as a function of the sensor SNR,
in scenarios with binary quantization at the sensors (dh$hes) and, for
comparison, with no quantization (solid lines). Three puesvalues for the
numbem of sensors are considered: (i) 8, (ii) 16, and (iii) 32. Asentpd, the
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Figure 1.1. Distance, as a function of the decision thresholdt the sensors, in a scenario
with a single boundaryphenomenon, binary quantization, MMSE fusion rule at the al
SNRsensor= 0 dB. Three possible values of the numbeof sensors are considered: (i) 8, (ii)
16, and (jii) 32.
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Figure 1.2. Distance, as a function of the sensor SNR, in a scenario witingle boundary
phenomenon and MMSE fusion rule at the AP. Three possibleegafor the numbeN of
sensors are considered: (i) 8, (ii) 16, and (iii) 32. Soliees correspond to no quantization at
the sensors, whereas dashed lines are associated witl ireantization.
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Figure 1.3. Distance, as a function of the quantization param&tén a scenario with aingle
boundaryphenomenon, MMSE fusion rule at the AP, multi-level quaattan at the sensors,
and SNRensor= 0 dB. Three possible values for the numbeof sensors are considered: (i) 8,
(i) 16, and (iii) 32. Solid lines correspond to 2-bit quaaatiion at the sensors, whereas dashed
lines are associated with 3-bit quantization.

distance is a decreasing function of the sensor SNR. Inden the accuracy
of the sensors’ observations increases, the decisiondgehe sensors to the
AP are more reliable and, consequently, the estimated pheman at the AP
is closer and closer to the true phenomenon. Note also thgtdiformance
degradation incurred by the use of quantization, with resjgehe unquantized
case, increases for increasing number of sensors.

Let us now turn our attention to a scenario with multi-leveaqtization at
the sensors. First, one needs to optimize the valdein{6) for the multi-level
guantization scheme. As for the decision threshglthe optimization is car-
ried out by minimizing the distand®@. In Figure 1.3, the distande is shown,
as a function ofp, in a scenario with MMSE fusion strategy at the AP and
multi-level quantization at the sensors. The sensor SNRtitos5 dB. As in
Figure 1.1 and Figure 1.2, three possible values for the euMbf sensors are
considered: (i) 8, (ii) 16, and (iii) 32. In each case, thdgrenance with 2-bit
guantization (solid lines) is compared with that with 3piantization (dashed
lines). One can observe that in the case Wtk 8 sensors, the performance
remains the same regardless of the valuA.oAs will be shown later, this is
due to the fact that more than one quantization bit at theosgmoes not lead
to any performance improvement when the number of sensts Emall. On
the other hand, the minimum exists in the cases Witk 16 andN = 32. In
the following, for any value oN the corresponding optimized value &fwill
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Figure 1.4. Distance, as a function of the sensor SNR, in a scenarioNvit82 sensorssingle
boundaryphenomenon, and MMSE fusion rule at the AP. Two possibleagdar the number of
guantization bits at the sensors are considered: (i) 1 §ritl ror comparison, the performance
in a scenario with no quantization at the sensors is alsoishow

be used. Note that a value Afslightly larger than 0.5 is practically the best
for all considered values oi.

In Figure 1.4, the distance is shown, as a function of the@eBhIR, in a
scenario withN = 32 sensors, MMSE fusion algorithm at the AP, and various
guantization levels at the sensors. As expected, the lasgde number of
guantization bits, the better is the performance. In faé@rger amount of in-
formation about the observed phenomenon is collected a&thgors and, con-
sequently, the reconstruction of the phenomenon at the Alig reliable—
obviously, the performance in a scenario with no quantirzatt the sensors
represents a lower bound for the distafzeObviously, there is a price to pay
in order to improve the performance through multi-level mjimation. In fact,
transmission of a larger number of bits leads to higher greng/or bandwidth
consumption.

We now focus on a decentralized detection scheme wherentpdifsdd fu-
sion rule derived in Section 2.2 is applied to estimate thendary position. In
Figure 1.5 (a), the distance between the true boundaryigosihd its estimate
is shown, as a function of the sensor SNR, in scenarios withuamtization
(solid lines) and binary quantization (dashed lines) asthesors, respectively.
Three different values for the numbhrof sensors are considered: (i) 8, (i)
16, and (iii) 32. From the results in Figure 1.5 (a), one caseole that the
simplified fusion rule leads to a performance loss with respethe case with
MMSE fusion rule (compare the results in Figure 1.5 (a), fstance, with
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Figure 1.5. Performance, as a function of the sensor SNR, in a scenatticasingle boundary
phenomenon and simplified fusion algorithm at the AP: (aladise and (b) percentage loss
with respect to the MMSE fusion algorithm. Three differealues for the numbeX of sensors
are considered: (i) 8, (ii) 16, and (iii) 32. The performamte¢he presence of no quantization
(solid lines) is compared with that using binary quant@atit the sensors (dashed lines).

those in Figure 1.2). However, in the region of interest (§dN&,> 0 dB) the
performance with the simplified fusion algorithm is closehat of the MMSE
scheme. Moreover, the distance goes to zero with the sam dteserved in
Figure 1.2 for the MMSE fusion rule.

In order to evaluate the loss incurred by the use of the sfiaglifusion
algorithm, define the following percentage loss:

Dsimp_ DMMSE Dsimp_ DMMSE

A
L= DMMSE ' N2 ’ (22)

Termy Termp

The intuition behind the definition of (22), given by the gezinit average of
Termy, and Term, is the following. Term represents the relative loss of the
simplified fusion rule with respect to the MMSE fusion ruleowgver, using
only this term could be misleading. In fact, for high senstiRS the terms
DSIMP and DMMSE are much lower tham\? (the maximum possible quadratic
distance). Therefore, even B$™ > DMMSE (for example,DS™P = 4 and
DMMSE _ 1 with N = 32), both algorithms might perform very well. The intro-
duction of Term eliminates this ambiguity, since it represents the retdidss
(between MMSE and simplified fusion algorithms) with regpecthe maxi-
mum (quadratic) distance, i.&2. In Figure 1.5 (b), the behavior &fis shown
as a function of the sensor SNR. In the region of interest (N> 0 dB),
one can observe thétis lower than 15%, i.e., the proposed simplified fusion
algorithm is effective.

In Figure 1.6, we compare directly the performance of MMSiliddines)
and simplified (dashed lines) fusion algorithms in a scenarth N = 16 sen-
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Figure 1.6. Distance, as a function of the sensor SNR, in a scenario siithle boundary
phenomenon antl = 16 sensors. Two possible values of quantization bits atehe®s are
considered: (i) 2 bits (circles) and (i) 3 bits (triangleghe performance with the MMSE fusion
rule (solid lines) is compared to that with the simplifiedifusrule (dashed lines).

sors and multi-level quantization. Two possible quaniizatevels at the sen-
sors are considered: (i) 2-bit (curves with circles) angd3Jibit (curves with
triangles). One can observe that, as in Figure 1.4, the ipes#ioce improves
for increasing number of quantization bits. Using a 3-bitugfization level
is sufficient to achieve the performance limit correspogdimthe absence of
guantization—the improvement, with respect to a scenaiib #+bit quanti-
zation, is minor.

42 PHENOMENA WITH MULTIPLE BOUNDARIES

In Figure 1.7, the distance is shown, as a function of themeBhIR, in a
scenario with a multi-boundary phenomenon, folNa} 8 sensors and (B =
32 sensors. No quantization is considered at the sensorthamqerformance
with the simplified fusion algorithm at the AP is comparededity with that
obtained using the MMSE fusion rule. As expected, the distéh reduces
to zero for increasing values of the sensor SNR and the pegfoce with the
MMSE fusion algorithm is better than that with the simpliffedion algorithm.
We recall that the performance with the MMSE fusion rule ialeated only
with N = 8, since the computational complexity becomes unbearabigafues
of N larger than 8 (the simulations are too lengthy).

In order to investigate scenarios with larger numbers of@en the use
of the reduced-complexity simplified fusion algorithmsided in Section 3.2
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Figure 1.7. Distance, as a function of the sensor SNR, in a scenario withuléi-boundary
phenomenon, considering (B)= 8 sensors and absence of quantization (MMSE and simpli-
fied fusion algorithms at the AP are considered) is consitlarel (b)N = 32 and multi-level
guantization (only the sub-optimum fusion algorithm at #ieis considered).

is mandatory. In Figure 1.7 (b), the distance is shown, asetifan of the
sensor SNR, in a scenario with= 32 sensors and using the simplified fusion
algorithm at the AP. Four different quantization scenaabshe sensors are
considered: (i) no quantization, (ii) 1-bit quantizatidmi) 2-bit quantization,
and (iii) 3-bit quantization. All curves overlap, i.e., tperformance does not
improve by using more than one quantization bit at the senstirremains
to be investigated what is the relative loss of the simplifigglon algorithm,
with respect to the MMSE fusion algorithm, in scenarios wmithlti-boundary
phenomena. The fact that the quantization strategy at thgose has little
impact suggests that this relative loss might not be ndgégi

Finally, we investigate the impact of the number of sendbo the system
performance. In Figure 1.8, the distance is shown, as aiamof the sensor
SNR, considering three different values for (i) 8, (ii) 16, and (iii) 32. The
simplified fusion algorithm at the AP and 3-bit quantizatetrthe sensors are
considered—we remark that similar results hold also foeotiuantization
scenarios. As expected, the smaller is the number of sertkersmaller is the
distance between the observed phenomenon and its estimédet, when the
number of sensors increases, the number of phenomenondra@sihcreases
as well and, consequently, the distance can assume lafgesvdlowever, as
expected, the distance reduces to zero for sufficiently tadies of the sensor
SNR.

5. COMPUTATIONAL COMPLEXITY

It is now of interest to evaluate the improvement, in termsarhputational
complexity with respect to the MMSE fusion rule, brought bg use of the
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Figure 1.8. Distance, as a function of the sensor SNR, in a scenario withuléi-boundary
phenomenon, simplified fusion algorithm at the AP, and 3jbéntization at the sensors. Three
different values for the number of sensdtsre considered: (i) 8, (ii) 16, and (iii) 32.

simplified fusion algorithms introduced in Section 2.2 arett®n 3.2. As
complexity indicators, we choose the numbers of additionsraultiplications
(referred to asNs and Ny, respectively) required by the considered fusion al-
gorithms.

In a scenario witlsingle-boundanphenomena and MMSE fusion rule at the
AP, by analyzing (2), (3), and (4), it is possible to show R = O(N?) and

°P'— ©(N3), where the notatiori (n) = ©(g(n)) means that there exists &g
such that fon > ng, 3¢1 € (0,1), ¢ > 1 such thatig(n) < f(n) < cg(n) [15].
In a scenario with the simplified fusion algorithm introddda Section 2.2
(for single-boundary phenomena), instead, by analyzing(1®), and (11), it
is possible to show that$"® "' = O(N2) andNS'P°P' = ©(N2). Therefore,
one can conclude that the complexity of this simplified fasagorithm is
lower than that of the MMSE fusion algorithm only in terms lbéthumber of
multiplications.

Let us now turn our attention to a scenario characterized Hsnpmena
with multiple boundaries By reasoning as in the cases with single-boundary
phenomena, the number of operations (in terms of additiodsnaultiplica-
tions) required by the MMSE fusion algorithmN§®' = ©(N2s) andN* =
O(NMost1) respectively—recall thatis is the number of boundaries. As de-
scribed at the beginning of Section 4, in the considered Igition set-up the
numberNys of boundaries is chosen randomly between 1 Bnd2. There-
fore, one can assume that the phenomenon is characterinem/ecage, by
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N>2 = N/2 -1 boundaries. Under this assumption, the computationat com

plexity of the MMSE fusion algorithm would b = ©(NN-2) andNSP' =
O(NN-1). On the other hand, the reduced-complexity fusion algoritie-
quires onlyN additions, since no multiplication has to be performed. réhe
fore, the complexity of the proposed simplified fusion aitjon isNSUP°P'= 0
and NS">°P' — N, showing a significant complexity reduction with respect
to the MMSE fusion algorithm—this also justifies the nondigigle perfor-
mance loss for small values of the sensor SNR.

6. CONCLUDING REMARKS

In this paper, we have analyzed the problem of decentralizgelction of
spatially non-constant binary phenomena, i.e., phenomathestatuses char-
acterized by single or multiple boundaries. An analyticafrfework has been
developed to attack this problem, distinguishing betweg@nbinary quanti-
zation at the sensors, (ii) multi-level quantization, anil §o quantization.
In all cases, the MMSE fusion algorithm at the AP has beervelérand the
impacts of relevant network parameters (e.g., the dectbi@shold at the sen-
sors, the interval of quantization, the sensor SNR, and tineer of sensors)
have been investigated. Then, we have turned our attemtitmvtcomplexity
fusion rules. In particular, we have proposed a suboptimsibh rule, based
on a deterministic approximation of the MMSE strategy, irgrios where the
phenomenon has a single boundary. We have further simpitfiechpproach
in scenarios with multi-boundary phenomena. Our resuttg/that the perfor-
mance penalty introduced by the simplified fusion algorghsmasymptotically
(for high sensor SNR) negligible. Finally, we have compaitesl computa-
tional complexities of MMSE and simplified fusion algoritemin terms of
required numbers of additions and multiplications. Ouublssunderline that
the simplified fusion algorithms allow to reduce the numbar®perations,
especially in scenarios with multi-boundary phenomena.
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