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Abstract The study of the motion of individuals allows to gather relevant infor-
mation on a person status, to be used in several fields (e.g., medical, sport, and
entertainment). Over the past decade, the research activity in motion capture has
benefited from the progress of portable and mobile sensors, paving the way toward
the use of motion capture techniques in mHealth applications (e.g., remote moni-
toring of patients, and telerehabilitation). Indeed, even if the optical motion capture,
which typically relies on a set of fixed cameras and body-worn reflecting markers, is
generally perceived as the standard reference approach, other motion capture tech-
niques, such as radio and inertial, are attracting an increasing attention because of
their suitability in remote mHealth applications.
Moreover, several hybrid approaches have been studied and proposed in order to
overcome the limitations of component technologies considered independently. In
this chapter, we present an overview of possible integration strategies between radio
and inertial motion capture techniques. We start by investigating a radio-based ap-
proach, based on the fingerprinting radio localization technique. Then, the previous
approach is improved by integrating inertial measurements: namely, accelerometers
are used to provide an estimate of the nodes’ pitches. Finally, the radio signals are
abandoned in favor of only inertial measurements (obtained through accelerometers,
gyroscopes, and magnetometers). The advantages and limitations of all approaches
are discussed in a comparative way, characterizing the similarities and differences
between the various approaches.
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1 Introduction

The health of an individual is mostly assessed through the evaluation of specific
biophysiological signals. In particular, the evolution over time of such signals may
give the doctors (or caregivers) very relevant information about the evolution of the
pathology itself. However, this typically requires a frequent, or sometimes constant,
monitoring of the patient and, thus, a large use of human resources.

Parameters such as blood-pressure, heart-pulse-rate, and respiration are common
examples of this class of biophysiological signals. Besides them, it has been shown
that the motion of individuals allows to gather relevant information on a person
status, especially in many healthcare scenarios characterized by patients affected
by motion disorders (e.g., Parkinson’s Disease or Stroke) or, more simply, by pa-
tients who need a constant control of their movements (e.g., post-rehabilitation after
surgery or monitoring of activities of elderly people).

Furthermore, over the past decade, the progress of portable and mobile sensors
has paved the way toward the use of these sensors in mHealth applications, allowing
a remote evaluation of different biophysiological signals with economic savings (in
terms of specialized human resources) and improved patient comfort.

Even if optical motion capture, which often relies on a set of fixed cameras and
body-worn reflecting markers, is generally perceived as the standard reference ap-
proach for the evaluation of the motion of individuals, other motion capture tech-
niques, such as radio and inertial, are attracting an increasing attention because
of their suitability in remote mHealth applications. Moreover, several hybrid ap-
proaches have been studied and proposed in order to overcome the limitations of
component technologies considered independently. More specifically, in the litera-
ture, two main approaches have been mainly considered for motion capture: optical
and inertial.

Concerning optical motion capture, the widely used technology is optoelectronic
(e.g., Vicon system [3]). Optoelectronic systems require the user to wear reflective
markers and to move in a space completely visible by a set of cameras. Because
of their accuracy, these systems are often used as ground truth references for other
motion capture systems. On the other hand, their use is mostly limited to clinical en-
vironments or specialized laboratories, due to their high cost and complexity. Other
optical motion capture systems comprise the class of markerless systems. Microsoft
Kinect [2], which makes use of an RGB camera and a depth sensor (composed of
an infrared camera and projector), can be considered one of the most significant
examples of markerless systems. Its low cost (with respect to systems like Vicon),
along with its still quite good performance, has made it a widely used solution. Typ-
ically, optical systems suffer from problems related to different lighting conditions
and markers’ occlusion. Moreover, the user movements must be limited to the area
captured by the cameras. The reader is referred to [8, 22] for accurate surveys on
optical motion capture.

Concerning inertial motion capture, inertial sensors are used to estimate the ori-
entation of rigid body segments and, thus, to capture the motion of a user. One of
the most successful and complete commercial products is the Xsens MVN [27],
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which comprises 17 inertial sensors (equipped with triaxial accelerometers, gyro-
scopes, and magnetometers) attached to the body of the user by a Lycra suit. The
major advantage of this technology, with respect to optical systems, is that the user
is completely free to move everywhere because no camera is needed. Moreover, the
visibility of the nodes placed on the user body is not an issue. However, the accuracy
of these systems is typically lower than that of optical systems and the cost, partic-
ularly for systems which rely on a large number of nodes and types of sensors (as
Xsens MVN), is not significantly lower than that of optoelectronic systems. Finally,
especially when used for a long time, a significant drift in the sensors’ measurements
can be observed, leading to a performance degradation.

When the motion of the whole body needs not to be tracked, besides complex
systems like Xsens MVN, simpler configurations of nodes can be used. To this end,
many other subsystems have been studied and developed in order to provide simpler
solutions to simpler scenarios. These systems still rely on the use of accelerome-
ters, gyroscopes, magnetometers, and/or combinations of them for different types
of biomedical applications [7, 18, 29, 38, 42].

Finally, solutions based on the joint use of different technologies, designed in
order to tackle and overcome the limitations which characterize component tech-
nologies considered independently, have also been investigated. For instance, iner-
tial/radio, inertial/GPS, inertial/optical, and inertial/acoustic joint measurements are
considered in [11, 12, 21], in [6], in [32], and in [36], respectively. In particular:
in the inertial/radio approach, radio signal strengths are used to determine (after a
preliminary training phase) a first rough estimate of the user’s pose, eventually cor-
rected through inertial measurements. In the inertial/GPS approach, nodes equipped
with GPS are also used to track the user, providing better performance (especially)
in outdoor scenarios (e.g., sport sessions, such as skiing). In the inertial/optical ap-
proach, inertial sensor nodes and cameras are jointly used, leading to a decreased
user’s freedom of movement but also to an improved robustness to occlusions. In
the inertial/acoustic approach, nodes equipped with microphones and speakers are
used in addition to inertial sensor nodes, providing better performance (thanks to
the estimates of relative distances between nodes) but suffering from “acoustic oc-
clusions.”

Since motion capture applications typically rely on the use of a centralized base
station, which collects all the data generated from the sensor networks, they are
very suitable to be used in mHealth scenarios where, for instance, a mobile phone
can directly communicate with the base station to get the processed data and send
them to some specialized personnel. This is also reflected by various efforts already
spent in developing mHealth applications based, for instance, on the use of inertial
sensors [5, 23, 24, 25, 37, 41].

This chapter aims at presenting a comparative overview of the possible integra-
tion between radio and inertial approaches, with specific focus on the motion cap-
ture of an arm. In Sect. 2, the considered approaches are properly introduced and
described; the mathematical background behind each approach is also briefly pre-
sented along with some performance results. In Sect. 3, a comparative overview
between the selected approaches is given: to this end, the advantages and limita-
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tions of every approach are discussed, trying to motivate the transitions between
different approaches and to highlight their relationships. In Sect. 4, two application
case studies are presented. In Sect. 5, future directions of the presented techniques
and technologies are discussed. Finally, conclusions are drawn in Sect. 6.

2 Motion Capture: from Radio Signals to Inertial Signals

In this section, different approaches to (arm) motion capture are described. The
mathematical background behind each approach is briefly presented and some per-
formance results are also discussed. In particular, we start by investigating a radio-
based approach (Sect. 2.1), based on the fingerprinting radio localization tech-
nique. Then, the previous approach is improved by integrating inertial measure-
ments (Sect. 2.2): namely, accelerometers are used to provide an estimate of the
nodes’ pitches. Finally, the radio signals are abandoned in favor of only inertial
measurements obtained through accelerometers, gyroscopes, and magnetometers
(Sect. 2.3).

2.1 The Radio Fingerprinting-based Approach

Fingerprinting is a robust localization technique for indoor scenarios, which are typ-
ically characterized by reflections, multipath, and fading [34]. We now provide some
intuition on the fingerprinting technique—the interested user can find more details
in [11, 12, 21]. Fingerprinting requires three kinds of nodes: target nodes, anchor
nodes, and a base station. Target nodes have to be localized, whereas anchors nodes
have fixed known positions and are used to generate a reference system. Finally,
the base station is the processing center. Two phases are involved: a training phase,
during which a radio map of fingerprints is generated; and an online phase, during
which localization is performed.

During the training phase, the target node continuously broadcasts packets to be
received by the anchor nodes. The latter, upon reception of the packets sent by the
target, measure the Received radio Signal Strengths (RSSs) and relay this informa-
tion to the base station. The base station collects the RSS values and generates a
“fingerprint,” i.e., a vector containing the average RSSs measured by the anchors.
Different positions of the target (i.e., fingerprint positions) in the monitored area
(properly chosen depending on the considered application) correspond to different
fingerprints. The set of fingerprints created in the training phase represents the “ra-
dio map” of the environment. The major strength of fingerprinting consists of the
fact that the fingerprint vectors implicitly take into account the impact of reflections
and multipath on the RSSs, i.e., it is “tailored” to the specific indoor environment.
This makes fingerprinting virtually insensitive to indoor propagation limitations—
provided that the propagation environment remains quasi-static. The radio map (ob-
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tained from the average RSSs) can be used to run either deterministic (based on
simple comparisons between the RSSs and the fingerprints) or probabilistic (based
on a more accurate statistical characterization of the RSS) localization algorithms.
To this end, during the training phase the entire Probability Mass Functions (PMFs)
of the RSS from each anchor need to be also computed and stored.

After the training phase is completed, the online phase starts (following the same
operations of the training phase, but now building a so-called “online” vector) and
the radio map (deterministic approach) or the PMFs (probabilistic approach) created
in the training phase are used to localize the target. Note that, at this stage, the
target node can move freely and should not necessarily be placed in the fingerprint
positions. Given the measured “online” vectors, different algorithms can be used to
estimate the target positions.

One of the simplest deterministic fingerprinting algorithm is the Nearest Neigh-
bor (NN) algorithm, whose generalization is known as kNN [9]. It consists of
the computation of a specific distance metric between the received online vector
and every fingerprint. According to the kNN algorithm, by applying the Shepard
method [30], the estimated target position ŝss = (x,y,z) is given by

ŝss =
k

∑
i=1

wi

∑
k
j=1 w j

· ŝssi (1)

where {̂sssi}k
i=1 are the positions of the k best neighbors (i.e., those with shortest

distances from the target) and

wi ,
1

dps
i +0.0001

(2)

where di is the distance computed between the i-th neighbor and the target (defined
in the space of RSS vectors) and ps is an integer larger than 0. The term 0.0001
is used to prevent a division by zero if the online vector is equal to one of the
fingerprints. Various definitions of distance can be considered, such as Euclidean
and Manhattan [9].1 Observe that, when k = 1 (i.e., with the NN algorithm), Eq. 1
reduces to the coordinates of the closest fingerprint position and, then, ps has no
influence on the system. Finally, note that, due to the interpolation between finger-
print positions in Eq. 1, the estimated position ŝss may (likely) differ from any of the
considered fingerprint position.

Unlike the deterministic approach, in the probabilistic approach (straightfor-
wardly called p-kNN) the RSSs measured at the anchor nodes are characterized,
using the samples received in the training phase, through their entire PMFs. More
precisely, the estimated target position can be expressed as

1 Other distance definitions can be applied, e.g., the Mahalanobis distance, which takes also into ac-
count the contribution of covariance matrix computed for every fingerprint [9]. Little performance
differences are, however, observed.
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ŝss =
k

∑
i=1

P (̂sssi|rrr)
∑

k
j=1 P (̂sss j|rrr)

ŝssi (3)

where: rrr is the “online” vector; P (̂sssi|rrr) is the a-posteriori probability of the i-th (out
of k) best neighbor; and the k best neighbors are chosen so that the corresponding a-
posteriori probability is maximized. Note again that, when k = 1 (and thus reducing
to a so-called p-NN), Eq. 3 returns exactly the coordinates of the closest fingerprint
position.

Even if in common practice fingerprinting is often used to localize subjects (with
accuracy in the order of a few meters) in large (indoor) areas [4, 13, 31], it can be
also exploited to estimate the positions of (i.e., localize) multiple target nodes, prop-
erly placed on a user arm (e.g., one on the upper arm and one on the forearm), and
straightforwardly derive the whole arm posture (and motion). To this end, a fixed
origin must be properly chosen (e.g., the shoulder) and the user must try to keep this
origin fixed during the evaluation. In such scenario, the fingerprint positions are pre-
defined postures of the arm that must be held by the user during the training phase.
During the following online phase, the user can instead move his/her arm freely
(always recalling not to move the reference system origin, i.e., his/her shoulder).

In [11, 21], a detailed experimental analysis was carried out for the motion cap-
ture of the arm of an individual. Specifically, 3 SunSPOTs, acting as targets, were
placed on the right arm of the user: the first node was on the hand, the second on
the forearm, and the third on the upper arm. In the surroundings of the user, N = 8
anchor nodes were considered. An illustrative representation of the overall experi-
mental set-up is shown in Fig. 1. Four postures of the arm (on the basis of a priori
known movements of the arm) were trained leading to the computation of 12 finger-
print positions (4 positions per target node) and the origin of the reference system
was fixed on the shoulder. In the online phase, the system performance was tested
asking the user both to replicate trained postures and to perform different (interme-
diate) ones.

In Fig. 2, the precision is shown, as a function of the accuracy, for both the kNN
and the p-kNN algorithms.2 Either fingerprint or intermediate positions are consid-
ered during the online phase. The results show that the system performance, when
estimating intermediate positions, is remarkably worse than that in correspondence
to the estimation of the fingerprint positions. Note also that the kNN algorithm per-
forms better than the p-kNN algorithm when the target is positioned in the inter-
mediate positions. On the other hand, when the target is in one of the fingerprint
positions, the p-kNN algorithm has a better performance. This is due to the fact that
the probabilistic approach tends to give more weight to the fingerprint positions.

2 Note that the performance graph can be read as follows: percentage of correct position estimates
(i.e., precision) as a function of a given maximum tolerable error (i.e., accuracy).
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Fig. 1 Considered motion capture set-up: placement of 3 SunSPOTs (i.e., target nodes) on the user
arm and overall scenario.
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Fig. 2 Precision, as a function of the accuracy, for both the kNN and the p-kNN algorithms (using
the optimized values ps = 1 and k = 2). The system performance is shown for the estimation of
both fingerprint and intermediate positions.
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2.2 The Radio/Accelerometric Approach

As previously observed, the radio fingerprinting approach described in Sect. 2.1 may
introduce errors, especially when a target node is in a position that differs from the
trained fingerprint positions (i.e., when the arm is in an untrained posture). A pos-
sible way to improve the system performance is to estimate the arm orientation by
making use of other inertial sensors (e.g., accelerometers, gyroscopes, and/or mag-
netometers), which the target nodes can be equipped with. In particular, considering
proper combinations of these sensors (e.g., an accelerometer and a gyroscope), the
orientation of a device (and, thus, of the arm) can be estimated [20].

Generally, the orientation of a device can be described by three parameters: yaw
(or heading), pitch (or elevation), and roll (or bank) [16]. In order to define them,
one must consider two reference systems: (i) the device coordinate system (that can
be considered equal to the coordinate system of the inertial sensor mounted on it)
and (ii) the Earth coordinate system. It is known that a rigid body can be arbitrarily
rotated by first rotating it around its z axis by an angle ψ (the yaw), then around
its y axis by an angle θ (the pitch), and finally around its x axis by an angle φ (the
roll) [16]. It can be shown that, using just an accelerometer (in order to minimize
the system cost), the pitch of a still device can be estimated as follows [40]:

θ = arcsinaarm (4)

where aarm is the normalized acceleration (in g units) measured along the arm axis
(which is the device axis that points toward the direction of the user arm, as shown
in Fig. 3). Note that, according to Eq. 4, the pitch belongs to [−π/2,π/2].

As the above approach is valid only if the device is still, static (as the constant
force of gravity) and dynamic (as the movements or vibrations of the accelerometer
itself) accelerations need to be discriminated. This problem is generally solved by
applying a low-pass filter to the acceleration outputs or by taking into account only
acceleration measurements with amplitudes in [g−ξ ,g+ξ ], where g is the gravity
acceleration (i.e., 9.81 m/s2) and ξ needs to be properly chosen with respect to the
application context (i.e., considering only data segments in which the user is not
moving and, thus, ξ ∼= 0 m/s2).

Furthermore, if a device is placed on a user body, its position can be estimated
more accurately by taking into account the implicit constraints of the human body.
The following assumptions are expedient to derive useful human body constraints:

• the pitch of each device is known (e.g., using Eq. 4);
• the lengths of the body segments on which the devices are mounted (e.g., the

length of the arm between two joints) are known;
• preliminary estimates of the positions of the devices are available (e.g., from

radio localization).

Focusing on the motion capture of a user arm, assume that two nodes are placed
on the user arm: the first on the upper arm and the second on the forearm. For ease of
clarity, let us denote their physical positions as {DDDi}2

i=1, where DDDi = (xDi ,yDi ,zDi).
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Fig. 3 Arm constraints: key points and distances used in the algorithm, focusing on the first step of
the proposed approach. In particular: AAA and BBB are the three-dimensional coordinates of the joints of
the arm segment considered in the first step of the proposed approach (i.e., shoulder and elbow); DDD1
indicates the three-dimensional coordinates of target 1; d is the actual length of the considered arm
segment (in this case, the upper arm); and d′ is the distance between a joint and the next (starting
from the shoulder) sensor device (in this case, the distance between the shoulder and target 1).

The origin (0,0,0) will be the shoulder. Another reference point will be the joint of
the arm between the upper arm and the forearm, namely the elbow.

First, the “reference pitch” of each device has to be defined. In our case, we
define it as the pitch that every device has when the user raises his/her arm in a
direction perpendicular to the vertical axis of his/her body. As shown in Fig. 3, at
the first step the arm reference point, corresponding to the shoulder, is denoted as
point AAA= (xA,yA,zA) and the nearest joint (i.e., the elbow) as point BBB= (xB,yB,zB).
We then consider the first device, denoted as point DDD1 and positioned in the middle
of the upper arm, i.e., between AAA and BBB. Its initial position estimate (namely, from
radio localization) is denoted as D̂DD1 and will be refined using the pitch information
(recovered through Eq. 4). In order to do this, we define the two values d′ and d as
the actual distances between AAA and DDD1 and between AAA and BBB, respectively. Knowing
the device pitch θ , it can be shown (through geometric considerations relative to the
scenario in Fig. 3) that the adjusted position estimate of the first device, denoted as
DDD1, can be expressed as

DDD
T
1 =

xD1
yD1
zD1

=


xA +R

(
xD̂1
− xA

)
yA +R

(
yD̂1
− yA

)
zA +d′ sinθ

 (5)

where (·)T denotes vector transposition and
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R =
d′ cosθ√(

xA− xD̂1

)2
+
(

yA− yD̂1

)2
. (6)

On the basis of the estimate DDD1 and taking into account the coordinates of AAA and the
pitch θ , the coordinates of BBB (namely, the elbow) can be expressed as follows:

BBBT =


xA +K

(
xD1
− xA

)
yA +K

(
yD1
− yA

)
zA +d sinθ

 (7)

where K , d/d′.
The above estimation procedure can be repeated to estimate the position of the

second device DDD2, positioned in the middle of the forearm, between point BBB (the
elbow) and point CCC (the wrist), as shown in Fig. 3. To this end, Eqs. 5 - 6 are used
again considering proper values of θ , d′, and d (namely, the ones related to the arm
segment between BBB and CCC), and substituting AAA and DDD1 with BBB and DDD2, respectively.3

Note that as the position of BBB is estimated (i.e., BBB is not a reference point as AAA), it is
likely that the estimate of the coordinates of DDD2 will be less accurate than that of the
coordinates of DDD1.

According to the described hybrid approach, the z coordinate is estimated relying
only on the pitch estimation (which depends on the accelerometric measurements),
whereas x and y coordinates are first coarsely estimated through the radio local-
ization and then their estimates are refined (more precisely, rescaled) according to
the pitch estimation. Alternatively, we can interpret our motion capture system as
a system able to estimate the user arm heading (i.e., the direction of the arm in a
horizontal plane) and pitch (i.e., the inclination of the arm). According to this point
of view, the roles of the two component techniques in our hybrid approach (i.e., ra-
dio localization and accelerometric measurements) are even more definite. Indeed, it
can be observed that the arm pitch estimation is carried out exclusively by using the
accelerometric measurements, whereas the arm heading is estimated only through
radio localization.

Finally, we also remark that the integration of the accelerometers into the sys-
tem does not have any impact on the training phase. Indeed, all the acceleration
measurements are taken into account only during the online phase.

In [12], this hybrid motion capture system was then tested for a scenario similar
to the one described in Sect. 2.1. In particular, a body area network with target nodes
on the user arm was still considered, but now the anchor nodes were in part placed
(and fixed) in the surroundings of the user and in part attached on his/her body. This
was obtained through the use of (i) a home-made t-shirt with folders where anchors
can be placed and (ii) a hat with an anchor attached to it. Though the presence of
some anchor nodes at fixed (outside the body) positions still forces the user to re-

3 Observe that this process can be iteratively repeated, should more consecutive body segments be
considered (e.g., by adding a device for the hand in our testbed).
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Fig. 4 Experimental motion capture set-up for the radio/accelerometric approach. Note that A2,
A3, and A5 are fixed in the surroundings of the user, whereas A1, A4, A6, and A7 are attached on
his/her body.

main in its initial position in the room (in order to make the fingerprinting technique
work consistently), the considered testbed was a first step toward a fully portable
arm motion capture system. Furthermore, a noisier (and, thus, more realistic) envi-
ronment was there taken into account (e.g., with more than one people moving in
the room while testing the system), whereas in [11, 21] the system performance was
analyzed in more controlled (interference-free) scenarios.

In the experimental testbed, only 2 SunSPOTs, acting as targets (i.e., target 1 and
target 2), were placed on the right arm of the user: the first node (i.e., target 1) is
on the upper arm and the second (i.e., target 2) on the forearm. N = 7 anchor nodes
were considered: 4 of them were placed on the user body, whereas the remaining 3
were placed in its proximity. For ease of clarity, an illustrative representation of the
overall experimental set-up is shown in Fig. 4, where a map of the positions of the
nodes is shown. Still fixing the origin of reference system on the shoulder (and thus
forcing the user to move arm and keep the shoulder still), 5 fingerprint positions per
target node were considered, corresponding to 5 simple arm postures. The choice of
the 5 fingerprint positions was made in order to cover as uniformly as possible the
surroundings of the user arm.

During the online phase, the user was first asked to replicate the 5 training fin-
gerprint positions (in order to test the system in static conditions). Furthermore, a
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Fig. 5 Precision, as a function of the accuracy, for both deterministic and probabilistic approaches.
A comparison with the Kinect performance is also offered.

few transitional movements, which start and end at two of the trained fingerprint po-
sitions, were also executed (in order to test the system in dynamic conditions). For
the purpose of comparison, a Microsoft Kinect system [2] was also used to perform
arm motion capture.

In Fig. 5, the performance of the hybrid radio/accelerometric approach is shown,
considering both deterministic and probabilistic approaches, along with that of Mi-
crosoft Kinect. It can be seen that the deterministic approach slightly outperforms
the probabilistic one and the Kinect system, whereas the Kinect system outperforms
the probabilistic approach for accuracy values higher than 15 cm (i.e., if a posi-
tion error larger than 15 cm is accepted the Kinect system is more suitable than the
probabilistic approach of our system).

2.3 The Inertial Approach

If one wants to avoid the use of fingerprinting and, thus, of radio signals, the only
use of accelerometers is not sufficient to provide unambiguous information about
the motion capture of the arm. Instead, a complete Inertial Measurement Unit (IMU)
is generally used, which typically comprises a triaxial accelerometer and a triaxial
gyroscope. Furthermore, a triaxial magnetometer can be included to measure the
direction of the magnetic field in the surroundings of the sensor device (as a digital
compass).

The inertial approach mainly relies on the use of an orientation estimation filter
which must be able to continuously estimate and track the orientation of the sensor
device, starting from the raw measurements of its acceleration (from the accelerom-
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eter), angular velocity (from the gyroscope), and sensed magnetic field (from the
magnetometer). The use of different sensors in the same device is mainly motivated
by the fact that component sensors, if used independently, are prone to “intrinsic”
(and unavoidable) problems. More precisely: accelerometers measure gravity accel-
eration, which is hardly discriminated from the linear acceleration of the device;
gyroscopes can lead to a drift in the measurements due to implicit bias errors; mag-
netometers are very susceptible to magnetic disturbances of the local magnetic field
(e.g., due to ferromagnetic materials in the proximity of the sensor).

The orientation of a device can be expressed, alternatively, in terms of: Euler an-
gles (i.e., yaw, pitch, roll); rotation matrices; and quaternions [16]. Even though Eu-
ler angles give a more direct indication of how the device is rotated, quaternions are
mostly used due to their robustness to unwanted phenomena (e.g., gimbal lock [16])
that can lead to singularities and ambiguities in the orientation estimation. In the
last 20 years, many studies related to motion capture have led to the development of
several types of orientation estimation filters. Furthermore, even if solutions based
on Kalman filtering [14] have been mainly adopted in such studies [10, 19, 26, 28],
in the last years many solutions have focused on complementary filtering techniques
due to their simplicity and low computational requirements [20, 39, 40].

Provided that (i) each device is properly placed on each rigid body segment and
(ii) its estimated orientation is correct, a kinematic chain thus appears. If a fixed
origin is then chosen (e.g., the pelvis for full body motion capture, or a shoulder for
arm motion capture), the positions of the extremes of all body segments can be easily
derived from the estimated segments’ orientations, leading to the reconstruction of
the full posture of the user (or part of it in the case one wants to focus on a specific
part). For ease of clarity, in Fig. 6 an illustrative representation of the reconstruction
of the posture of the user, starting from the orientations of inertial devices attached
to the user body segments, is shown only focusing on the upper body of the user.

The performance of the approach outlined above has been shown to be very ac-
curate. Indeed, the estimated orientations of the body segments typically differ from
the actual orientations of less than a degree in static conditions and of at most a few
degrees in dynamic conditions, often leading to position errors in the order of a few
centimeters.

3 A Comparative Overview

As previously discussed in Sect. 1, most of current state-of-the-art solutions for
motion capture rely on optoelectronic or inertial approaches. However, the costs of
an optoelectronic system and of a complete inertial suit are both very high. The
only difference between these systems consists in the trade-off between accuracy
and freedom of movement. Indeed, optoelectronic systems make errors in the order
of a few millimeters, whereas errors with inertial systems are in the order of a few
centimeters. Nevertheless, optoelectronic systems (and, more generally speaking,
optical systems) are very sensitive to body occlusions and force the user to move in
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Fig. 6 Illustrative representation of the reconstructed posture of the user upper body. As shown in
the label, the user was drinking something from a cup.

a specific area. On the contrary, inertial systems allow users to move freely and do
not suffer from occlusion problems.

Another major advantage of inertial systems is that they scale better in cost when
the whole body motion capture is not necessary. Indeed, the cost of optoelectronic
systems is mainly associated to high quality cameras whose use cannot be avoided,
whereas inertial systems cost depends on the number of inertial devices that the
user wants to use (and, thus, the number of body segments that the user wants to
monitor). Furthermore, the cost of an inertial device mostly resides in the sensors
cost. Therefore, the less sensors are required, the lower the cost is.

From the previous considerations, it is easy to understand that the transition be-
tween the three approaches described in Sect. 2 mainly owes to cost motivations.
A device with only radio communication hardware (Sect. 2.1) costs less than the
same device comprising also an accelerometer (Sect. 2.2), which, in turns, costs
less than a device supplied with an accelerometer, a gyroscope, and a magnetometer
(Sect. 2.3). However, one can also observe that the same transition allows to move
toward systems with increasingly higher accuracy. Indeed, the radio-based approach
is the less accurate, whereas the inertial approach is able to achieve the best perfor-
mance. Similar considerations can be carried out with reference to the computational
efforts and compactness of the various approaches. In particular, the radio-based ap-
proach requires limited computational efforts, whereas the radio/accelerometric hy-
brid approach and the inertial approach require—in this order—increasingly higher
computational efforts. However, the inertial approach is self-contained and does
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Table 1 Comparative overview of the characteristics of the three presented approaches.

Component Technology
Radio Radio/Accelerometric Inertial

Accuracy Medium Medium/High High

Cost Low Medium Medium/High

Computational
Efforts Low Low/Medium Medium

Compactness
(Self-containedness) Low Low High

Table 2 Overview of the advantages/disadvantages of the three presented approaches.

Component Technology
Radio Radio/Accelerometric Inertial

Advantages Very low cost Low cost
Very accurate and
independent of any

external infrastructure

Disadvantages

External nodes are
required (limited user
motion freedom) and

the estimate of the
posture of the user is

qualitative

External nodes are
required (limited user

motion freedom)

Higher cost and
unable to provide the
absolute position of

the user

not require any external infrastructure. Comparative overviews of the characteris-
tics and of the advantages/disadvantages of the three approaches are summarized in
Table 1 and Table 2, respectively.

Going deeper into the working principles of the three approaches, it can be of
interest to highlight differences and similarities of the considered approaches. Con-
cerning the radio approach (Sect. 2.1), it can be observed that the focus is on giving
a qualitative (rather than quantitative) evaluation of the arm motion. Indeed, even if
the interpolation between known trained postures allows to capture the arm motion
in a continuous way, this approach can be perhaps more suitable to posture classi-
fication. The hybrid approach (Sect. 2.2), placing itself in the middle between the
other two approaches, relies less on the interpolation. Indeed, through the use of
a single sensor (i.e., the accelerometer), the hybrid approach makes use of a more
reliable estimation of the device inclination and uses the radio signals component
just to estimate the heading of the device. Finally, the inertial approach (Sect. 2.3)
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completely abandons the contribution of the radio signals and estimate the position
of the considered body segments starting only from the knowledge of the three-
dimensional orientation of the device (estimated through a joint use of accelerom-
eter, gyroscope, and magnetometer). This is also the reason why the first two ap-
proaches (Sect. 2.1 and Sect. 2.2) require the user not to move during the evaluation
of the arm motion (or, at least, not to move the shoulder, being the origin of the ref-
erence system). Indeed, a relative difference between the position of the user and the
positions of anchor nodes in his/her surroundings would invalidate the evaluation of
the arm position. To this end, in [12] a hybrid placement of the anchor nodes also on
the body user has been investigated, as an intermediate step toward the implemen-
tation of a fully portable system. Potentially, a future system design could exploit
radio localization to directly estimate distances between (mobile) nodes placed only
on the user body, possibly removing the distinction between anchor and target nodes
(i.e., every node could be at the same time an anchor and a target node).

Concerning the use of the described approaches in specific applications, the per-
formance results have proved that the inertial approach (Sect. 2.3) can be applied to
a wide range of biomedical applications due to its high accuracy with respect to the
others. The other approaches (Sect. 2.1 and Sect. 2.2) can instead be considered for
health applications where it is relevant to discriminate discrete cases of arm motion
(e.g., in rehabilitation after a surgery, if arm can be raised half-way or all the way).

Finally, a further development for the first two approaches (Sect. 2.1 and Sect. 2.2)
can be that of exploiting the available environment infrastructure. For instance, if
some fixed base stations (e.g., routers) are available in the room/building, they could
be used as anchor nodes to capture the motion of the user in that room/building.

4 Case Studies

The previously presented approaches can be applied, for instance, in the following
two case studies that will be straightforwardly referred to as posture classification
and motion capture.

In posture classification applications, the aim is to determine the posture (i.e., the
joints’ positions) of a user body part (e.g., the arm), choosing between a predefined
set of possible postures. In particular, the term classification specifically refers to a
choice among a discrete set of postures. Therefore, it is not of interest to precisely
estimate the positions of the joints, but a rough estimate is typically sufficient. This,
however, typically implies that the system should be properly trained to recognize
the user postures and discriminate between them. Finally, since the aim of posture
classification is just to determine the posture of a user choosing among a discrete set
of previously trained postures, posture classification could be considered in scenar-
ios where a few cases need to be discriminated (e.g., while monitoring the recovery
improvement after an arm surgery, it can be of interest to just evaluate whether the
arm can be raised half-way or all the way).
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On the other hand, in motion capture applications, the goal is to monitor and
evaluate the precise movements of a user body part (e.g., the arm). This means
recognizing and estimating the posture of the considered body part, without prior
assumptions of possible postures that the body part can assume. In this case, the
system does not need to be trained. However, since the problem is “unconstrained,”
it is not always easy to solve it and, in order to accurately estimate the body part
posture, advanced signal processing techniques may be required.

At the end of this chapter, we will try to answer some common questions that
can arise if one wants to apply the previously described techniques in the context of
these two case studies.

5 Future directions

Due to the continuous advancements in the production of small and portable sensors,
able to measure a wide variety of biophysiological signals, motion capture tech-
niques and applications are probably experiencing, in these years, one of their most
successful periods in terms of development and interest from a user perspective.
The technology is almost mature and the first commercial applications are becom-
ing month by month more known and used by the end users. The commercial cost,
which now may still not be affordable for everyone, is continuously decreasing [1].

Especially in the gaming and biomedical fields, many applications based on mo-
tion capture and inertial sensors are already attracting the attention of gamers and
doctors, respectively. In particular, in 5-10 years, the gaming scenario will proba-
bly be dominated by games where the user will interactively control virtual char-
acters by using some easily wearable devices (at most 4-5 on the whole body,
e.g., possible locations could include feet, ankles, wrists, and head [15, 17, 33]).
The medical scenario will instead begin to adopt wearable sensors able to assess
health of the patients by remotely measuring vital signs/parameters and allowing
patients to freely stay at their homes still keeping a direct connection with their
doctors [5, 7, 18, 23, 24, 25, 29, 37, 38, 41, 42].

Concerning the technologies described in this chapter, the living environments
in the next years will be covered even more by radio devices able to communicate
with sensors and devices placed on the user body, facilitating the application of the
techniques previously described [35]. Also inertial and magnetic sensors will be
further developed in order to become even more small, light, and less bulky. These
advancements will then increase the “usability” gap between optical and inertial
systems, making the latter more appealing for their flexibility and ease of use.

Finally, the technological developments foreseen above are also paving the way
to the use of body sensor networking for more fundamental research activities, con-
cerning the design of advanced biophysiological signal processing techniques able
to detect, from posture and movement signals, the status of a person’s pathologi-
cal condition. In other words, the technological development of advanced posture
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recognition techniques could allow to tackle relevant interdisciplinary (engineer-
ing/medical) research questions.

6 Conclusions

In this chapter, the importance and role of motion capture in mHealth applications
has been investigated. To this end, three different motion capture approaches (i.e.,
radio-based, inertial, and radio/accelerometric) have been presented and described,
in terms of performance, cost, and complexity. Furthermore, the advantages and
limitations of all approaches have been discussed in a comparative way, character-
izing their similarities and their differences and trying to highlight the most suitable
application of each approach. Furthermore, some possible appealing extensions of
the considered approaches have been also proposed.
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[12] Giuberti M, Martalò M, Ferrari G (2014) A hybrid radio/acclerometric ap-
proach to arm posture recognition. Journal of Ambient Intelligence and Smart
Environments. Under revision. Available upon request.

[13] Kaemarungsi K (2005) Design of indoor positioning systems based on
location fingerprinting technique. PhD thesis, University of Pittsburgh,
Pittsburgh, URL http://etd.library.pitt.edu/ETD/available/etd-02232005-
235903/unrestricted/dissertation28Feb05.pdf

[14] Kalman RE (1960) A new approach to linear filtering and prediction problems.
Trans of the ASME—Journal of Basic Eng 82(Series D):35–45

[15] Kim J, Seol Y, Lee J (2012) Realtime performance animation using sparse 3D
motion sensors. In: International Conference on Motion in Games (MIG), pp
31–42

[16] Kuipers JB (1999) Quaternions and Rotation Sequences: A Primer with Appli-
cations to Orbits, Aerospace and Virtual Reality. Princeton University Press,
Princeton, NJ, USA

[17] Liu H, Wei X, Chai J, Ha I, Rhee T (2011) Realtime human motion control
with a small number of inertial sensors. In: Proc. of Symposium on Interactive
3D Graphics and games (I3D), San Francisco, CA, USA, pp 133–140

[18] Lo G, Suresh AR, Stocco L, Gonzalez-Valenzuela S, Leung VCM (2011) A
wireless sensor system for motion analysis of Parkinson’s disease patients. In:
2011 IEEE International Conference on Pervasive Computing and Communi-
cations Workshops (PERCOM Workshops), Seattle, WA, USA, pp 372–375

[19] Luinge HJ, Veltink PH, Baten CTM (2007) Ambulatory measurement of arm
orientation. Journal of Biomechanics 40(1):78–85

[20] Madgwick SOH (2010) An efficient orientation filter for inertial and
inertial/magnetic sensor arrays. Tech. rep., Department of Mechani-
cal Engineering, University of Bristol, Bristol, UK, URL http://www.x-
io.co.uk/res/doc/madgwick internal report.pdf
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Questions and Answers

Case Study #1: “Posture Classification”

As described in Sect. 4, in this scenario it is of interest to determine which posture
is assuming a user body part (e.g., the arm), choosing between a predefined discrete
set of possible postures.

• Q1: Which approach would be preferable to use (among those presented in the
chapter), in order to minimize the cost of the system but allowing a minimum
level of acceptable performance?
A1: If the cost of the system should be minimized, the approach based on radio
fingerprinting could be sufficient for the arm posture classification. Furthermore,
the use of kNN and p-kNN with k = 1 should also be sufficient for such scenario.
Indeed, it has been shown in the chapter that the estimation of the only fingerprint
positions is very accurate also using the simplest version of radio fingerprinting.
Inertial sensors are not required here.

• Q2: Which kind of arm postures could be considered for the classification? How
many devices would be required to be placed on the user body?
A2: The choice of the arm postures can be chosen by the doctor, recalling to
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Fig. 7 Representation of the 5 fingerprint positions (i.e., P1, P2, P3, P4, and P5) considered in the
training phase.

properly train the system on the fingerprint positions associated to the chosen
postures. Adjacent arm postures, however, should be chosen at a sufficiently
large (spatial) distance in order to minimize the estimation error when classi-
fying two different but close postures. For instance, in [11, 12, 21] the arm pos-
tures shown in Fig. 7 have been considered, leading to good classification perfor-
mance. Finally, for these postures, even if the choice of two devices (i.e., on the
upper arm and on the forearm) could be a more robust choice, one can consider
to use only the node on the forearm, which is already associated with very dis-
tinct fingerprint positions (and, thus, arm postures). Observe that, if one is only
interested in classifying different inclinations of the user arm (and its heading is
not of interest), the best choice would be to use a device supplied with only an
accelerometer.

• Q3: In order to classify the posture of a leg, how should the system be changed?
A3: To this end, the devices should be placed on the user leg (e.g., one on the
thigh and one on the shank) and during the session the user should pay attention
not to move his/her hip (which will be now the origin of the reference system).
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Case Study #2: “Motion Capture”

As described in Sect. 4, in this scenario it is of interest to continuously monitor and
evaluate the movements of a user body part (e.g., the arm).

• Q1: Which approach would be preferable to use (among those presented in the
chapter), in order to minimize the cost of the system but allowing a minimum
level of acceptable performance?
A1: Even if almost every approach should be theoretically able to reconstruct the
continuous movements of the arm (just discarding versions of kNN and p-kNN
with k = 1), if one wants to obtain a minimum performance level, the approach
based on the use of inertial and magnetic sensors would be the preferable. Indeed,
in the chapter it has been mentioned that such approach could lead to errors in
the order of only a few centimeters.

• Q2: Which kind of arm movements could be evaluated using the previous ap-
proach? How many devices would be required to place on the user body?
A2: Every possible movement of the user arm could be evaluated. However, it
must be clear that if one wants to estimate the motion of a specific arm segment
a sensor device must be placed on that segment and on all the arm segments
between it and the origin of the system (i.e., the shoulder). For instance, if one
wants to estimate the motion of the hand, three sensor devices are necessary: one
on the hand, one on the forearm, and one on the upper arm. Nevertheless, here
the user is free to move in the room and no preliminary system training is needed.


