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ABSTRACT

In this chapter, the authors study the performance of Cooperative Spectrum Sensing (CSS) with soft data 
fusion, given by Maximal Ratio Combining (MRC)-based fusion with Weibull faded channels, and Log-
normal shadowed channels. More precisely, they evaluate the performance of a MRC-based CSS with 
Cognitive Radios (CRs) censored on the basis of the quality of the reporting channels. The performance 
of CSS with two censoring schemes, namely rank-based and threshold-based, is studied in the presence 
of Weibull fading, Rayleigh fading, and Log-normal shadowing in the reporting channels, considering 
MRC fusion. The performance is compared with those of schemes based on hard decision fusion rules. 
Furthermore, depending on perfect or imperfect Minimum Mean Square Error (MMSE) channel esti-
mation, the authors analyze the impact of channel estimation strategy on the censoring schemes. The 
performance is studied in terms of missed detection probability as a function of several network, fading, 
and shadowing parameters.
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INTRODUCTION

There is huge demand of spectrum in this decade due to increase in internet traffic and other new services 
However, good part of the spectrum has already been licensed/ leased to different government, semi 
government and private organizations. Although, it can be noticed that the licensed and leased spectrums 
are not efficiently used and hence efficient spectrum allocation and utilization policies are required 
from spectrum traders and researchers.In order to deal with this conflict between spectrum scarcity and 
spectrum under-utilization, cognitive radio (CR) has been proposed as a revolutionary technology for 
the next generation of wireless communication networks (Mitola, 1999), (Haykin, 2005). In order to 
guarantee that the operation of the primary users (PUs) is not affected, the secondary users (SUs) need 
to sense the presence of active PUs: this process is referred to as spectrum sensing.

It is necessary to detect the presence of PUs accurately and quickly in order to find available unused 
spectrum, which is called spectrum holes. This is done by “Spectrum sensing” an important feature of 
CR technology. Accurate sensing of spectrum holes is a hard task because of the time-varying nature 
of wireless channels (Cabric, 2004), including fading and shadowing. Presence of multi-path fading or 
shadowing in the sensing (S) channel (S-channel) between a PU and a SU, may limit the successful de-
tection of the PU by a single SU (Digham, 2003). The detection/sensing performance can be improved, 
by limiting the negative impact of fading, if different SUs are allowed to cooperate by sharing their local 
sensing information on the activity status of PUs: this is the essence of cooperative spectrum sensing 
(CSS) (Akyildiz, 2006), (Ghasemi, 2005), (Zhang, 2008). More precisely, CR systems allow the CR us-
ers1 to sense the spectrum of PUs opportunistically without creating any intolerable interference to PUs. 
In many wireless applications, it is of great interest to check the presence and availability of an active 
communication link when the PU signal is unknown. In such scenarios, one appropriate choice consists 
in using an energy detector (ED) which measures the energy in the received waveform over a proper 
observation time window (Urkowitz, 1967), (Digham, 2003). Therefore, CSS using EDs improves the 
detection performance when all CR users sense the PU individually and send their sensing information 
via reporting (R) channels (R-channels) to a fusion center (FC). In CSS systems, the sensing information 
on the PUs’s activity status sent by several CR users is combined at the FC to obtain a global decision. 
In general, the sensing information reported to the FC by several CR users can be combined in two dif-
ferent ways: through (i) soft combining (Teguig, 2012), (Sun, 2011), (Nallagonda, 2013a) or (ii) hard 
combining (Choudhari, 2012(a)), (Choudhari, 2012(b)), (Choudhari, 2013), (Nallagonda, 2011b), (Nal-
lagonda, 2012). In this book chapter, we focus on soft combining of spectrum sensing decisions from 
several CR users when the S- and R-channels are affected by fading and shadowing. Specifically, we 
study the impact of Weibull fading as well as Lognormal shadowing in the R-channels and the benefits 
of censoring the CR users on the basis of quality of the R-channels.

The rest of the chapter is organized as follows. Initially, we discuss on the background of this chapter: 
in particular, the motivation of the present work and the basics of CSS, along with existing works, are 
introduced. Next, we evaluate performance of CSS in faded environments (Rayleigh fading, Weibull fad-
ing, and Log-normal shadowing) under several hard and soft data fusion rules. We introduce the concept 
of censoring on the basis of the quality of R-channels, which is then incorporated into CSS systems. 
Specifically, two different censoring methods, such as rank-based and threshold-based censoring, have 
been analyzed under both perfect and imperfect channel estimation schemes. Finally, we conclude this 
chapter. The logical structure of the work presented in this chapter is shown in Figure 1.
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BACKGROUND

Hard decision combining fusion rules, such as OR-logic, AND-logic, and Majority-logic, can be imple-
mented at FC to make the final decision on the presence or on the absence of a PU (Ghasemi, 2007), 
(Zhang, 2008). The existing literature on ED, using a single CR user (Nallagonda, 2011a) or cooperative 
CR users (Nallagonda, 2011b), (Nallagonda, 2012) performing spectrum sensing with hard decision 
combining fusion rules, typically assumes the following models for the channels Rayleigh/ Rician/ 
Nakagami-m/ Weibull fading and Log-normal shadowing. In contrast to hard decision combining fusion 
rules, where the FC receives a 1-bit binary local decision from a CR, it is possible to apply soft data 
fusion at FC to improve the performance of CSS. According to a soft combining approach, CR users 
transmit the entire local sensing samples or the complete local test statistics (instead of sending just 
1-bit binary decision), which are combined using any one of possible diversity combining techniques.

Our present study focuses not only on hard decision fusion rules but also on the soft data fusion rule 
assuming Weibull fading and log-normal shadowing environments. Weibull fading has been proved to 
exhibit an excellent fitting for indoor (Hashemi, 1993) and outdoor (Adawi, 1988) environments. The 
Weibull distribution reduces to Rayleigh distribution for a certain value of the fading parameter (Ismail, 
2006). In (Fathi, 2012), the authors mentioned that existing receiver diversity techniques, such as equal 
gain combining (EGC) and maximal ratio combining (MRC), can be utilized for soft combining of lo-
cal observations or test statistics at the FC. This has motivated us to evaluate the performance of CSS 
under soft data fusion in Weibull fading channels. Existing works mostly examine the CSS under various 
soft data combining fusion schemes, such as square law selection (SLS), MRC, square law combining 
(SLC), selection combining (SC) using ED in AWGN, Nakagami-m fading, Log-normal shadowing, 
and Rician fading channels (Teguig, 2012), (Sun, 2011), (Nallagonda, 2013a). For example, in (Niu, 
2003), the likelihood ratio test (LRT) fusion is discussed in the case of wireless sensor networks. In 
(Ma, 2008), an optimal soft combination scheme based on Neyman-pearson (NP) criterion is proposed 
to combine the weighted local observations. The proposed scheme reduces to EGC at high signal-to-
noise ratio (SNR) and reduces to MRC at low SNR. In (Choudhari, 2012(a)), the authors provide the 

Figure 1. Logical structure of the work in this chapter
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performance analysis and comparison of hard decision (HD) and soft decision (SD)- based CSS in the 
presence of R-channel errors. The effects of channel errors are incorporated in the analysis through the 
bit error probability (BEP). A general expression for the detection probability with K-out-of-N fusion 
rule has been derived for HD fusion in the presence of R-channel error. While, for SD-based CSS, an 
optimal fusion rule with R-channel errors is derived and its distribution is established, SD-based CSS 
has been found to yield a significant performance gain with regard to conventional counting rule-based 
HD (i.e. K-out-of-N) even in the presence of channel BEP. If the BEP is above a certain value, then re-
gardless of the received signal strength of a PU, the constraints on the probabilities of correct detection 
and false alarm cannot be met. Furthermore, it is shown that SD-based CSS is more robust in terms of 
channel BEP (Choudhari, 2012(a). In (Choudhari, 2013), the impact of error detection and error cor-
rection coding for cooperative sequential sensing by CRs has been shown. In particular, a distributed 
parallel detection network is considered, where each SU sends a soft decision in the form of quantized 
local LLRs to the FC. At each SU, the quantized LLRs are converted to bits using Gray mapping. These 
bits are then channel encoded and transmitted, using BPSK, to the FC. The reporting channels between 
the SUs and the FC induce errors in the decision statistics. Performance with a simple error correcting 
code yields a significant improvement (Choudhari, 2013). In Chaudhari (2012b), the authors evaluate 
the performance of sequential detection scheme for CSS in CRs with R-channel errors. The sequential 
local LLRs are transmitted through erroneous R-channels. The R-channels are modeled as a simple bi-
nary symmetric channel (BSC) that induces errors with a certain bit error probability (BEP). However, 
in (Choudhari, 2012a, Choudhari, 2013, Chaudhari, 2012b) CSS with distributed detection approach 
is mainly considered. In (Chen, 2014), the authors provide a tutorial on various cooperative techniques 
in cognitive networks, with emphasis on spectrum sensing and access based cooperation, interference 
constraint-based adaptive cooperative feedback, rate less network coding-based cooperative transmission.

In (Han, 2013), the authors propose two novel quantization schemes to improve sensing performance 
considering soft decision fusion rule in CSS. In (Atlay, 2012), the authors consider the effect of imperfect 
R-channels on decision logics. In (Hamza, 2014), the authors find the global detection probabilities and 
secondary throughput through moment generating function (MGF)-based approach for the case of sens-
ing with equal gain combining (EGC) in CSS. In particular, EGC is compared to MRC and situations 
where the former outperforms the latter are also identified. Sensing based on EGC always outperforms 
the sensing using orthogonal R-channels---such as TDMA---in terms of secondary throughput. Further, 
the effects of phase and synchronization errors on sensing performance are also evaluated in (Hamza, 
2014). In (Abdi, 2013), a simulation study is conducted to optimize the linear SC scheme at the FC 
jointly with as a function of following these parameters, the number of bits used by each node to quantize 
the local sensing outcomes and the power levels at which each node reports its sensing outcome to the 
FC. Thus, the authors propose to optimize the linear SC scheme at the FC jointly with two significant 
mechanisms at reporting phase. It is demonstrated that by joint consideration of reporting and fusion 
phases the error detection performance can be improved because of better exploitation of spatial/user 
diversities. In (Zhao, 2013(b)), the authors propose a new soft fusion scheme based on LLRs, which 
simplifies the analysis of the data at the FC, and allows to derive exact closed-form expressions for the 
probabilities of missed detection and false alarm. In (Cui, 2013), the authors consider a relay-based 
dual-stage collaborative spectrum sensing (DCSS) model that combines distributed and centralized ap-
proaches. Furthermore, an efficient fast sensing algorithm for a large scale CR network is derived which 
requires the smallest number of CR users for DCSS while satisfying the target detection error rate bound 
(Cui, 2013). In (Paula, 2014), the authors consider a CSS scheme using a distributed approach with a 
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FC in presence of unreliable R-channel. The impact of errors introduced by R-channels on decision rule 
is analyzed following the Bayesian risk criterion. However cooperative sensing can incur cooperation 
overhead in terms of extra sensing time, delay, energy, and operations devoted to cooperative sensing. 
A detailed survey on these issues has been presented in (Akyildiz, 2011), which specifically addresses 
the issues of cooperation method, cooperative gain, and cooperation overhead.

In existing ED-based CSS systems, i.e., CSS with hard decision combining (Nallagonda, 2011b), 
(Nallagonda, 2012) or CSS with soft data combining fusions (Nallagonda, 2013a), R-channels are as-
sumed to be ideal and S-channels are considered as noisy and faded / shadowed channels. However, 
in many practical situations R-channels may also be affected by noise and fading / shadowing channel 
(Zhao, 2013), (Zou, 2011), (Ferrari, 2006). Although most works on spectrum sensing assume ideal 
R-channels (Nallagonda, 2011b), (Nallagonda, 2012), (Nallagonda, 2013a), the presence of fading or 
shadowing in R-channels is likely to affect the sensing information sent by CR users where the FC is far 
from them (Choudhari, 2012(a)). If the R-channel is heavily faded or shadowed, the sensing information 
received at the FC is likely to be erroneous with respect to that transmitted by the CR user. If this is the 
case, it is better to interrupt the transmission of sensing information from such CR user and, thus, the 
use of censoring is expedient. The CR users whose R-channels are estimated as reliable by the FC are 
censored, i.e., they are allowed to transmit. The CR users which are not participating in improving the 
detection performance may be stopped, so that the system complexity can be reduced and the detection 
performance can be improved. This has the additional benefit of reducing the energy consumption in 
energy constrained network. Therefore, censoring of CR users is necessary to improve the performance 
of CSS. In (Zhao, 2013(a)), under the assumption of both S and R-channels are noisy and faded, a filter 
bank-based soft decision fusion (SDF) CSS system is proposed. In (Zou, 2011), a selective-relay based 
CSS scheme, assuming noisy and Rayleigh faded channels in both S- and R-channels, is proposed. Simi-
lar fading or shadowing conditions is considered in S and R-channels. For example, both S-channel and 
R-channel are noisy and Weibull faded or noisy and Log-normal shadowed. Although all the CR users 
detect PUs using EDs, only the CR users censored on the basis of the R-channel quality are allowed 
to transmit. The censoring decision is taken by the FC on the basis of estimation of R-channel. Using 
minimum mean square estimation (MMSE)-based estimation of the R-channels, the FC selects a subset 
of CR users among all the available ones (say P out of N) which have the highest channel coefficients, 
i.e. the CR users associated with best estimated channel coefficients are selected --- this approach is 
referred to as rank-based censoring (Nallagonda, 2013b). However, an alternative censoring scheme, 
based on channel thresholding (denoted also as threshold-based censoring and such that a CR user is 
selected to transmit its decision if the estimated R-channel fading coefficient exceeds a given threshold), 
is considered and analyzed in (Nallagonda, 2013c) (Nallagonda, 2013d). In (Nallagonda, 2014), the per-
formance of CSS with both rank-based and threshold-based censoring is evaluated only with Rayleigh 
and Nakagami-m fading channels, considering majority-logic only at FC.

Channel estimation can be either perfect (no estimation error) or imperfect (with estimation errors). 
Accordingly, for each censoring strategy, there are two possibilities, namely perfect or imperfect chan-
nel estimation. The FC employs coherent reception to fuse the binary local decisions received from the 
censored CR users, in order to obtain a global decision regarding the presence or the absence of PUs. In 
(Nallagonda, 2014), a probabilistic model for CR user selection is proposed for Rayleigh, and Nakagami-m 
faded channels. In the current chapter, we consider the same censoring concept of (Nallagonda, 2013b), 
(Nallagonda, 2014) and evaluate the performance of CSS with rank-based censoring of CR users, based 
on R-channels quality. Similarly, considering the concept of channel thresholding of (Nallagonda, 2013c), 
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(Nallagonda, 2013d), (Nallagonda, 2014), we evaluate the performance of CSS with threshold-based 
censoring in the presence of Weibull fading, Log-normal shadowing in R-channels, with MRC and 
majority logic fusions at the FC. The investigation of majority-logic and MRC fusion schemes where 
both S- and R-channels are Weibull faded or Log-normal shadowed is an interesting research extension. 
Moreover, we develop the required analytical and simulation testbed for CSS, with both rank-based and 
threshold-based in the presence of Weibull faded, and Log-normal shadowed channels. In order to reach 
this goal, we develop closed-form expressions for the estimation error variance for Weibull fading chan-
nels. These expressions are useful to evaluate the performance of CSS with both censoring strategies in 
the presence of imperfect channel estimation. To the best of our knowledge, these expressions are not 
readily available in the literature. Along the way, we also develop probabilistic models of CR selection 
for Weibull faded, and Log-normal shadowed channels.

Our main contributions in the present chapter can be summarized as follows.
We carryout performance evaluation of soft data fusion (MRC-based) in Weibull faded channels as 

well as Log-normal shadowed channels. Furthermore, the performance of SD-based fusion is compared 
with that of HD-based fusion (typically; OR-logic, AND-logic, and majority-logic) and the impact of 
fading and shadowing on soft data fusion is investigated.

The performances of several hard-decision fusion rules are also evaluated and compared with each 
other in the presence of Weibull fading and Log-normal shadowing conditions.

A closed-form expression for the estimation error variance with Weibull fading is presented. This 
expression is expedient to evaluate the performance of CSS with censoring based on imperfect channel 
estimation. The impact of the R-channel estimation error on the detection performance in the considered 
fading scenario is evaluated. Direct performance comparisons between perfect and imperfect channel 
estimation cases, for various values of the main channel and network parameters, are carried out.

The performance, in terms of missed detection probability, under both perfect and imperfect chan-
nel estimation conditions, is investigated. The effects of Weibull fading and Log-normal shadowing in 
S- and R-channel and the impact of channel SNRs on the performance of the considered CSS schemes 
are investigated. In threshold-based censoring scenarios, novel analytical expressions, as functions of 
the censoring threshold Cth, for the selection of CRs are derived in Weibull fading and Log-normal 
shadowing channels. In particular, the probability mass function (PMF) of the number of censored CRs 
is analyzed. The impact of the number of available CRs and the average R-channel SNRs on the average 
missed detection probability of CSS is investigated. In threshold-based censoring schemes, the impact 
of the censoring threshold on the average missed detection is discussed. Finally, the performance com-
parison between MRC fusion and majority logic fusion, for various network parameters, as well as the 
effect of imperfect channel estimation is also highlighted.

COOPERATIVE SPECTRUM SENSING

We consider a CSS network of N CRs, one PU and one FC, as shown in Figure 2. Each CR senses the 
PU individually using energy detector and sends its sensing information/data to the FC. Depending on 
the transmitted sensing information from each CR to FC, the FC employs HD combining fusion if it re-
ceives one bit binary values (1/0) from the CRs or soft data combining fusion if it receives energy values 
(E) from the CRs. Particularly, OR-logic, AND logic, majority-logic, and MRC fusion are performed 
separately at FC to make the global decision about the presence or the absence of the PU. In this chapter, 
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we consider additive noise and Weibull fading or additive noise and shadowing in the S-channels, while 
R-channels are assumed as either (i) ideal channels (i.e., noiseless channels) or (ii) Weibull faded or 
Log-normal shadowed channels. Based on these two cases of interest, a CSS system can be classified as 
follows. In the first scenario, we assume that the R-channels are ideal and we evaluate the performance 
of CSS. In the second scenario, we consider fading or shadowing in the R-channels.

The received signal x(t) at k-th CR can be represented as:

x t
n t H

h s t n t Hk
k

k k

( )
( )

( ) ( )
=

+








0

1

 (1)

where s(t) is the PU signal with energyE
s
and n(t) is the noise waveform. The noise n(t) is modeled as 

a zero-mean white Gaussian random process. The S-channel fading coefficient for the k-th CR is de-
noted as hk. H1 and H0 are the two hypotheses associated with the presence and absence of a PU, respec-
tively. When the PU is absent i.e., under hypotheses H0, each CR receives only the noise signal at the 
input of the ED and the noise energy at k-th CR can be approximated over the time interval (0, T), as 
(Urkowitz, 1967), (Digham, 2003):

n t dt
W

n
k

T

k
i

u

i

2

0

2

1

21
2∫ ∑=

=

( ) ,  (2)

where u (=TW) is the time-bandwidth product, T is the observation time, and W is the one-sided band-
width. Furthermore,

Figure 2. Cooperative spectrum sensing (CSS) system
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where N01 is the one-sided noise power spectral density, and N(µ, σ2) is a Gaussian random variable with 
mean μ and variance σ2. The received signal energy under hypothesis H0 at k-th CR, denoted as E

k
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be written as:  
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The same approach can be followed to evaluate the received signal energy under hypothesis H1 at the 
k-th CR by replacing n

ki
with n s

k ii
+ , wheres s

i
i
W

= ( ).
2

In a non-faded environment (i.e., hk =1) i.e., with only additive white Gaussian noise, the detection 
and false alarm probabilities for the k-th CR can be expressed as follows (Digham, 2003), (Nallagonda, 
2011b), (Nallagonda, 2012):

P P E H Q
d k k u s k, ,

( ) ( , )= > =
1 1

2λ γ λ|  (5)

P P E H u u
f k k,

( | ) ( , ) / ( )= > =
0 0

2λ λΓ Γ/  (6)

P P
m k d k, ,
= −1  (7)

where γ
s k,

 is the instantaneous SNR of k-th S-channel, Г(.,.) is the incomplete gamma function, and 
Qu(.,.) is the generalized Marcum Q-function. The expression for Pf,k for the k-th CR, as given in (6), 
remains the same when fading is considered in the S-channel due to independence of Pf,k from SNR. The 
detection threshold λ can be set for a chosen Pf,k following (6). Equation (5) gives the probability of 
detection as a function of γ

s k,
. However when hk is varying due to fading, the average detection prob-

ability at k-th CR (P
d k,

) may be obtained by averaging (5) over fading or shadowing statistics (Ghasemi, 
2005), (Nallagonda, 2011b), (Nallagonda, 2012)

P Q f d
d k u s s ss,

( , ) ( )=
∞

∫ 2
0

γ λ γ γγ  (8)

where f xγ( )  is the probability density function (PDF) of SNR under fading or shadowing.
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RAYLEIGH FADING

In the Rayleigh faded scenario, the k-th S-channel fading coefficient hk can be expressed as a function 
of the Gaussian in-phase X1 and quadrature X2 elements of the multipath components (Simon, 2014), 
(Nallagonda, 2011a, 2012):

| | | |h X jX X X
k
= + = +

1 2 1
2

2
2 ; X N

1 2
0 1 2

,
~ ( , / )  .  (9)

If the signal amplitude follows a Rayleigh distribution, then the SNR γ
s
 follows an exponential PDF 

given by (Simon, 2014):

f
s s

s

s
s sγ γ

γ

γ
γ γ( ) exp ,= −( ) ≥1 0  (10)

where γ
s
is the average S-channel SNR. The average P

d
 in this case,PdRay , can be evaluated by substi-

tuting (10) in (8) (Nallagonda, 2014), (Digham, 2003), as
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WEIBULL FADING

In the Weibull fading model, the k-th S-channel fading coefficient hk can be expressed as a function of 
the Gaussian in-phase X1 and quadrature X2 elements of the multipath components (Hashemi, 1993) 
(Adawi, 1988), (Nallagonda, 2011b):

h X jX
k

v= +( ) /
1 2

2  (12)

where v is the Weibull fading parameter and j = −1 . Let X be the magnitude of h
k
, i.e.,X h

k
= . If 

R X jX= +
1 2

 is a Rayleigh distributed random variable, a Weibull distributed random variable can 
be obtained by transforming R and using (12) as

X R v= 2/  (13)

The PDF of the SNR ( γ
s
) in a Weibull faded channel is given by (Sagias, 2004) i.e.,
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where c v= 2  and p c= +1 1 . Furthermore, the average probability of detection P
d k we, ,

 can be ob-
tained by substituting (14) in (8).

LOG-NORMAL SHADOWING

In this case, we assume that the S-channel between PU and CR is shadow faded. The linear channel gain, 
hk may be modeled by a log-normal random variable i.e. hk= eX where X is a zero-mean Gaussian random 
variable with variance σ2. Log-normal shadowing is usually characterized in terms of its dB-spread, σdB 
which is related to σ by σ =0.1ln (10) σdB. The PDF of SNR, γ

s
, in Log-normal shadowing channel is 

given by (Simon, 2004)

f
s s
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γ γ
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γ γ
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
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10 2
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2
10

2

2
ln( )

exp
( log )

 (15)

Further, the average probability of detection P
d k, ,ln

 can be obtained by substituting (15) in (8).
The FC employs different hard decision and soft data combining fusion rules to attain a final decision 

from the received signals. Several types of hard decision fusion algorithms such as OR-logic, AND-
logic, and majority-logic and soft data fusion such as MRC fusion are considered in the current text as 
described in the next section.

HARD DECISION FUSION RULES

In the case of HD, the CRs make the one-bit binary decision called local decision by comparing the 
received energy with a detection threshold λ. Several HD fusion rules, such as OR-rule, AND-rule, and 
majority-rules, can be implemented at the FC. Assuming independent decisions, the fusion problem, 
using k-out of-N CRs for decision, is described by a binomial distribution or is derived from Bernoulli 
trials where each trial represents the decision of each CR. The generalized formula for overall prob-
ability of detection Qd at FC for the k-out of-N fusion rule is given by (Nallagonda, 2011b, 2012, 2014), 
(Ghasemi, 2007), (Zhang, 2008)

Q
N

l
P P

d
l k

N

d
l

d

N l
=












−( )

=

−

∑ 1 .  (16)

where P
d

 is the probability of detection for each individual CR as defined by (8).
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The OR-logic fusion rule (i.e., 1-out of-N rule) can be evaluated by setting k=1 in (16)

Q
N

l
P P P

d OR
l

N

d
l

d

N l

d
N

,
( )=












−( ) = − −

=

−

∑
1

1 1 1 .  (17)

The AND-logic fusion rule (i.e., N-out of-N rule) can be evaluated by setting k=N in (16)

Q
N

l
P P P

d AND
l N

N

d
l

d

N l

d
N

,
( )=












−( ) =

=

−

∑ 1 .  (18)

For the case of majority-rule (i.e., N/2 out of-N rule) the Qd, MAJ is evaluated by setting k N= 

/ 2  

in (16). Similarly, the overall probability of false alarm Qf for the generalized k-out of-N fusion rule can 
be evaluated by replacing P

d
with Pf in (16).

SOFT DATA FUSION RULE

In the case of SD combining fusion, each CR forwards the entire sensing information (energy value, 
E) to the FC without performing any local decision. The FC employs soft data combining fusion and 
takes the final decision about the PU. The MRC fusion is considered in this chapter. First the energy 
value of the received signal at each CR is obtained using an ED. Next, all CRs send their respective 
energy values, with appropriate weighting, to the FC. Then the FC gathers all the data (energy values 
with appropriate weights) from all CRs, combines them, and makes a global decision by comparing the 
obtained value with a detection threshold, λ. The MRC fusion requires sensing channel state information 
to amplify the energy values. It may be observed that as we assume R-channels to be ideal, the MRC 
fusion rule at FC simply becomes the sum of the weighted signals received from all the CRs over their 
ideal R-channels. We also assume that signals sent by CRs over their R-channels are orthogonal, i.e., 
there is no interference amongst the signals sent by different CRs to the FC. Over AWGN channels, the 
probabilities of false alarm and correct detection under MRC fusion, are given by (Teguig, 2012), (Sun, 
2011), (Nallagonda, 2013a)

Q
u

uf MRC,

( , / )
( )

=
Γ
Γ
λ 2  (19)

Q Q
d MRC u s MRC, ,

( , )= 2γ λ  (20)
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where γ γ
s MRC s ii

N

, ,
,=

=∑ 1
denotes the instantaneous SNR at the output of the MRC combiner. How-

ever, in the presence of fading, the probability of correct detection can be found by averaging Qd,MRC 
given by (20) with respect to fading statistical distribution or, equivalently, over the SNR distribution as 
follows:

Q Q f d
d MRC d MRC s MRC s MRC s MRC, , , , ,

( , ) ( )=
∞

∫0
γ λ γ γ  (21)

where f
s MRC

( )
,
γ is the PDF of S-channel SNR under fading or shadowing.

Results

The following results are obtained using MATLAB-based simulations. The performance of CSS is 
evaluated in the presence of Weibull fading and Log-normal shadowing environments. The R-channels 
are assumed ideal. In particular, a performance comparison between HD and SD fusion rules at the FC 
is investigated.

In Figure 3 and Figure 4, the performance of CSS with hard decision and soft data fusion rules, 
respectively, is investigated. In particular, the performance is investigated through the use of comple-
mentary ROC curves, i.e., Qm versus Qf . In all cases, 3 CRs are considered and the performance is 
evaluated in Weibull fading environment (Figure 3) and Log-normal shadowing environments (Figure 
4). In these figures, for comparison purposes, the curve for non-cooperation case (N=1) is also shown. 
It is obvious that the system with CSS among multiple CRs outperforms the system with a single CR 
(no-cooperation case), except for the AND rule. This is due to the fact that cooperation among the CRs 
cancels the negative effects of fading or shadowing in the S-channels as compared to the single CR 
case. It can be observed from both figures, that, for a particular value of Qf, the performance with OR-
rule is better than those with majority and AND-rules. It can also be seen, in both Weibull faded and 
Log-normal shadowed environments, that the schemes with MRC fusion outperforms all HD fusion 
rules. However, these benefits are obtained at the cost of a larger bandwidth for the reporting channel. 
On the other hand, HD fusion rules have a lower complexity. The impacts of fading and shadowing on 
the detection performance of MRC fusion are also investigated in Figure 3 and Figure 4, respectively. 
Sensing performance improves significantly for higher values of the Weibull fading parameter and lower 
values of the shadowing parameter. This is due to the fact that higher values of the fading parameter or 
lower values of the shadowing parameter reduce the severity of fading and shadowing in the S-channel.

Spectrum Sensing with Censoring

As already discussed in above sections, in the first considered scenario, the performance of CSS, con-
sidering S-channels as noisy-faded and R-channels as ideal, has been well studied. However, in a more 
realistic scenario, R-channels may not be noiseless (ideal) channels. Though most works on spectrum 
sensing assume noiseless R-channels (Nallagonda, 2013b, 2013c, 2013d, 2014), the presence of fading or 
shadowing in R-channels is likely to affect the sensing information sent by CRs to FC. If the R-channel 
is heavily faded or shadowed, the sensing information received at the FC is likely to be an erroneous 
version of that transmitted by the CR. Under such conditions, it is wise to stop transmitting sensing 
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information from these CRs: censoring is thus expedient in such scenarios. The CRs whose R-channels 
are estimated as reliable by the FC are censored, i.e., they are allowed to transmit their sensing informa-
tion, while the CRs with poor R-channels are stopped. This helps to reduce system complexity and to 
improve detection performance. Therefore, censoring of CRs is necessary to improve the performance 
of CSS. The CSS system with censoring is also shown in Figure 2.

Figure 3. Performance comparison between hard decision (OR-rule, AND-rule, and majority-rule) and 
soft data (MRC) fusions under Weibull fading ( γ

s
=10 dB, u=5, N=3, and ideal R-channel)

Figure 4. Performance comparison between hard decision (OR-rule, AND-rule, and majority-rule) and 
soft data (MRC) fusions under Log-normal shadowing ( γ

s
=10 dB, u=5, N=3, and ideal R-channel)
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In censoring-based CSS systems, we assume that both S-and R-channels are modeled as noisy and faded 
or noisy with shadowing. In this section, we study the performance of CSS with two censoring schemes, 
namely: (i) rank-based censoring and (ii) threshold-based censoring in the presence of Weibull fading and 
Log-normal shadowing. MRC and majority-logic fusion rules are considered at the FC on the reception 
of sensing information, received from censored CRs to obtain a global decision regarding the presence 
or the absence of PUs. The overall probability of missed detection is selected as the key performance 
metric and is evaluated, through simulations, under several channel and network conditions. A CR has 
its individual sensing information and, if censored, transmits its information, using binary phase shift 
keying (BPSK) as modulation format, to the FC over the corresponding faded or shadowed R-channel.

Transmissions between the CRs and the FC are carried out in two phases. In the first transmission 
phase, each CR sends one training symbol to enable the FC to estimate all fading or shadowing channel 
coefficients between the FC and N participating CRs. MMSE-estimation of the R-channel coefficients 
is carried out at the FC using training symbols sent by the CRs to the FC. The signal from the k-th CR 
received at the FC can be expressed as (Nallagonda, 2013b, 2013c, 2013d, 2014):

y s h n
k k k k
= +  k  , , ...,N∈ { }1 2  (22)

where s E
k b
= +
−

 is a BPSK signal corresponding to H H
1 0
/ , respectively. The R-channel fading 

or shadowing coefficient is denoted as h
k
and the R-channel noise is n CN

k n
~ ,0 2Ã( ) . It should be ob-

served that identical notation of h
k
 for both S- and R-channel coefficients is indicated which means that 

the same fading/shadowing parameter is considered in both S-and R-channels. The Gaussian channel 
noise samples n

k{ }and R-channel coefficients h
k{ }are mutually independent. We assume that the FC 

estimates the k-th CR’s R-channel fading or shadowing coefficient h
k
according to an MMSE estimation 

strategy on the basis of the observabley
k
 as follows (Nallagonda, 2013b, 2013c, 2013d, 2014):
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The estimation error for k-th R-channel co-efficient can be expressed as �h h h
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The channel estimation is either perfect ˆ ,h h h
k k k
= =( )� 0  or imperfect ˆ ,h h h h

k k k k
= − ≠( )� � 0 . 

After the first phase of transmission, ‘Z’ Z N≤( )  CRs, out of ‘N’ available CRs, are selected using any 
one of the two possible censoring schemes (i) rank-based (Z=P; the selected CRs are associated with 
the best P estimated channel coefficients, where P N≤ ), and (ii) threshold-based (Z=K; the selected 
K CRs have estimated channel coefficients exceeding a predefined threshold Cth and the value of ‘K’. 
The FC informs the selected CRs via one-bit feedback (we assume that feedback channels are error-free).

In the second transmission phase, the selected CRs send their local binary BPSK modulated sens-
ing information to the FC over the corresponding R-channels. The fading or shadowing coefficients of 
R-channels are assumed to be fixed over a symbol transmission time, as the channel is assumed to be 
slowly faded or shadowed. The signal, received from the k-th selected CR, at the FC is (Nallagonda, 
2013b, 2013c, 2013d, 2014)

y m h n
k d k k k d, ,
= + ;  k  , , ...,Z∈ { }1 2  (25)

where channel noisen CN
k d n,

~ ,0 2σ( )  and m E E
k b b
∈ + −{ },  is the BPSK modulated binary deci-

sions.
The MRC fusion rule depends on the R-channel estimates, the CR’s performance indices, and incor-

porates the effect of channel estimation error. Assuming that the CRs have identical local performance 
indices and BPSK is the used modulation format, the MRC fusion rule can be obtained by simplifying 
the LRT fusion. In the case of ideal R-channel, as described earlier, the weights used for MRC depend on 
S-channel state information, while in present case the weights used for MRC fusion depend on R-channel 
state information. The LRT fusion can be written as follows (Nallagonda, 2013b, 2013d)
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In the case of perfect channel estimation, σ
w
2 is equal to σ

n
2 when the estimation error variance Ã�h

2  
is zero. At very low R-channel SNRs both σ

n
2  and σ

w
2 tend to be very large. By taking a logarithm of 

both sides in (26) and using the approximations e xx− ≈ −1  and log( )1+ ≈x x for small values ofx , 
we can simplify the LRT rule as:
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d f k d k
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Under the assumption that the CRs have identical local performance indices, Λ
1
 can be simplified 

further as follows (Nallagonda, 2013b, 2013d):
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where *̂h
k

 is the complex conjugate of the estimated channel coefficient ĥ
k

and the signal at the FC re-
ceived from k-th selected CR is y

k,d
(given by Equation (25)) . Given ĥ

k
, one can observe from (29) that 

Λ
MRC

is a linear combination of Gaussian random variables and, therefore, has a Gaussian distribution. 
The FC can then take a decision in favor of H

1
 or H

0
simply by comparing Λ

MRC
with the threshold 

zero.

Generation of Estimated and Estimated Error Coefficients for k-th R-Channel

In this section, we discuss methods for generating the estimated R-channel coefficient ( ĥ
k

) and esti-
mated error coefficient ( �h

k
) for Rayleigh, Weibull faded, and Log-normal shadowed R-channels. To the 

best of our knowledge, the error variance expression for Weibull fading channel is not readily available 
in the literature.

Estimation Error in Rayleigh Channel

For k-th Rayleigh faded R-channel, the estimation error is a zero-mean complex Gaussian random vari-
able with the following variance (Nallagonda, 2013b, 2013d, 2014):
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−

 (30)

At this point, the k-th Rayleigh faded R-channel estimation error coefficient can be generated ac-
cording to the following equations:
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Estimation Error in Weibull Fading Channel

For the k-th Weibull faded R-channel, the actual fading coefficient h
k
can be expressed, in terms of in-

phase (h
kI

) and quadrature (h
kQ

) components as

h h jh
k kI kQ

v= +( ) /2  (32)

where v is the Weibull fading parameter (also denoted as shape parameter). The amplitude or envelope 
| |h

k
 is Weibull distributed only when h N
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where w  is the scale parameter. The estimated k-th Weibull faded R-channel coefficient ( ĥ
k
) can be 

generated by substituting (32) in (23) as
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Finally, the estimated Weibull fading coefficient can be generated by substituting h
kI

, h N
kQ

~ ( , / )0 1 2  
in (35) and n n jn

k kI kQ
= + , where n n N

kI kQ n
, ~ ( , / )0 22σ . From (35), the estimation error coefficient 

for the k-th Weibull faded R-channel �h h h
k k k
( ˆ )= −  can be generated by substituting (32) in (24) as

�h
E

h jh
E

E
n

k
n

b n

kI kQ
v b

b n

k
=

+
+ −

+

σ

σ σ

2

2

2

2
( ) / .  (36)

The mean and variance of �h
k
 can be evaluated by using (33), and (34) as
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For v=2, the term σ
h we,
2 in (38) is equal to the variance of a Rayleigh distributed random variable, 

which is assumed to be equal to one and (38) gives an alternative expression for estimated error variance 
in Rayleigh channel (σ�h R,

2 ), which matches with (30).

Estimation Error in Log-Normal Shadowing Channel

For the k-th Log-normal shadowing R-channel, the actual Log-normal coefficient h
k
 can be expressed 

as follows: if X is a zero-mean Gaussian RV with variance σ2 , i.e., X N~ ( , )0 2σ , then a log-normal 
coefficient can be modeled as h X

k
= exp( ) . Finally, the Log-normal shadowing coefficient can be 

generated by using σ  of X N~ ( , )0 2σ  as σ σ= 0 1 10. ln( )
dB

, where σ
dB

 is the shadowing parameter, 
generally expressed in terms of its dB-spread. The estimated shadowing coefficient for the k-th R-
channel ( ĥ

k
) can be generated by substituting h X

k
= exp( ) , where X N

dB
~ ( ,( . ln( ) ) )0 0 1 10 2σ , and 

n n jn
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= + , where n n N
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, ~ ( , / )0 22σ in (23), as follows:
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From (39), the estimation error �h
k
 for k-th R-channel can be generated by substituting the shadowing 

coefficient h
k
 and the complex Gaussian noise coefficient n

k
in (24) as follows:
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Due to analytical complexity, it may not be possible to simplify further the Equations (35), (36), 
(39), and (40).

Rank-Based Censoring

According to this censoring scheme (Nallagonda, 2013b, 2013d, 2014), P (out of N) CRs—those with 
the best estimated channel coefficients (i.e., the highest ones)—are selected. More precisely, using 
MMSE-based estimation of the R-channels, the amplitudes of the N estimated R-channel coefficients are 
sorted in decreasing order and the FC selects the P CRs (P ≤ N) which have highest estimated R-channel 
coefficients i.e., CRs associated with best estimated R-channel coefficients are selected. The FC fuses 
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the sensing information, received as BPSK signal from the P selected CRs, to obtain a final decision 
on the presence or absence of the PU. The overall probability of missed detection can be evaluated by 
using MRC fusion.

The following results are obtained using MATLAB based simulations. The performance of CSS with 
rank-based censoring for both perfect and imperfect channel estimation cases has been evaluated in 
Weibull faded and Log-normal shadowed environments. Particularly, the overall missed detection prob-
ability (Qm) is evaluated as function of number (P) of selected CRs, considering the impact of average 
S-channel SNR ( γ

s
) and the average R-channel SNRs ( γ

r
). The results for majority-logic fusion are 

also shown for comparison purpose.
In Figure 5 and Figure 6, the performance of CSS with rank-based censoring is evaluated in the pres-

ence of Weibull fading and Log-normal shadowing, respectively. In both figures, Qm is shown as a func-
tion of number(P) of selected CRs. The results are shown for both the cases with perfect and imperfect 
channel estimations by performing MRC fusion at FC in both the figures. For comparison purposes, the 
curves for majority-logic fusion are shown. In Figure 5, the impact of γ

r
 and γ

s
 on missed detection 

performanceis investigated. Two values of γ
r
 (-8 dB, -6 dB) and two values of γ

s
 (15 dB, 20 dB) are 

considered. When any one of the parameters P, γ
r
 and γ

s
increases, Qm reduces with both perfect and 

imperfect channel estimations. The probability of incorrect reception from CRs at FC reduces with 
higher γ

r
. As expected, for a given value of the γ

r
, Qm is higher with imperfect channel estimation, as 

channel-based censoring leads to the selection of a group of CRs which may not be the best ones due to 
channel estimation errors. Furthermore, according to (38), an increase in γ

r
 leads to a decrease in esti-

mation error variance σ�h weib,
2  and this, in turns, reduces the average estimation error. A reduced estima-

Figure 5. Performance of CSS in terms of Qm under perfect and imperfect channel estimation for differ-
ent values of γ

r
, and γ

s
in Weibull faded (v=4) environment (u=5, Pf=0.05, N=30, and rank-based 

censoring).
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tion error leads to a further reduction of Qm. In particular, in case of imperfect channel estimation with 
P=15, Qm decreases by 59.16% when γ

r
 increases from -8 dB to -6 dB. Similarly, in the case of perfect 

channel estimation, Qm decreases by 53.76% for the same values of P and γ
r
. Higher γ

s
 improves the 

detection of the PU at the CR. For example, in the case of perfect channel estimation with P=12 and γ
r

=-8 dB, as γ
s
 increases from 15 dB to 20 dB, Qm decreases by 73.96%. We observe from Figure 5 that 

missed detection performance with MRC fusion is better than the performance with majority-logic fu-
sion in both the cases of channel estimations. For example, in case of perfect channel estimation, for 
P=12, γ

r
= -6 dB and γ

s
=20 dB, Qm with MRC is 58.47% lower than Qm with majority-logic fusion. 

In Figure 6, the missed detection is evaluated for various values of shadowing parameter (σ  in dB) and
γ
r
. It is seen that there is a significant impact of shadowing parameter on missed detection performance. 

More precisely, the performance degrades for higher value of σ  due to increase in value of σ , S/R-
channels undergo severe effect of shadowing so that quality of S/R-channels become very poor and 
erroneous transmission/reception occurs. The Qm reduces with increase in the value of γ

r
 due to reduc-

tion of noise effect in the R-channel. Further, MRC fusion provides better performance than majority-
logic fusion, though MRC fusion depends on channel estimation. From both Figure 5 and Figure 6, it is 
observed that in case of majority logic fusion, zigzag nature of the curve may be attributed due to oc-
currence of tie at FC in the case of even number of selected CRs. However in the case of no censoring, 
the missed detection probability is seen to be high.

Figure 6. Performance of CSS in terms of Qm under perfect and imperfect channel estimation for differ-
ent values of σ , and γ

r
 in Log-normal shadowing environment (u=5, Pf=0.05, N=30, and rank-based 

censoring).
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Threshold Based Censoring

In this censoring scheme (Nallagonda, 2013c, 2013d, 2014), a CR (say the k-th) is selected for transmis-
sion if the amplitude of the corresponding estimated R-channel coefficient ĥ

k
is above a censoring 

threshold (Cth). This approach involves two transmission phases: in the first phase, the FC estimates the 
R-channel corresponding to each CR using MMSE; in the second phase, the FC censors a CR if the 
corresponding estimated channel coefficient exceeds a chosen threshold Cth. In this section, novel ana-
lytical expressions, as functions of Cth, for the selection of CRs are derived in different channels such as 
Weibull fading, and Log-normal shadowing channels. The threshold based selection of CRs in the case 
of Rayleigh faded R-channels is analyzed in (Nallagonda, 2013c, 2013d, 2014). In particular, the prob-
ability mass functions (PMF) of the number of censored CRs; the expression for the average missed 
detection (Q

m
) and false alarm (Q

f
) probabilities are analyzed in the context of Rayleigh fading in R-

channel.

Threshold Based Censoring in Weibull Fading 
and Log-Normal Shadowing Channels

If the amplitude of estimated R-channel fading coefficient is a Weibull distributed random variable, the 
cumulative distribution function (CDF) of Weibull distributed random variable in terms of Cth can be 
derived as

F C C C
we th th

v
th

( ) exp( { / } );= − − ≥1 0Ω     (41)

where v is the Weibull fading parameter which ranges from 1 to ∞ and Ω = 1. Now the probability of 
selecting a CR in Weibull faded R-channel can be derived as
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Similarly, in case of Log-normal shadowing, amplitude of estimated R-channel coefficient is a Log-
normal distributed random variable, so the CDF of Log-normal distributed RV in terms of Cth can be 
derived as
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
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2 2
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    (43)

where erfc (.) is complementary error function, σ  is the Log-normal shadowing parameter generally 
expressed in dB. Then the probability of selecting a CR for Log-normal shadowing channel can be de-
rived as
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The probability of selecting K number of CRs from N available CRs can now be expressed by utiliz-
ing the binomial distribution function as follows (Nallagonda, 2013c, 2013d, 2014)

P K
N

K
p pK N K( ) ( )( )=


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






− −1 1  (45)

where p is p
we

 or p
ln

 depends on censoring in Weibull or log-normal channels.
Let P K

m
( | )error indicates the conditional missed detection probability when sensing information 

from K number of CRs are fused using MRC fusion. Given P(K), the probability of selecting K number 
of CRs in (45), the average probabilities of missed detection and false alarm can be expressed following 
(Nallagonda, 2013c, 2013d, 2014) as:
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Q P P K P K
f f

K

N

= =
=
∑( ( | ) ( )false alarm) error  

0

1

 (47)

The Q
m

and Q
f
are the function of chosen Cth, as the probability of mass function (pmf) {P(K)} of 

the number of censored CRs depends on Cth. It may be noted that P K
m
( | )error and P K

f
( | )error are 

evaluated here considering sensing information from K selected CRs.

Results

The following results are obtained, as in the previous sections, using MATLAB based simulations. The 
performance of CSS with threshold based censoring for both the perfect and imperfect channel estima-
tion cases has been evaluated in Weibull fading and Log-normal shadowing environments. The average 
missed detection probability is evaluated as a function of Cth considering the impact of various network 
parameters, such as the Weibull fading parameter (v), shadowing parameter (σ in dB), the number of 
available CR users (N), and the average R-channel SNRs ( γ

r
).

In Figure 7, the binomially distributed probability mass fusion (PMF) of the number of selected CRs 
is shown for different values of v and Cth under perfect channel estimation. We observe that as v increases 
from 2 to 4, the binomially-distributed PMF is shifted right side i.e. more number of CRs is selected by 
reducing the fading severity in the R-channel. The binomially distributed PMF of the number of selected 
CR users as obtained for v=2 matches exactly with result obtained for Rayleigh (Figure 7.7, Nallagonda, 
2014) under perfect channel estimation. In the same figure, the effects of Cth on the probability of select-
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ing K number of CRs, i.e., on the value of P(K), is also shown. It can be observed that for small values 
of Cth, a larger number of CRs is likely to be selected, while the PMF tends to concentrate around small 
values for higher values of Cth. For example, for v=4, and Cth=0.75, it is seen that K=22 CRs have highest 
probability (0.17) of being selected. One can also observe that as Cth increases, the PMF moves towards 
origin. This is due to the fact that a larger value of Cth decreases the number of selected CRs. If the value 
of Cth is increased to a very high level (say Cth =3.5), no CR is selected to transmit, i.e., the probability 
of selecting no CR is equal to 1 (P(0) = 1). The binomially distributed PMF of the number of selected 
CRs obtained with our simulation test bed confirms that obtained based on the analytical expression 
(Equation 42 followed by Equation 45). This validates our analytical framework.

In Figure 8, Q
m

 is shown as a function of the Cth in presence of Weibull fading. Various values of N 
(i.e. N=10, and 30) and of γ

r
 ( γ

r
=-8 dB, -6 dB) are considered. Two fusion rules such as majority-

logic fusion and MRC fusion have been performed separately at FC. The performance comparison be-
tween these two fusions is evaluated considering perfect channel estimation case. It can be seen from 
this figure that as Cth increases Q

m
attains a minimum value for an ‘optimal’ Cth level and thereafter 

increases with further increase in Cth to finally attain a value of 0.5. This behavior of Q
m

 is due to the 
changing PMF of the number of censored CRs for various values of Cth. For very small values of the 
Cth, even unreliable links tend to be selected, and Q

m
 is rather high. On the other hand, as Cth is increased 

to a very high level, no CR is selected to transmit, i.e. P(0) =1, and the FC takes a decision by flipping 
a fair coin resulting in Q

m
of 0.5. Therefore, there exists an optimal value of Cth, in correspondence to 

which Q
m

is minimized. It can be seen that a larger value of N leads to a reduced Q
m

in correspondence 
to the optimized value of Cth. In particular, for Cth=0.5 and γ

r
=-6 dB, Q

m
decreases by 81.81% when N 

increases from 10 to 30. When γ
r
 increases, the FC receives a larger number of correct decisions (large 

Figure 7. PMF of the number of selected CR users for different values of v, and Cth, under perfect chan-
nel estimation in Weibull faded environment (N=30)
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number of CRs selected) and this, in turn, leads to a reduction in Q
m

. The optimum value of Cth depends 
on network parameters. Furthermore, the MRC fusion-based CSS outperforms the majority-logic fusion-
based CSS for the same values of network parameters.

Figure 9. and Figure 10 show the impacts of σ  on binomially-distributed PMF of the number of 
selected CRs, and on the average missed detection performance, respectively. Different values of σ  (σ

Figure 8. Average missed detection probability (Q
m

) as a function of Cth for various values of v, N, and
γ
r
 under perfect channel estimation in Weibull fading ( γ

s
=20 dB, Pf=0.05, and u=5)

Figure 9. PMF of the number of selected CR users for different values of σ and Cth under perfect chan-
nel estimation in Log-normal shadowing environment (N=30).
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=2 dB, 4 dB, and 5 dB) are considered for these figures. In Figure 9, it is seen that when σ  increases 
from 2 to 5, the PMF is shifted towards origin, it means that probability of selecting K number of CRs 
decreases due to increase in severity of shadowing effect in the R-channel. Due to this reason, the missed 
detection performance degrades with increase in parameter σ  from 2 to 4 as shown in Figure 10. In 
Figure 10, the performance is evaluated by performing majority-logic, and MRC fusions individually at 
FC. We observe that there is an improvement in performance of CSS by increasing number of CRs in 
the network. The binomially distributed PMF of the number of selected CR users as obtained based on 
our simulation test bed matches exactly with result obtained based on the analytical expression given in 
equations (Equation 44 followed by Equation 45), which validates our simulation test bed. Furthermore, 
in presence of shadowing also, the MRC fusion provides better results as compared to the results with 
majority-logic fusion.

The considered framework can be applied to a spectrum overlaid cognitive radio network where 
secondary users need to identify spectrum holes. Our censoring scheme saves energy by not allowing 
transmissions from CRs whose R-channels are deeply faded. The scheme is energy efficient—even though 
the FC, which is not energy constrained, needs to spend some energy for MRC operation.

FUTURE RESEARCH DIRECTIONS

Future work might be to perform censoring not only on basis of R-channel quality but also to consider 
reliability of CR’s decisions along with R-channel quality. Thus censoring could be done on the basis of 

Figure 10. Average missed detection probability (Q
m

) as a function of Cth for various values of N, and
σ  under perfect and imperfect channel estimations in Log-normal shadowing ( γ

s
=20 dB, γ

r
=-8 dB 

Pf=0.05, and u=5).
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some combined metric assigning appropriate weight to each of R-channel quality and decision reliability 
of CR. Further censoring could be pursued to achieve certain target objectives such as energy efficiency, 
a given level of sensing throughput, agility etc.

CONCLUSION

In this chapter, the performance of cooperative spectrum sensing (CSS) using energy detection with 
and without censoring in Weibull fading and Log-normal shadowing channels has been investigated. 
The performance of a few hard decision fusion rules (OR-rule, AND-rule, and majority-rule) and a 
soft data fusion rule (MRC fusion) has been analyzed in a comparative way, considering meaningful 
performance metrics and evaluating the impact of several system parameters. Our results show that 
in case of CSS with CRs using ED achieves the lowest probability of missed detection with MRC fu-
sion, as compared to OR-rule, AND-rule, majority-rule fusions, under the same conditions in both the 
Weibull and Log-normal shadowing channels. We have also investigated the performance of CSS with 
CRs censored on the basis of the quality of the R-channels, considering both Weibull and Log-normal 
shadowing channels. The performance with perfect and imperfect channel estimation has been analyzed, 
in a comparative way, under MRC fusion. Our results show that missed detection probability reduces 
for increasing values of the number of selected CRs, regardless of the channel estimation quality (per-
fect or imperfect). However, in the presence of perfect channel estimation no further improvement, in 
terms of missed detection probability, is obtained by increasing the number of selected CRs beyond a 
given limit. The fading parameter and the R-/S-channel SNRs have a significant impact on the missed 
detection probability. The censoring threshold for the selection of CRs has a significant impact on the 
average missed detection probability. Depending on the configuration of relevant network parameters, 
such as the available number of CRs, fading/shadowing parameters, and the average R-channel SNRs, 
there exists an optimal censoring threshold, which corresponds to the minimum average missed detec-
tion probability, for both the perfect and imperfect channel estimation. The framework presented in this 
chapter is useful in designing a cooperative spectrum sensing scheme able to prolong the lifetime of 
an energy-constrained cognitive radio network by minimizing the number of less useful transmissions.
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KEY TERMS AND DEFINITIONS

Cooperative Spectrum Sensing: A technique where the Cognitive radios share their individual 
sensing information to improve the over all sensing information about the primary user.

Fading Channels: A wireless communication channel undergoing fading which may either be due 
to multipath propagation, referred to as multipath induced fading, or due to shadowing from obstacles 
affecting the wave propagation, sometimes referred to as shadow fading.
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Fusion Rules: Schemes for combining local decisions to obtain a global decision.
Censoring: Allowing to send information.
Missed Detection: The situation of not detecting the PU/ target.
MRC (Maximal Ratio Combining): Is a diversity combining technique in which signals from sev-

eral branch or channel are added together with the gain of each channel is made proportional to the rms 
signal level and inversely proportional to the mean square noise in that channel.

MMSE: In signal processing, a minimum mean square error (MMSE) estimator is an estimation 
method which minimizes the mean square error (MSE) of the estimated value and the actual value of a 
desired random variable. This is a common measure of estimator quality.

ENDNOTE

1  Note that with the generic term CR we also refer to a secondary (cognitive) user (SU). The context 
eliminates any ambiguity.


