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Abstrcf-Finding the minimum necessary number of neigh- 
hors required to provide full connectivity in wireless networks 
is an important problem which has been addressed by several 
researchers. In this paper, we show that the number of neighbors 
is a meaningful parameter to describe the connectivity only 
if the ad hoc wireless network has a perfectly uniform node 
distribution, i.e., the nodes lie approximately on the vertices of 
a regular grid. It is also shown that, in the case of non-uniform 
ad hoc wireless networks the number of neighhors becomes less 
meaningful. In this case, we propose instead, as indicator of 
the connectivity level, a reasonable measure of the likelihood of 
broadcast percolation for a given average number of neighhors. 

I. INTRODUCTION 
Ad hoc wireless networks have recently become very 

popular, due to the ever increasing demand for ubiquitous 
connectivity without fixed infrastructures. The nodes of such 
networks need to he connected in order to guarantee the 
possibility for a source node to reach, through multiple hops, 
any other node in the network. 

Connectivity is often associated with the number of neigh- 
bors of a node. However, definitions of connectivity and neigh- 
bor may he different, and each of them may lead to a different 
conclusion. In other words, is it possible to always identify 
the minimum number of neighbors needed for connectivity? 
In this paper, we attempt to show that the number of neighbors 
is an optimal indicator of the connectivity level only for 
wireless networks with perfectly uniform node distribution. In 
particular, in this study the following assumptions are made. 

Circuit switching with multiple disjoint routes is used. - A node generates information only after reserving a 
route. In other words, no buffering is considered. As an 
example, this scenario models the case of ad hoc wireless 
networks for real-time voice applications. . We assume an ideal scenario where there is no inter- 
node interference (INI). This ideal assumption allows to 
evaluate the impact of the multi-hop nature of the wireless 
transmission. We also comment on what happens in a 
more realistic scenario with INI. 
Shortest path routing is also assumed at the moment a 
route is created (the route creation phase is not consid- 
ered, since it is beyond the scope of this paper). 

jThis research was funded in p a l  by Army Research Office (ARO) under 
Contract No. DAAD19-02-1-0389. Any opinions, 6 ndings, and conclusions 
or recommendations expressed in this publication are those of the authors and 
do not necessarily reflect the v iew of the Army Research Office. 

Based on a maximum acceptable hit error rate (BER) con- 
straint at the end of a multi-hop communication path, we 
propose a suitable definition of transmission range. According 
to this definition, it is possible to show that the minimum 
number of neighbors for full connectivity in ad hoc wireless 
networks with perfectly uniform node distribution is around 

Unlike a scenario characterized by a perfectly uniform 
network topology, we then consider a network where the nodes 
are randomly distributed inside the network area. In this case, 
by describing the node distribution as a two-dimensional Pois- 
son process, we derive an intuitive measure of the likelihood of 
broadcast percolation as a function of the number of neighbors. 
We also show that for networks with a very large number of 
nodes, the required number of neighbors for full connectivity 
is O(ln N), in agreement with the results in [ I ] .  

11. PERFECTLY UNIFORM NODE DISTRIBUTION 
In this section we investigate the value of the minimum 

number of neighbors necessary to guarantee full connectivity 
in perfectly uniform ad hoc wireless networks. In particular, 
based on the communication-theoretic approach introduced 
in [2]-[4], we first show that the number of neighbors should 
be around T, i.e., between 3 and 4. In order to understand in 
more depth the meaning of this result, we then consider what 
happens in a perfectly uniform and connected ad hoc wireless 
network where each node has 2 neighbors. 

A. A Communication-Theoretic Approach 
The derivation of an average uniform model requires the 

introduction of some geometric regularity. We assume that 
N nodes are placed inside a planar surface of area A and 
are uniformly distributed. We define by ps 4 the node 
spatial density. We assume that the average distance between 
any pair of neighboring nodes is rL.  The concept of Vurunoi 
tessellation [ 5 ]  can he used to give a more precise definition 
of uniform node distribution. In [6], the authors prove a 
lemma according to which for every e > 0, there is a 
Voronoi tessellation of the plane with the property that every 
Voronoi cell' contains a disk of radius e and is contained in 
a disk of radius 2e. Based on this characterization of Voronoi 

'Given a distribution of nodes. we recall that the Varonoi cell of a node 
is de6 ned as the set of all points. in the plane, which are closer to that node 
than to any of the other nodes. 
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tessellation, the following definition of uniform distribution 
will be used in the remainder of this paper. 

Definition 1: A node distribution is considered uniform 
with average neighboring distance TL if there exists a Voronoi 
tessellation such that every Voronoi cell is contained in a disk 
of radius TL. 

In other words, a uniform node distribution is such that the 
local structure is almost the same everywhere-for instance, 
this is not true in the case of a random distribution, where there 
could he significant variations between different regions of the 
network. Various uniform geometric distributions are possible. 
We indicate by NO the average number of neighbors (i.e., at 
average distance) of any node. It is possible to show that, in 
the case with an average uniform node spatial distribution, the 
neighbors of each node are at a distance T L  l/& from 
it. 

Indicating by BERL the BER at the end of a single link, 
assuming that (i) there is regeneration (i.e.,' detection and pos- 
sibly error correction) at each intermediate node, and that (ii) 
the uncorrected errors made in successive links accumulate, 
it is possible to show that the BER at the end of the n- 
th link of a multi-hop route, indicated by BER("), can he 
expressed as BER(") Y 1 - (1 - BERL)". The link BER is a 
decreasing function of the signal-to-noise ratio (SNR) at the 
ending node of the link (indicated by SNRL), the modulation, 
possible channel coding, and channel characteristics. 

Imposing a constraint in terms of the maximum BER, 
indicated as BERmaX, over an average multi-hop route, it 
is possible to show that there exists a minimum link SNR, 
indicated as SNR?'", required to fulfill the BER constraint. 
The transmission range can he defined as the distance at 
which the SNR corresponds to  the minimum value S N R P .  A 
neighbor of a given node is then at a distance not larger than 
the transmission range. Assuming that the radio transmission 
pattern of each node is onlnidirectional, it follows that the 
number of neighbors of a node can be written as No = 
~ S T T $ .  If there is no INI, then it is always possible, by 
sufficiently increasing the transmitted power, to guarantee that 
the SNR at the end of a minimum length hop is above any 
considered threshold SNR?. This assumption can also be 
given a complementary interpretation. If the transmitted power 
is fixed, for any minimum required SNR value SNR?'" at the 
end of a communication link, there exists a critical node spatial 
density p p  such that if ps 2 p p  then the SNR at the end 
of a communication link is larger than SNRF". The following 
proposition can be proved. 

Proposition 1: For a given maximum tolerable BER at 
the end of any possible multi-bop communication path in a 
uniform ad hoc wireless network with finite area, the minimum 
number of neighbors required for full connectivity is, on 
average, x.  In other words, indicating by NO the number of 
neighbors of a node, 

V(BERmaX,n,,,), 3 P p  = PFi"(BERmaX,n,,) : 

pt = p p  j N ,  = ?r, BER(~==.) = BER""" . (1) 

Node i Node N r ! m I d  .~~~.. ........ ~. ~~ ........ ...~. .......... ...... ...~.~~~~. ..... 

rL 

Fig. 1. Ad hoc wireless network where the nodes are placed over a line. 

Proposition 1 can he given a simple and intuitive in- 
terpretation. Given a uniform network topology with fixed 
node spatial density, in order to support multiple hops it  is 
necessary that each node reaches its nearest neighbors with 
an amount of power which guarantees sufficient regeneration 
of the transmitted signal along a multi-hop route in order 
to have a minimum prescribed BER at the final node. This 
situation can happen if the transmitted power is larger than a 
minimum critical value (for fixed node spatial density) or if 
the node spatial density is larger than a minimum critical value 
(for fixed transmitted power). At this point, full connectivity, 
through multi-hop routing, is guaranteed and the minimum 
required number of neighbors is x.  

B. What Happens with NO = 2 Neighbors? 
At this point, one might argue that there can exist a network 

which guarantees full connectivity with a number of neighbors 
lower than x.  This could he the case, for example, of a wifeless 
network where the nodes lie on a line, as indicated in Fig. 1. In 
this case, the network area can he considered as the union of 
the squares (of side T L )  centered at the nodes. Let us assume 
that there are N nodes, as in Section II-A. We propose a simple 
derivation of the average number of hops. In particular, we 
compare the result in the case of a circular network area with 
grid node distribution with that in the case of a network where 
the nodes lie on a line. . As shown in Subsection 11-A, the maximum number of 

hops is given by nmax = d A / T L  x a m .  Assuming 
that the number of hops is uniformly distributed between 
1 and nmaxr it follows that the average number of hops 
is (for sufficiently large N )  nh . In the case of a linear network, the maximum number 
of hops is nmax = N .  Assuming in this case as well 
that the number of hops is a random variable uniformly 
distributed between 1 and N ,  it follows that the average 
number of hops is (for sufficiently large N) Rh x N / 2 .  

We evaluate the BER at the end of an average communication 
route. For simplicity, we consider the case of transmission, 
affected by free space loss, over an additive white Gaussian 
noise channel. We assume that the thermal noise power can 
be written as FkToB, where F is the noise figure, k = 
1.38 x JIK is the Boltzman's constant, TO is the room 
temperature, and B is the transmission bandwidth. Assuming 
that the power transmitted by a node is Pt, the received power 
at distance d from the transmitting node, indicated by PJd', 
can be written, according to the Friis free space formula, as 

m. 
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where: Gt and G, are the transmitter and receiver antenna 
gains, respectively; A, = c/fc is the wavelength corresponding 
to the carrier frequency fc ( c  is the speed of light); fi 2 1 is 
a loss factor which takes into account the losses not related to 
propagation. We consider uncoded binary phase shift keying 
(BPSK) as the modulation format. A performance comparison 
in terms of average BER, i.e., BER = BER('""), versus node 
spatial density, in the cases with a circular and a linear area 
network, is shown in Fig. 2. In particular, the transmitted 
power is fixed, and two possible values of the number of nodes 
are considered. As one can see, the average BER performance 
in a linear network is worse than in the case with a circular 
area network. This formalizes the intuitive observation that an 
ad hoc wireless network where each node has 2 neighbors is 
"less connected than an ad hoc wireless network where each 
node has, on average, ir neighbors: in other words, a higher 
node spatial density is needed to support the same average 
BER. 

C. What Happens if There is Inter-Node Interference? 
From other results in [4], i t  seems reasonable to assume 

that the IN1 power in the case of circuit-switched multi-hop 
ad hoc wireless networks can be considered proportional to the 
transmitted power Pt and to the node spatial density ps. In 
other words, PINT cx psPt. Extending the approach proposed 
in Subsection 11-A, it is possible to prove the following 
theorem. 

Proposition 2: In a uniform ad hoc wireless network com- 
munication scenario with IN1 where PINT r x  psPt, there 
might be two mutually exclusive situations. 

There is not full connectivity, regardless of the transmit- 
ted power. In other words, 

BER performance in the case with a circular network area and a 

3(BERma',n,,) : VPt, No, 
S N R ~  < S N R ~  = S N R ~ ' " ( B E R ~ ~ ~ , ~ , , ) .  ( 3 )  

There is full connectivity, on average, and the minimum 
required number of neighbors is ir. In other words, 

V(BER~~,~,,), ~PP'"  = P ~ ( B E R ~ ~ ~ , ~ ~ = )  : 

pt = ppin + N,, = n , ~ ~ ~ ( n m = )  = B E R ~ " ~ .  (4) 

In other words, in a realistic network scenario with IN1 there 
might be situations where increasing the transmitted power in 
order to make the network connected could be a waste of 
resources. 

111. NON-UNIFORM NODE DISTRIBUTION 

The case of networks where the node distribution is random 
has long been studied in the context of various theories. 
In the following, we first review the existing literature, and 
we propose a simple approach for the evaluation of the 
likelihood of broadcast percolation in non-uniform ad hoc 
wireless networks. 

A. Existing Literature 

literature into the following main categories. 
It is possible to group the approaches that appeared in the 

In [7], the optimal transmission radius 7;'' is found 
considering, as optimality criterion, the network through- 
put, suitably reformulated in terms of one-hop progress. 
In particular, the considered wireless communication 
networks are affected by IN1 and slotted Aloha MAC 
protocol is considered. It is shown that the minimum 
number of neighbors corresponds to a "magic number" 
equal to 6. 
Another possible approach is based on the theory of 
continuum percolation [SI. This approach is considered, 
in the context of random plane networks. in [9], where 
the minimum number of neighbors needed for full con- 
nectivity in an average uniform network with finite area 
is estimated, through simulations, as 3.2 (which is very 
close to our result, i.e., ir). In [lo], the authors show 
that, in the case of a network with finite area, the number 
of neighbors should be between 2.2 and 10.5. Broadcast 
percoIation is considered in [l I], where exact results are 
given in the one-dimensional case, and numerical results 
are presented in a two-dimensional percolation scenario. . A final approach is related to the analysis of ad hoc 
wireless networks in the context of random graph the- 
ory [ I  21. The minimum number of neighbors needed for 
connectivity is evaluated in [13]. This issue is further 
explored and refined in [l], where it is proved that a 
wireless network is asymptotically connected, for large 
number of nodes, if the number of neighbors of each 
node is O(1nN). 

B. A Simple Approach to the Evaluation of the Likelihood of 
Bmadcasr Percolation 

In general, a well connected wireless network should be 
such that a node, upon receiving a packet from another node 
in one direction, can forward the packet to all remaining three 
possible directions, as indicated in Figure 3 (a). If the number 
of neighbors of the central node (within a circle of radius 
corresponding to the transmission range T T )  is lower than four, 
then the packet can not be broadcast ahead in the remaining 
directions, as indicated in Figure 3 (b), (c), and (d). Intuitively, 
this means that the broadcast will not percolate uniformly in 
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Fig. 3. Possible broadcast situations: (a) full broadcast, (b) pa t id  broadcast, 
(c) limited broadcast (d) no broadcast. 

the network. We indicate this event as non-local percolation 
(NLP) and its corresponding probability as p N L p .  The number 
of neighbors of a node, i.e., within transmission range T T ,  is 
No = PSTT;. Recalling the memoryless property of a Poisson 
distribution, the probability of encountering a NLP situation 
can be written as 

Assuming that N nodes are approximately distributed in an 
area A = N/ps and that the area A is circular, we still assume 
(as in the case with uniform grid topology) that the average 
number of hops of a communication route in a circular area 
is m. We can roughly estimate the probability of having 
at least one NLP situation over an average communication 
route2, indicated as $iP. in the following way: 

The probability p r i P  can be considered as an indicator of 
the likelihood of a broadcast to percolate rapidly across the 
network (the lower is p r i p .  the faster is the percolation), and 
this can also b e  interpreted as a degree of connectedness of the 
network. Note that p f f p  can not be interpreted as an exact 
indicator of the connectivity in the network. In fact, even if 
an NLP event happens at a given hop in a communication 
route, the packet could still reach its destination by following 
an alternative (longer) route. Intuitively, one can assume that 
if p F i p  5 6, for values of 6 sufficiently low (6 << 11, 
connectivity is guaranteed almost surely. For large values of 
N ,  through a first-order Taylor series expansion, from (5) and 
(6) it is possible to show that the condition p r i p  5 b can be 
equivalently rewritten as follows: 

'The calculation of the average number of hops is baed  on the assumption 
of uniform distribution. In the case of a Poisson node distribution this mieht 
not be the case. However, the results are qualitatively the same, since we can 
assume that the average number of hops in a communication route is O ( a )  
in  any case. 
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The result in (7) agrees with the result obtained in [l]. 
In particular, this asymptotic result holds regardless of the 
definition (in terms of the number of terms of the Poisson 
distribution summed) of piy",', (as a function of P N L P )  and 
for any considered critical maximum value 6. 

IV. CONCLUDING REMARKS 
Numerous approaches have appeared in the literature for 

the evaluation of the number of neighbors as an indicator of 
the connectivity in wireless networks. The "optimal" number 
of neighbors depends on the considered criterion and on 
the network characteristics. Two fundamental categories of 
network topologies can be identified: (i) a scenario where 
the node distribution is perfectly uniform and (ii) a scenario 
where the node distribution is random. In the case of ad hoc 
wireless network with perfectly uniform node distribution, it 
is shown that the number of neighbors is a good indicator of 
the connectivity level of the network and that the minimum 
number is around T. In the case of non-uniform networks, 
the number of neighbors becomes less meaningful. Although 
this scenario has been widely considered in the literature, we 
proposed an alternative simple approach for the evaluation of 
the likelihood of broadcast percolation. For very large values 
of the number N of nodes in the network, our approach 
suggests that the number of neighbors NO should be on the 
order of In N, i.e., O(ln N), in agreement with the predictions 
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