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ABSTRACT 

In this paper, we propose linear predictive receivers for phase- 
uncertain channels. These receivers are attractive from a 
conceptual viewpoint because they generalize previous so- 
lutions based on noncoherent sequence detection. On the 
practical side, the proposed algorithms lend themselves to 
the implementation of adaptive receivers capable of copy- 
ing with possible time variations of the statistics of the un- 
derlying phase model. 

1. INTRODUCTION 

In future generation wireless local networks, the integration 
of mobile and satellite communications will call for detec- 
tion algorithms suitable to phase-uncertain channels. In par- 
ticular, these detection algorithms should be robust to oscil- 
lator instabilities, generating phase noise, and time-varying 
frequency offsets, possibly due to the Doppler shift experi- 
enced, for example, ill low earth orbit (LEO) satellite sys- 
tems [I].  

In this paper, we derive a linear predictive receiver fol- 
lowing the methods previously presented for fading chan- 
nels [2-51. The proposed algorithms compare favorably 
with previously appeared noncoherent sequence detection 
schemes [6], which exhibit high robustness to strong phase 
instabilities or uncompensated frequency offsets typically 
produced by the Doppler effect. We derive detection schemes 
based on a Viterbi algorithm (VA) for linear coded modu- 
lations. Results for soft-output forward-backward (FB) al- 
gorithms and for continuous phase modulations (CPM) are 
also described. 

2. LINEAR PREDICTIVE RECEIVERS 

We consider the lowpass complex equivalent system de- 
picted in Fig. l .  We assume that a sequence of K indepen- 
dent and unifonnly distributed M-ary symbols {ak}fS' ,  
denoted by the vector a in the figure, feeds an encodedmod- 
ulator, which can be modeled as a finite state machine with 

A state sk. We also define the relevant state transition as t k  = 
(Uk, sg). The linearly modulated continuous-time signal 
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Figure 1: System model. 

s ( t , a )  is obtained by letting the code symbol ck  be car- 
ried by a suitable shaping pulse p ( t ) .  Although suboptimal 
in the presence of a time-varying channel, a matched-filter 
front-end with sampling rate of one sample per symbol can 
be practically used, provided the phase process is not af- 
fected by very strong variations 171. The resulting ohserva- 
tion model is 

~g = eke"* +nn (1) 

where Ink} is an independent identically distributed (i.i.d.) 
additive Gaussian noise sequence with variance NO. The 
channel phase process 81; is assumed stationary and zero- 
mean, and the autocorrelation sequence of the phasor pro- 
cess e J ' k  is denoted by Ro(n) = E{eJ8b+-e-30k}. 

Should the phase process {e,} be known exactly, a co- 
herent sequence detector based on the VA could be derived, 
with branch metric 

A 

A where r; = T ~ / c *  is a normalized observation. If only a 
statistical characterization of the phase process is available, 
a practical sequence detector can he obtained by u s i n ~ ( 2 )  
with the exact value B g  replaced by a suitable estimate 8g. 

In the general case of a time-varying phase process, the 
data-aided minimum mean square error (MMSE) phase es- 
timate based on U previous observations is the conditional 
mean 

gk = E { @ k I C ~ ~ ~ ~ r ~ ~ ~ }  (3) 

where an indexed vector notation is used to denote code 
symbols and observations from time k - w to k - 1. The 
expectation in (3) leads to a non-linear estimate. which is 
usually rather difficult to compute. 
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Instead of directly estimating the phase, we use the fol- 
lowing indirect estimation strategy. For large signal-to-noise 
ratio (SNR) r; FZ ejek,  and then Or z arg{r;}. In order 
to exploit the phase correlation characteristics in the esti- 
mation process, we consider a data-aided linear prediction 
r6 of r; based on the previous U normalized observations 
rrk-l . 
A 

I.e., 

(4) 
i=l 

where {pi}:=, are the prediction coeficients and U is the 
prediction order. 

The prediction coefficients in (4) can be computed by 
solving the MMSE problem [2-51 

which leads to a Yule-Walker linear system R p  = b, where 
R is a square U x U matrix whose elements have the follow- 
ing expression 

A 
p = A . . . p.IT is the unknown vector and b = [Rs(l), 
Rs(2),... 

The solution of this Yule-Walker system entitles us to 
consider the following indirect data-aided phase estimate: 

(7) 

The optimal prediction coefficients depend in general on the 
state Sk = ( a k - - l r . .  . , a k - " ,  sk-"), whereas the MMSE 

A 
depends on the corresponding transition T k  = (at,&).  
Defining a trellis diagram in terms of the extended state Sk, 
a VA can he derived with branch metric 

A 

In the case of equal energy signaling, since the system ma- 
trix R in (6) no longer depends on { C k - I } ; = 1 ,  the prediction 
coefficients and the MMSE do not depend on T k ,  but only 
on the SNR 

With respect to classical linear predictive receivers for 
fading channels [2-51, the proposed solution features a few 

differences. First, the denominator in (8) normalizes the 
phasor estimate to unit modulus. This normalization is es- 
sential for non-equal energy signaling such as quadrature 
amplitude modulations (QAM). Second, the correlation ma- 
trix R models the statistics ofthe phase process, whereas in 
classical receivers it models the amplitude process as well. 

The complexity of the proposed receivers can be limited 
by applying reduced-state detection techniques (see [SI and 
references therein). As an example, a reduced state can be 
defined by substituting U with a parameter 4) < U in the 
definition of &, i.e., by memory truncation. 

can 
also be computed by an adaptive algorithm which recur- 
sively minimizes the mean square error in (9, such as a 
stochastic gradient algorithm. This suggests that the pro- 
posed algorithms could he easily made adaptive by applying 
standard methods [9]. 

We remark that the prediction coefficients 

3. NUMERICAL RESULTS 
A realistic model of phase noise is based on a discrete-time 
Wiener process {$k} characterized by i i d .  Gaussian in- 
crements with zero mean and standard deviation UA, de- 
scriptive of the phase noise intensity. The case of a con- 
stant random frequency offset can also be incorporated by 
letting O k  = $k + ZnfkT, where f is a random variable 
uniformly distributed in (-a/T, a/T) ,  a is the normalized 
frequency offset intensity, and T denotes the signaling in- 
terval. For this phase model Re(I) = e-l'l'i sinc(Zal), 
where sinc(s) = .sin(nz)/nz. In the absence of phase 
noise (UA = 0) and frequency offset (a = 0), the met- 
ric in (X) reduces to one of the noncoherent sequence de- 
tection (NSD) solutions proposed in [6] for equal energy 
signaling-the phase memory parameter N in [6] equals 
U + 1. Other phase models may be considered, possibly 
incorporating a time varying frequency offset, such as that 
caused by a Doppler rate [I]. For conciseness, we present 
results for a constant random frequency offset with phase 
noise only. 

Fig. 2 shows the prediction coefficients as a function of 
the phase noise standard deviation UA for an equal energy 
modulation, either phase shift keying (PSK) or CPM, a pre- 
diction order U = 4, and &/No = 4 dB, where Eb denotes 
the received energy per information bit. Three values of 
frequency offset intensity a are considered, namely O,O.Ol,  
and 0.02. In the absence of phase instabilities (oa = 0 and 
a = 0) all the prediction coefficients are equal, as expected 
from the equivalence with NSD. For increasing phase noise 
or frequency offset, the prediction coefficients take on dif- 
ferent values-the stronger the phase variations, the larger 
the difference. 

Differentially encoded quatemary PSK (DQPSK) is con- 
sidered in Fig. 3. The performance of the communication 
system is assessed by computer simulations in terms of bit- 

A .  
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Figure 2: Prediction coefficients as a function of the phase 
noise standard deviation UA, for an equal energy modula- 
tion, prediction order U = 4, and Eb / N O  = 4 dB. Various 

, values of the frequency offset intensity a are considered. 

error rate (BER) as a function of the phase noise standard 
deviation UA for various values of the frequency offset in- 
tensity a and Eb/N0 = 10 dB. We consider symbol by 
symbol detection with decision feedback (i.e.. Q = 0). The 
performance o f  the proposed linear predictive receiver for 
U = 5 is compared with that of the NSD algorithm in [6]. 
For a = 0, the curve corresponding to the proposed receiver 
is the “envelope” o f  the performance curves of the NSD 
algorithm for U = 1 , 2 , .  . . ,5. For any given UA and a, 
there exists an optimum value of u-within the considered 
range-such that the BER obtained with the NSD algorithm 
is minimized-this optimal U rediices for increasing values 
of UA and a. The proposed linear predictive receiver with 
U = 5 automatically minimizes the BER, provided the pre- 
diction coefficients are adaptively updated. In the presence 
of frequency offset, the advantage of the proposed receiver 
over NSD is even more pronounced, as it appears from the 
curves relative to a = 0.02 and a = 0.05. In the latter case, 
the performanceofNSD schemes with U > 1 is appreciably 
worse. 

We now describe an application of the proposed detec- 
tion technique to soft-output FB algorithms and iterative 
processing. It is possible to show, but it is beyond the scope 
of the paper, that the extension of the proposed linear pre- 
dictive technique to FB algorithms can be devised in a sys- 
tematic manner. We consider a serially concatenated con- 
volutional code (SCCC) consisting of an outer 4-state, rate- 
I12 code connected through a length-IO24 pseudo-random 
bit-interleaver to an inner 4-state, rate-2/3 code [IO]. The 
output symbols are mapped to an 8-PSK constellation with 
natural mapping. Pilot symbols are introduced with a rate 
of 1 pilot evety 16 information symbols. At the receiver 
side, the inner decoder uses the proposed linear predictive 

I 
1 0-5b 2 4 6 8 10 

ad [de91 

Figure 3: BER as a function of the phase noise standard 
deviation UA for DQPSK, symbol by symbol decision. and 
various values of the frequency offset intensity a. 

algorithm and performs joint detection and decoding. The 
numerical results are shown in Fig. 4 in terms of BER ver- 
sus phase noise standard deviation, for increasing values of 
the frequency offset. The SNR is fixed to 4 dB in all cases. 
For U = 6 and Q = 3, the proposed iterative detection 
scheme is very robust to phase instabilities up to U A  = 10 
degrees and a = 0.01. A less complex receiver with U = 4 
and Q = 2, has still acceptable performance for low val- 
ues of UA and a. The performance of the proposed scheme 
degrades significantly for a 2 0.02. 

A CPM modulator can be decomposed into the cascade 
of a finite state machine (FSM) and a memoryless map- 
per [ I I]. Hence, it is immediate to extend the proposed 
trellis-based linear predictive receivers to this case as well. 
As an example, we consider a serially concatenated scheme 
obtained by an outer convolutional encoder and an inner 
Gaussian minimum shift keying (GMSK) modulator [12]. 
In particular, we refer to the GSM standard [ 131, where the 
outer code is a 16-state non-recursive non-systematic con- 
volutional code with rate 112 andgeneratormatrix G,(D)  = 
[I + D3 + D4 1 + D + D3 + D‘]. The outer code and 
the GMSK modulator are connected through a length-1024 
pseudo-random bit-interleaver. The spectral efficiency of 
the overall code is 0.5 bitls/Hz. At the receiver side we con- 
sider (I = 2 samples per symbol interval. The numerical 
results are shown in Fig. 5.  As one can see, for sufficiently 
large N and Q, the performance loss, with respect to an 
ideal coherent receiver which perfectly knows the channel 
phase, is within 1.2 dB for UA 5 10 degrees. 

4. CONCLUSIONS 

Linear predictive receivers for phase-uncertain channels have 
been derived. Both hard-output and soft-output detection 
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Figure 4: BER as a function of the phase noise standard de- 
viation U& for a SCCC with 8-PSK, an inner linear predic- 
tive detector, E6 /No = 4 dB, various values of frequency 
offset intensity and levels of receiver complexity. In all 
cases, 5 decoding iterations are considered. 

have been considered. The proposed receivers are very ro- 
bust to phase noise and uncompensated frequency offset. 
Adaptive versions of the proposed algorithms are attractive. 
As a side result, suboptimal linear predictive detection ap- 
pears to be effectively applicable even in special cases with 
non-Gaussian ohservables. 
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