An Overstructured Graph for Reduced-State Forward-Backward Algorithms

Phunsak Thienviluboon
Dept. of EE, Univ. of Southern California
Los Angeles, CA 90089-2565, U.S.A.
e-mail: thienv@usc.edu

Gianluigi Ferrari
Dipartimento di Ing. dell'Informazione
Univ. di Pavia, Pavia, I-43100 Italy
e-mail: gferrari@tle.unipr.it

Keith M. Chugg
Dept. of EE, Univ. of Southern California
Los Angeles, CA 90089-2565, U.S.A.
e-mail: chugg@usc.edu

Abstract — An overstructured graph (OSG) for a finite state machine (FSM) and a novel message-passing algorithm (MPA) are proposed. This allows a unified graphical approach to the design of reduced-state (RS) forward-backward (FB) algorithms.

I. BRIEF REVIEW: FORWARD-BACKWARD ALGORITHM

The FB algorithm is an algorithm that efficiently produces soft outputs (a posteriori probabilities, APPs) on inputs/outputs of an FSM using the sum-product operation on a priori soft inputs of the same quantities [1, 2]. The algorithm can be described as a message-passing algorithm over a junction tree [3]. Fig. 1 (solid lines only) shows an example of such a junction tree where a_k, x_k, v_k and y_k represent the input, the output, the state, and the transition at time k respectively. The FB algorithm can be obtained by activating nodes in the forward (left-to-right) and then backward (right-to-left) directions.

II. OVERSTRUCTURED GRAPH AND ITS NOVEL MPA

Let a_k, x_k, s_k and t_k be the input, the output, the state and the transition of the FSM at epoch k respectively, where $t_k = (s_k, a_k, s_{k+1}, x_k)$ is valid if $s_{k+1} = S_k(s_k, a_k)$ and $x_k = O_k(s_k, a_k)$. The “next-state” $S_k(\cdot)$ and “output” $O_k(\cdot)$ functions are determined by the FSM structure. Let us define the expanded transition $y_k = (s_k, a_k^{L-k}, x_k^{L-k+2})$, where $u_k = (u_{k+1}, u_{k+2}, \ldots, u_L) \ (k \leq k_L \in \{0, x\})$ and $L_2 \geq 0$ is the expansion parameter. Note that the output sequence x_k^{L-k} associated with a valid transition y_k has to be consistent with s_k and a_k^{L-k} relative to x_k. To construct the OSG, each node t_k in the junction tree is replaced by a node y_k and extra edges between node a_k (x_k) and node y_k are added if $a_k(x_k) \in y_k$. For a simple FSM [2], $s_k = a_{k-1}^{L-k}$ and $y_k = (s_k, a_k^{L-k+2}, x_k^{L-k+2})$. In Fig. 1 (both solid and dashed lines), an example of the OSG for a simple FSM with $L = 2$ and $L_2 = 1$ is shown. The label for the directed message along each edge is the mutual information between the two connected nodes. More precisely, the edge connecting y_{k-1} and y_k is labeled by $v_k = a_k^{L-k+1}$, which represents the expanded state.

For an APP algorithm, the extrinsic soft output can be expressed as $SO[u] = \left(\sum_{t=0}^{L-1} x_t \cdot S_t[x_t] \cdot \frac{S_{L-t}[u]}{S_t[u]}\right)$, where the summation is operated over all valid sequences $x_t \in \Omega$ compatible with u, N represents the length of the information sequence, and $S[x_t]$ is the input soft output of the quantity in brackets. Since the graph is loopless, the standard MPA [3] cannot provide the desired soft output. To provide the exact soft output, a novel MPA is proposed for the OSG. Let $A[v_k]$ and $B[v_k]$ be the forward and backward messages (i.e., state metric) along the edge labeled by v_k and $SL_k[u_{L-k}]$ (SO)k be the message from node u_{L-k} (y_k) to node y_k.

Defining the weight exponents w^k_1, w^k_2, w^k_1, and w^k_2, the message-updating formulas are

\[SL_k[u_{k-L}] = SL_k[u_{k-L}] \prod_{m=L}^{L} (SO_m[u_{k-m}])^{w^k_1(m, l)} \]

\[A[v_{k+1}] = \sum_{y_k+v_{k+1}} A[v_k]M(a_k^{L-k} x_k^{L-k+2}, y_k, w^k_1) \]

\[B[v_k] = \sum_{y_k+v_{k+1}} B[v_{k+1}]M(a_k^{L-k} x_k^{L-k+2}, y_k, w^k_1) \]

\[SO_k[u_k] = \sum_{y_k+v_{k+1}} [A[v_{k+1}] B[v_{k+1}]]M(a_k^{L-k} x_k^{L-k+2}, y_k, w^k_2(x_k)) \]

\[SO[u_k] = \prod_{m=L}^{L} (SO_m[u_k])^{w^k_2(m, l)} \]

where $M(a_k^{L-k} x_k^{L-k+2}, y_k, w^k_1) \cdot \prod_{m=L}^{L} (SL_m[u_{k-m}])^{w^k_2(m, l)} \cdot \prod_{m=L}^{L} (SO_m[u_{k-m}])^{w^k_1(m, l)} = \prod_{m=L}^{L} (SL_m[u_{k-m}])^{w^k_2(m, l)}$ in (1) and (5), $m \in \{L-1, L-2, \ldots, L\}$

if $u = a_k$ or $m \in \{L-2, L-3, \ldots, 0\}$ if $u = x_k$, and the range of h in (4) is determined by the range of m in (6). It is shown in [4] that the desired soft output (SO) can be obtained by selecting appropriate sets of weight exponents, activation schedules, and initializations.

Through the OSG and the above message-updating formulas, it is shown in [4] that various RS-FB algorithms (both novel and existing RS-FB algorithms) can be realized by applying the forward-backward activating schedule and appropriately choosing the sets of the weight exponents, the expansion parameter L_2, and state reduction techniques.

REFERENCES

This work was supported in part by the NSF (CCR-829877).