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Abstract—In this paper, we focus on the design of optimized
binary convolutional codes (CCs) and serially concatenated con-
volutional codes (SCCCs) in the presence of a-priori information
(API) at the receiver. For large signal-to-noise ratios (SNRs), we
first propose a CC design criterion based on the minimization of
a union bound on the bit error probability (BEP). In this case,
relevant performance gains, with respect to previously proposed
CCs, are obtained. These gains persist even in the presence of
estimation errors on the API. Then, we apply the same union
bound-based design criterion to SCCCs. Since the BEP of SCCCs
is characterized by a typical waterfall shape, the proposed union
bound-based design criterion is accurate only at large SNR, to
estimate the BEP floor. In order to complement this analysis,
we propose a density evolution-based approach to optimize the
SCCC design in terms of minimization of the SNR of the
“knee” of the BEP curve. The obtained simulation results show
substantial gains with respect to previously proposed parallel
concatenated convolutional coding (PCCCing) schemes optimized
under the assumption of no API at the decoder. Moreover, in the
presence of strong API the proposed SCCCs allow to approach
the Shannon limit (SL) more than any previously proposed turbo
coding scheme.

Index Terms—Convolutional codes (CCs), serially concate-
nated convolutional codes (SCCCs), a priori information.

I. INTRODUCTION

IN most binary digital communication systems with binary
coding at the information sources, the bits of the sequence

at the output of a source encoder are assumed to be indepen-
dent and identically distributed (with uniform distribution).
However, the majority of existing source encoders—in partic-
ular, fixed-length encoders commonly used for transmission
over noisy channels—do not respect this condition. More
precisely, a sequence output by a source encoder contains
some residual redundancy. Therefore, reliable transmission of
coded sequences with redundancy (residual, if source coding
is considered; natural, otherwise) is an important issue [1].
In this case, the performance of the channel decoder can be
improved if the redundancy at the output of the encoder is
properly exploited.
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A typical scenario where some residual (or total) redun-
dancy is left after source encoding is represented by the
transmission of sources with memory. In this case, the problem
of exploiting the source memory at the channel decoder is
often referred to as joint source-channel decoding (JSCD)
problem. One of the main limitations for the design of JSCD
schemes is represented by the implementation complexity of
the decoder, which tends to become unmanageable if the
memory of the information source is taken into account.
For example, in the presence of a first-order Markov source
followed by a convolutional code (CC), the optimum JSCD
scheme is given by the use, at the receiver, of a maximum a
posteriori (MAP) sequence decoder based on a “super-trellis”
diagram, whose number of states is given by the product of
the number of states of the CC and the number of states of the
Markov source. A few methods have been proposed to reduce
the number of states of the super-trellis diagram, thus leading
to suboptimal MAP decoders [1]–[6]. Rather than reducing
the complexity of super-trellis-based sequence decoders, an-
other approach to perform JSCD consists in exploiting the
redundancy of the information source as a-priori information
(API) at the input of channel decoder/demodulator. In this
case, one can derive iterative decoding schemes, where, at
each iteration, the API is taken into account by the decoder
without substantially increasing the overall receiver complex-
ity. In particular, when bit-level API is considered, the derived
iterative channel decoding schemes can be straightforwardly
applied in the presence of turbo1

Another application scenario where JSCD is gaining its
momentum is the transmission of signals observed at different
nodes, such as in wireless sensor networks (WSNs) [9]. In
this context, several papers have proposed JSCD schemes
where correlated sources are independently channel encoded
at a reduced rate (with respect to the uncorrelated case).
The reduced transmission reliability, due to channel coding
rate reduction, can then be compensated, at the receiver, by
exploiting the existing correlation among different information
sources [10]–[14]. In this case, the receiver makes use of an
iterative decoder which contains one component subdecoder
per information source. The source correlation is exploited
by iteratively exchanging (properly updated) API between the
various subdecoders.

Although the gains achievable by the use of channel coding

1In the literature, the general term “turbo code” refers to either a parallel
concatenated convolutional code (PCCC) or a serially concatenated convolu-
tional code (SCCC).
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in the presence of API are considerable, in the literature the
performance gaps, with respect to the Shannon limit (SL),
are still relatively large, even if a significant API is available.
On the other hand, in [15] it is shown that the empirical
distribution of the sequences at the output of the encoder of a
good code (i.e., a code with vanishing probability of error, for
sufficiently long blocklengths, at a rate close to the SL) should
approach the capacity-achieving input distribution. Hence,
since the presence of API at the decoder can be equivalently
interpreted as the presence of nonuniform input information
sequences at the encoder, it is expected that a good binary
code for effective decoding in the presence of API should
be designed to produce uniform, independent, and identically
distributed output bits in the presence of nonuniform input
binary sequences.

To the best of our knowledge, the only paper which in-
vestigates the problem of designing good codes for decoding
with API (or, equivalently, with nonuniform input information
sequences) is [16]. In particular, in [16] it is shown that
using recursive nonsystematic CCs as component codes of
a parallel concatenated convolutional code (PCCC) leads to
asymptotically uniformly distributed output sequences even
in the presence of strongly non-uniformly distributed input
sequences. Accordingly, the proposed PCCC structure guar-
antees substantial gains over previously designed turbo and
LDPC codes.

In this paper, we propose simple criteria for the design
of good codes in the presence of API at the receiver. In
particular, our first design criterion aims at the minimization of
an analytically derived union bound on the bit error probability
(BEP). The proposed framework is first applied to CCs. As
in [16], we show that recursive nonsystematic CCs are to
be preferred in the presence of strong API. The same BEP-
based optimization criterion is applied to SCCCs. In this case,
simulation results, relative to SCCCs designed according to
the proposed BEP-based criterion, show substantial gains with
respect to turbo coding schemes optimized in the absence of
API at the decoder. Unlike the BEP of CCs, the BEP of
SCCCs is characterized by a typical “waterfall” shape with
a floor at its bottom: the proposed BEP union bound-based
code optimization approach applies only at large SNRs, i.e.,
in correspondence to the BEP floor. In order to complement
it, we derive a density evolution-based design criterion which
aims at minimizing the SNR of the “knee” of the BEP curve,
i.e., is valid at low SNRs. The obtained density evolution-
based results compare favorably with the union bound-based
optimization results. In particular, we design a rate-1/2 SCCC
which, in the presence of strong API, allows to approach
the SL more than any previously proposed turbo code (for
instance, the PCCCs proposed in [16]).

This paper is structured as follows. In Section II, we
present the coded communication scenario considered in the
remainder of the paper. In Section III, we derive a BEP-based
analytical framework for the design of good CCs and SCCCs
for large values of the SNR. In Section IV, we propose a
density evolution-based approach to the design of SCCCs and,
as a relevant case study, we focus on rate-1/2 SCCCs. Finally,
concluding remarks are given in Section V.

II. CODED COMMUNICATION SCENARIO

We consider an independent and identically distributed
(i.i.d.) binary source sequence xxx of length k which is channel
encoded with rate r = k/n and transmitted into a binary
Gaussian channel. The binary coded signal of length n is
denoted as ccc. We assume that side-information, i.e., API, on
the information sequence xxx, in terms of estimated bit sequence
x̃̃x̃x, where x̃i ∈ {0,1}, i = 1, . . . ,k, is available at the receiver
side. We denote as ρ the bit reliability of the API, i.e.,

ρ ≜ Pr (x̃i = xi) ∀i

and we introduce the following a-priori log-likelihood ratios
(LLRs):

L(xi)≜ ln

[
Pr (xi = 0)
Pr (xi = 1)

]
∀i.

Given the above notations, it is easy to show that

L(xi) = L(ρ)(−2x̃i + 1)

where

L(ρ)≜ ln

(
ρ

1−ρ

)
. (1)

In order to fruitfully exploit the API, the channel decoder must
estimate ρ . In the following, since the focus of this work is not
on the derivation of accurate estimation strategies for ρ , we
simply assume that an estimate ρ̃ is available at the decoder—
the reader is referred to existing works in the literature, such
as [13], for more details on possible estimation strategies. The
estimated reliability of an information bit is thus L(ρ̃).

Let us now denote by xxxest ∕= xxx the sequence estimated
through MAP decoding. Moreover, denote by cccest ∕= ccc the
corresponding codeword. The evaluation of the probability
of estimation error has been recently investigated in [17].
In particular, in [17] the following exact expression for the
pairwise error probability (PEP), i.e., the probability that the
decoder detects xxxest instead of xxx, is derived in a scenario with
binary phase-shift keying (BPSK) (or binary pulse amplitude
modulation, PAM):

Pe,pair (d,w) =
1
2

w
∑

w̃=0
erfc

(√
rdγb

(
1+ L(ρ̃)(w−2w̃)

4drγb

)2
)

×(ww̃)ρw−w̃ (1−ρ)w̃
(2)

where: erfc(x)≜ (2/
√
π)
∫ ∞
x e−t2 dt; w≜D(xxx,xxxest) =∑k

i=1 xi⊕
xest,i is the Hamming distance between xxxest and xxx; d ≜
D(ccc,cccest) is the Hamming distance between ccc and cccest; and
γb ≜ Eb/N0, where Eb is the average energy per source bit and
N0 is the monolateral power spectral density of the channel
additive white Gaussian noise. As shown in [17], by properly
manipulating (2) it is possible to derive the following upper
bound:

Pe,pair (d,w)≤ e−rdγbAw (3)

where

A = A(ρ , ρ̃)≜ (1−ρ)

√
ρ̃

1− ρ̃
+ρ

√
1− ρ̃
ρ̃

. (4)
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III. HIGH SNR: BEP UNION BOUND-BASED DESIGN OF

CCS AND SCCCS

A. Convolutional Codes

Convolutional coding allows an easy coding implementa-
tion, with very low power and memory requirements [18],
[19]. Therefore, this type of channel coding seems to be
particularly attractive for WSN applications. Moreover, if
MAP sequence decoding is considered in the presence of API,
optimal decoding algorithms can be straightforwardly derived
by properly taking the API into account in the branch metrics
of a Viterbi algorithm.

In convolutional decoding without API, it is possible to
derive an upper bound on the BEP as the weighed2 sum of
the PEPs associated to all trellis paths which diverge from the
all zero-state path (associated with the all-zero information
sequence) and, later, merge again with the latter [18]. This
approach is applicable also in the presence of API, owing
to the linearity of the code and to the fact that the PEP (2)
depends only on the weights d and w, but not on the actual
transmitted sequence. In particular, it is possible to evaluate the
input-output transfer function T (W,D) by means of the state
transition relations over the modified state diagram associated
with the used CC [18]. The generic form of the transfer
function is the following:

T (W,D) =∑
w,d

βw,dW
wDd (5)

where βw,d denotes the number of paths that temporarily
diverge from the zero-state path and are associated with an
input (information) sequence of weight w and with an output
(coded) sequence of weight d. Accordingly, an upper bound
on the BEP is

Pe,b ≤∑
w,d

βw,d wPe,pair (d,w) (6)

where Pe,pair(d,w) has the expression (2). A looser upper
bound can be derived by applying the upper bound (3) in
(6), thus obtaining:

Pe,b ≤∑
w,d

βw,d we−rdγbAw. (7)

From (5) and (7), it is straightforward to rewrite (7) as follows:

Pe,b ≤ A
∂T (W,D)

∂W
∣W=A,D=e−rγb . (8)

At this point, a CC design criterion consists in minimizing
(7) (or, equivalently, (8)). At large SNRs, at the right-hand
side of (7) only the terms with d = dfree are relevant, i.e., one
can write:

Pe,b ≲∑
w
βw,dfree we−rdfreeγbAw = e−rdfreeγb∑

w
βw,dfree wAw. (9)

The design criterion thus reduces to search, among the set of
maximum free-distance codes, the code which minimizes the
term ∑w βw,dfree wAw. Obviously, this optimization depends on
the value of A (i.e., on ρ and ρ̃) and on the input-output
weight enumerator coefficients {βw,dfree}, which depend on
the encoder structure. Therefore, assuming ρ = ρ̃ (from (4),

2The weights are information error weights.

TABLE I
OPTIMIZED FEEDFORWARD (G(1),G(2) ) AND FEEDBACK (H) GENERATOR

POLYNOMIALS OF RATE-1/2 CCS AS FUNCTIONS OF ρ AND ν . IN ALL
CASES, ρ̃ = ρ .

ρ ν G(1) G(2) H

0.5 2 5 7 1

0.6 2 5 7 1

0.7 2 5 7 1

0.8 2 5 7 1

0.9 2 5 7 1

0.95 2 5 7 7

0.5 3 15 17 1
0.6 3 15 17 1

0.7 3 15 17 1

0.8 3 15 17 1

0.9 3 15 17 11

0.95 3 15 17 11

0.5 4 23 35 1

0.6 4 23 35 1

0.7 4 23 35 1

0.8 4 23 35 1

0.9 4 23 35 37

0.95 4 23 35 37

0.5 5 53 75 1

0.6 5 53 75 1

0.7 5 53 75 1

0.8 5 53 75 1

0.9 5 53 75 63

0.95 5 53 75 63

A = 2
√
ρ(1−ρ)) and a code rate equal to 1/2, for given

values of ρ and of the number ν of the shift registers of
the convolutional encoder (i.e., the number of states of the
CC is 2ν ), we determine, through an exhaustive search, the
best encoder structure, identified by two feedforward generator
polynomials (denoted as G(1) and G(2)) and one feedback
polynomial (denoted as H). The obtained results are shown
in Table I (the polynomials are expressed in octal notation).
As one can see, for large values of the API (ρ ≥ 0.95 for
ν = 2 and ρ ≥ 0.9 for ν ≥ 3) the optimized CCs become
recursive, whereas for smaller values of ρ the optimized CCs
are the standard non-recursive ones (for example, for ν = 3 the
standard (15,17) CC is obtained [19]). Since the feedforward
polynomial generators remain the same, regardless of the value
of ρ , it follows that code optimization reduces to encoder
optimization. In other words, while the codebook remains
the same (i.e., dfree is the same), regardless of the value of
ρ , the mapping between the information sequences and the
codewords has to be optimized. In the absence of API (i.e.,
ρ = 0.5 and, thus, A = 1), the optimization procedure reduces
to the optimization of the input-output weight enumerator
coefficients {βw,dfree} [20], [21].

In order to provide a rationale for the fact that recursive
encoders are to preferred, with respect to non-recursive ones,
for high values of ρ , we refer to the case with ν = 3 and
investigate the transfer functions of the optimized codes. The
optimized CC for ρ = 0.5, denoted as C50, is the non-recursive
convolutional code (NRCC) (15,17), whereas the optimized
CC for ρ = 0.9, denoted as C90, is the recursive convolutional
code (RCC) (15,17,11). Since the transfer function of C50 is
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Fig. 1. Comparative evaluation of the BEP, as a function of the SNR,
with the RCC C90 and the NRCC C50. Simulation results (lines) are shown
together with the the corresponding upper bounds given by (6) (symbols).
Three different values for ρ = ρ̃ are considered, namely 0.8, 0.9, and 0.95.

the following:

T (D,W ) =
D6W 2+D7W −D8W 2

1− 2DW −D3W
= D6W 2 +D7W + . . .

(10)
it can be concluded that the minimum distance (for the coded
sequence) dfree is 6 and the corresponding information weight
is 2. In the case of C90, it is possible to verify that the transfer
function is characterized by a minimum distance dfree equal to
6, with corresponding information weight equal to 4. Hence,
considering the upper bound (7), for high channel SNRs (when
only the minimum distance term at the right-hand side of (7)
is non-negligible) the BEP guaranteed by the two optimum
CCs can be approximately upper bounded as follows:

Pe,b ≲
{

A2erfc(
√

3γb) for C50

2A4erfc(
√

3γb) for C90.

Therefore, we expect that the RCC C90 will outperform the
NRCC C50 when A< 1/

√
2. Under the assumption of perfect

reliability estimation, i.e., ρ = ρ̃ , this means that the RCC is
expected to perform better for ρ > 0.85.

The validity of the previous analytical code design frame-
work can be assessed by means of computer simulations.
In the first set of simulations, we have compared the BEPs
of C90 and C50 assuming perfect reliability estimation, i.e.,
ρ = ρ̃ . The obtained results are shown in Fig. 1 for different
values of ρ , namely, 0.8, 0.9, and 0.95. In all cases, the BEP
curves relative to C50 are labelled as “non recursive,” whereas
the BEP curves relative to C90 are labeled as “recursive.”
Moreover, each simulation-based curve is shown together with
the corresponding upper bound given by (6). As one can
observe, the analytical upper bound on the BEP is quite tight
and tends to perfectly match the simulation results for high
values of the SNR. As expected, the RCC clearly outperforms
the NRCC for ρ ≥ 0.9. On the other hand, for ρ = 0.8 the
performance of the two CCs is basically the same.

It is then of interest to investigate the effect of imperfect
reliability estimation, i.e., the case with ρ ∕= ρ̃ . A relevant
performance indicator is given by the channel SNR required to

0.5
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γ b
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Fig. 2. The channel SNR γb(10−4,0.9, ρ̃ ) is shown as a function of ρ̃ .
Simulation results (solid lines) and analytical results based on (11) (dashed
lines) are shown, considering the RCC C90 and the NRCC C50.

achieve a given BEP Pe,b. We denote this SNR as γb(Pe,b,ρ , ρ̃),
to underline that it corresponds to the channel SNR at which
a BEP Pe,b is achieved in a scenario where ρ is the true
API and ρ̃ is the estimated value used by the receiver. This
channel SNR can be evaluated, through simulations, as the
value at which the target BEP Pe,b is achieved. On the other
hand, it can also be approximated by relying on the previous
analysis. To this aim, the upper bound (6) can be used as
an estimate, denoted as P̃e,b, of the BEP in the presence of
imperfect reliability estimation, i.e.,

P̃e,b ≜∑
w,d

βw,d wPe,pair (d,w) . (11)

The channel SNR γb(P̃e,b,ρ , ρ̃) can be numerically determined
from (11). In Fig. 2, γb(Pe,b,ρ , ρ̃) = γb(10−4,0.9, ρ̃) is shown
as a function of ρ̃ , considering the RCC C90 and the NRCC
C50. Simulation results are shown as solid lines, whereas
analytical results are shown as dashed lines. Obviously, in
each case the best performance, i.e., the lowest value of γb,
is achieved when ρ̃ = ρ . It can be observed that the RCC
C90 takes greater advantage, with respect to the NRCC C50,
from the use of API. For instance, the maximum SNR gain
(obviously achieved when ρ̃ = ρ) is 1 dB for the RCC and
0.7 dB for the NRCC. On the other hand, the RCC is more
sensitive to underestimation of the API: this is due to the
higher information weight associated with the free distance
term in the transfer function. Finally, for values of ρ̃ close
to 1, i.e., for ρ̃ > ρ , it can be observed that the required
channel SNR increases significantly, regardless of the code:
this suggests that the overestimation of ρ has a much more
detrimental impact than its underestimation.

B. Serially Concatenated Convolutional Codes

A SCCC consists of a cascade of two bit-interleaved com-
ponent codes, namely an outer CC and an inner CC [22]. The
corresponding decoder relies on a message passing algorithm,
such that extrinsic information is iteratively passed, for a
predefined number of iterations, between the inner and outer
soft-input soft-output (SISO) decoders, corresponding to the
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inner and outer CCs. The presence of API (relative to the
information bits at the input of the outer CC) can be easily
taken into account by transforming the a priori probabilities of
information bits into LLRs and feeding the outer SISO decoder
with them (together with the LLRs generated by the inner
SISO decoder). Hence, the SISO outer decoder completely
exploits the API (if present), whereas the inner decoder works
as in traditional SCCC decoders without API.

In [22], upper bounds on the average BEP of SCCCs under
maximum likelihood decoding are derived. The approach
followed in [22] is based on the derivation of the input-output
weight enumerating function (IOWEF) for the equivalent
block code which represents the cascade of the component
codes of the SCCC. In particular, the IOWEF for the SCCC
can be expressed as

Q(W,H) =∑
w,h

Qw,hW
wHh (12)

where Qw,h represents the number of codewords with weight h
generated by information words of weight w and can be given
the following expression:

Qw,h =
N

∑
ℓ=0

Q(o)
w,ℓQ

(i)
ℓ,h(N

ℓ

) (13)

where N is the interleaver length and Q(o)
w,ℓ and Q(i)

ℓ,h are the
coefficients3 of the IOWEFs of the outer and inner CCs,
respectively. Leveraging on the derivation in the previous
subsection, the BEP under maximum likelihood decoding in
the presence of API can be upper bounded as:

Pe,b ≤∑
w,h

Qw,hwAwe−rhγb (14)

where r = r(o) r(i) is the code rate of the SCCC, r(o) and r(i)

being the outer and the inner CCs’ rates, respectively.
In order to carry out preliminary design considerations for

the SCCCs, we refer to the conclusions drawn in [22] for a
scenario with no API. In particular, in [22] it is shown that
an interleaver gain, i.e., the BEP is an increasing function of
the interleaving length Nint, is achievable provided that the
inner CC is recursive. It is straightforward to observe that the
presence of API does not affect this conclusion and, hence,
also in presence of API it can be concluded that the inner CC
has to be recursive. In particular, we limit ourselves to the
inner systematic RCCs derived from the equivalent NRCCs,
with maximum free distance, shown in [19].

In order to derive design guidelines for the outer CC, we
rely on the analysis, proposed in [22], based on the maximum
exponent of Nint. For the sake of notational simplicity, we
consider the case with even minimum free distance of the
outer CC, denoted as d(o)

f . In this case, from [22] and on the
basis of the analysis presented in the previous subsection, the

3More precisely, Q(o)
w,ℓ represents the number of codewords, with weight ℓ,

generated by information words of weight w at the input of the outer decoder
and Q(i)

ℓ,h represents the number of codewords, with weight h, generated by
information words of weight ℓ at the input of the inner decoder.

following upper bound on the BEP can be derived:

Pe,b ≤ K(o) d
(o)
f

d
(o)
f d(o)

f !(
d(o)

f /2
)
!

N
−d

(o)
f
2

int N(o)
f wmin Awmine−r

d
(o)
f d

(i)
f

2 γb (15)

where: K(o) is a constant which depends on the CC structure;
wmin is the minimum input weight yielding outer codewords
with weight equal to d(o)

f ; N(o)
f is the number of such

codewords; and d(i)
f is the minimum weight of codewords

of the inner CC (generated by weight-2 input information
sequences). The upper bound (15) allows to draw important
design guidelines for the outer CC. In particular, the outer
CC must be designed to jointly maximize the minimum free
distance and the minimum input information weight yielding
outer codewords with weight d(o)

f . This design rule is coherent
with the design rule of a CC in the presence of API and, hence,
the outer decoder can be designed following the optimization
criterion presented in Subsection III-A. More precisely, the
performance is optimized when the outer CC is a non-
systematic RCC.

In order to verify and confirm the above SCCC design
conjecture, we have computed the BEP upper bound (14) for
two rate-1/4 SCCCs. In the first SCCC, referred to as “NRCC
outer-RCC inner,” the outer code is the rate-1/2 NRCC C50

and the inner code is the rate-1/2 systematic RCC with the
following generators: G(1) = 15, G(2) = 17, and H = 15. Note
that the latter RCC is the systematic version of the NRCC
C50, i.e., it is chosen according to the optimal design rule
for the inner code. The second considered SCCC, referred to
as “RCC outer-RCC inner,” uses the same inner code as the
second SCCC and the rate-1/2 RCC C90 as outer code. Note
that this SCCC is derived by applying directly the optimization
criterion presented in Subsection III-A. In other words, the
“RCC outer-RCC inner” code design is coherent with the
optimal design conjecture previously discussed. In all cases,
the interleaver length Nint is set to 200. In Fig. 3, the upper
bound (14) on the BEP is shown, as a function of the SNR,
for the two considered SCCCs. In each case, various values
of ρ (namely, 0.9,0.7, and 0.5) are considered and perfect
reliability estimation (i.e., ρ̃ = ρ) is assumed. It is worth
noting that in the presence of significant API (ρ = 0.9), the
“RCC outer-RCC inner” SCCC shows a clear advantage with
respect to the other SCCC, thus confirming the validity of
the optimized design conjecture. Moreover, in the presence of
limited API, i.e., ρ ≤ 0.7, the optimal choice is to use an outer
NRCC and an inner RCC, which is consistent with the design
rule derived in [22] for a scenario with no API.

IV. LOW SNR: DENSITY EVOLUTION-BASED DESIGN OF

SCCCS

The analysis in Subsection III-B is useful to analyze the per-
formance of SCCCs in the error floor region. However, union
bounds give little information on the BEP performance in the
waterfall region. In this section, we propose a design criterion,
using density evolution techniques, for SCCC optimization in
the waterfall region.
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Fig. 3. Analytical BEP bounds, for different rate-1/4 SCCCs, in the presence
of API.

A. Preliminaries on Density Evolution

We refer to the classical density evolution framework pro-
posed in [23], properly adapted to the presence of API at the
receiver. In Fig. 4, the reference scheme for density evolution-
based design of a SCCC in the presence of API is shown.
In this figure, the blocks indicated with DEC(o) and DEC(i)

correspond to the outer and inner decoders, respectively. We
assume that the source transmits the all-zero sequence, i.e.,
xi = 0, ∀i. In the considered scenario, the messages (e.g.,
LLRs), derived from the channel observables and fed at the
input of DEC(i), are Gaussian random variables with proba-
bility density function (pdf) N (2γb,

√
4γb). For the purpose

of density consistency, required for a density evolution-based
analysis to be applicable [23], we assume that each internal
message (at the input or output of a component decoder) is
Gaussian as well, with pdf N (μ ,

√
2μ) and corresponding

SNR given by μ/2. In the considered scenario, however,
the internal LLRs at the input of DEC(o) might not be, in
general, Gaussian. In the next paragraph, we describe how an
approximating Gaussian distribution can then be determined
and we evaluate its accuracy.

According to the considered API model and under the
assumption of all-zero transmitted information sequence, it is
straightforward to observe that the a-priori LLR for a bit of
the information sequence4 can be expressed as follows:

L(x) =

{
L(ρ̃) with probability ρ
−L(ρ̃) with probability 1−ρ

where L(ρ̃) has been introduced in Section II. At this point,
denoting as ax(z) (z is a dummy variable) the pdf of an a-priori
LLR, one can write:

ax(z) = ρδ (z−L(ρ̃))+ (1−ρ)δ (z+L(ρ̃)) (16)

where δ (⋅) is the Dirac delta function. Remark, therefore, that
the pdf ax(z) depends on the two parameters {ρ , ρ̃}. Given the
above, the evolution of the pdfs of the messages at the input
and output of the component decoders DEC(o) and DEC(i)

in Fig. 4 can then be determined through very simple (and

4For ease of notational simplicity, we have dropped the subscript i for x,
since the expression of the pdf does not depend on the particular bit.

γ b

DEC(o)

SNR(o)out

SNRAPI

DEC(i)

SNR(i)out

SNR(o)in

SNR(i)in

Fig. 4. Density evolution scheme for an SCCC in the presence of API.

accurate) simulations. More precisely, for each component
decoder one can run a SISO decoding algorithm on a very
long trellis, feeding it with independent (channel and a-priori)
LLRs drawn according to corresponding input distributions
characterized by the parameters γb and {ρ , ρ̃}, respectively.
From the output LLRs, one can then estimate the output SNRs
and derive a corresponding “forced” Gaussian pdf as follows.
Owing to the assumption of all-zero transmitted sequence, the
BEP at the output of the component decoder, denoted as Pe,out,
may be numerically evaluated from the output LLRs. Hence,
by setting to Pe,out the probability that a Gaussian random
variable (the output LLR) with distribution N(μ ,

√
2μ) is

lower than zero, μ can be estimated as follows:

μ = 4
{
erfc−1 [2Pe,out]

}2
. (17)

The corresponding output SNR is then μ/2.
In order to assess the validity of the Gaussian approxi-

mation, as a meaningful illustrative example we analyze the
distribution of the LLR at the output of a decoder relative
to a 32-state rate-1 RCC with generator polynomial G = 75
and feedback polynomial H = 53—this will correspond to
the outer code of the the code SCCCopt derived in Subsec-
tion IV-B. In Fig. 5, the actual pdf of the LLR at the decoder
output is compared with the Gaussian approximating pdf,
setting ρ = 0.9 and considering two different values for the
input SNR, namely 1 and 2. As one can see, the Gaussian
approximation is very accurate. This particularly holds for
negative values of the LLRs, i.e., in the region where the
feedback provided to the other component decoder is negative.
In this region, accuracy is of paramount importance, since
the feedback tries to redirect the decoding trend of the other
decoder.

As in usual density evolution for turbo decoding [23], one
can graphically visualize the evolution of the SNRs of the
messages exchanged between the decoders. In other words, the
performance of a SCCC can be inferred, for given values of γb,
ρ , and ρ̃ by graphically comparing the curves corresponding
to (i) the output SNR of decoder DEC(i) as a function (denoted
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Fig. 5. Comparison between the actual pdf of the LLR at the output of a
decoder, relative to a 32-state rate-1 RCC with generator polynomial G(D) =
75, and its Gaussian approximation. The parameter ρ is set to 0.9 and two
different values for the input SNR are considered.

as Zi) of its input SNR5 and (ii) the input SNR of decoder
DEC(o) as a function (denoted as Z−1

o ) of its output SNR. In
Fig. 6, we show the SNR curves Zi and Z−1

o for the two rate-
1/4 SCCCs introduced in Subsection III-B, setting ρ = ρ̃ = 0.9
(i.e., under the assumption of perfect reliability estimation) and
γb =−5 dB in all cases. In the “RCC outer-RCC inner” case
the curves are far from each other, i.e., the convergence to
zero BEP is faster that in the “NRCC outer-RCC inner” case.
This result confirms the conjecture, drawn in Subsection III-B,
regarding the design of a good outer code, thus making the
“RCC outer-RCC inner” SCCC the best. Moreover, it shows
that the current density evolution-based design criterion leads
to results consistent with those obtained with the union bound-
based criterion.

B. Case Study: Optimized Rate-1/2 Punctured SCCCs

In this subsection, we apply the density evolution-based
framework introduced in Subsection IV-A to select optimized
rate-1/2 punctured SCCCs among a set of possible candidate
SCCCs. We assume perfect reliability estimation, i.e., ρ = ρ̃ .
Moreover, according to the optimization conjecture discussed
in Subsection IV-A, we consider as candidate SCCCs only
those which have, as inner code, the rate-1/2 systematic
RCC derived from the equivalent NRCC with maximum free
distance shown in [19], and, as outer code, the rate-1/2
non systematic RCC derived according to the optimization
framework proposed in Subsection III-A. Since the consid-
ered component CCs have rate 1/2, the desired overall rate
equal to 1/2 can be obtained by puncturing the CCs, thus
obtaining different combinations of outer and inner coding
rates. Denoting by r(o) and r(i) the outer and inner code
rates, respectively, we consider four possible combinations of
r(o) and r(i) leading to a rate-1/2 SCCC: (i) 1 and 1/2; (ii)
3/4 and 2/3; (iii) 2/3 and 3/4; (iv) 1/2 and 1. Considering

5Note that the output/input SNR refer to the SNR of the input/output
sequences.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1
NRCC outer−RCC inner

SNRin

S
N

R ou
t

Zo
−1

Z i

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1
RCC outer−RCC inner

SNRin

S
N

R ou
t

Zo
−1

Z i

Fig. 6. Density evolution for three different rate-1/4 SCCCs. In all cases,
ρ = 0.9 and γb =−5 dB.

a single rate-1/2 starting CC, a puncturing pattern (PP) of
minimum period leading to a rate-p/q CC is determined by
a 2× p matrix with q ones and 2p− q zeros: this yields an
overall set of

(2p
q

)
possible puncturing patterns. Hence, the

considered possible rates of a punctured CC (either outer or
inner), namely 1, 2/3, and 3/4, correspond to

(2
1

)
,
(4
3

)
, and(6

4

)
puncturing patterns. On the other hand, if the rate remains

1/2 there is only
(2
2

)
= 1 possibility, i.e., the non-punctured

starting CC. By fixing the values of ρ and γb, it is possible to
draw the SNRin-SNRout curves, relative to the inner and outer
component CCs (curves Zi and Z−1

o , respectively), according
to the procedure described in Subsection IV-A. On the basis
of the combinatorial considerations just carried out and taking
into account all rate combinations, the overall number of
pairs of inner-outer curves (i.e., of possible SCCCs) to be
considered is

(2
1

)(2
2

)
+
(6
4

)(4
3

)
+
(4
3

)(6
4

)
+
(2
2

)(2
1

)
= 124. For

each SCCC, we define as γ th
b the minimum SNR at which

its associated curves Zi and Z−1
o do not touch, i.e., the SNR

associated with the “knee” of the BEP curve: the lower γ th
b , the

better the SCCC. Since different encoders may have different
optimal puncturing patterns [24], [25], for various pairs of
constraint lengths ν(i) and ν(o) of the component inner and
outer CCs, we carry out an exhaustive search over all possible
PP. The obtained results, obtained setting ρ = 0.9, are shown
in Table II. As one can see, for all possible values of constraint
lengths, the optimal PPs (given by 2× 1 matrices), denoted
as PP(o)

opt and PP(i)
opt, correspond to r(o) = 1 and r(i) = 1/2.

The overall best SCCC, denoted as SCCCopt, is the one
constituted by: (i) the non-systematic 32-state (ν(o) = 5) rate-1
outer RCC with generator polynomial G = 75 and feedback
polynomial H = 53; (ii) the systematic 4-state (ν(i) = 2) rate-
1/2 inner RCC with generator polynomials G(1) = 5, G(2) = 7
and feedback polynomial H = 7. Our results (not shown here
for lack of space) show that this SCCC remains the best for
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TABLE II
OPTIMIZED PUNCTURING PATTERNS (PP(o)

opt ,PP(i)
opt) AND CORRESPONDING

SNR THRESHOLD γ th
b AS FUNCTIONS OF THE OUTER AND INNER

ENCODERS’ MEMORIES (ν (o),ν (i)). IN ALL CASES, ρ̃ = ρ = 0.9.

ν (o) ν (i) PP(o)
opt PP(i)

opt γ th
b [dB]

2 3
0
1

1
1 -2.7

2 4
0
1

1
1 -2.45

2 5
0
1

1
1 -2.9

3 2
0
1

1
1 -2.5

3 3
0
1

1
1 -3

3 4
0
1

1
1 -2.85

3 5
0
1

1
1 -2.85

4 2
0
1

1
1 -1.9

4 3
0
1

1
1 -3

4 4
0
1

1
1 -2.85

4 5
0
1

1
1 -2.75

5 2
0
1

1
1 -3.2

5 3
0
1

1
1 -3

5 4
0
1

1
1 -2.9

5 5
0
1

1
1 -2.8

large values of ρ , namely ρ ≥ 0.8.
The obtained SCCC design guidelines are in contrast with

“classical” design criteria in the absence of API [22]. The
intuition behind this result consists of the fact that the outer
CC can be kept “less powerful” (i.e., r(o) = 1 and high free
distance), since it will rely on the presence of API. For a
given SCCC rate, this allows to correspondingly make the
inner CC more powerful (i.e., to reduce r(i)). On the other
hand, reducing the rate of the outer CC makes the impact of
the API less relevant and leaves the inner CC weaker, thus
leading to an overall performance degradation for the SCCC.
In order to provide an illustrative example, we compare the Zi

and Z−1
o curves of the component CCs of SCCCopt with those

of the SCCC with the same memories for the component CCs
(namely, ν(i) = 2 and ν(o) = 5) and with coding rates r(o) =
2/3 and r(i) = 3/4. The latter SCCC is denoted as SCCCB. The
obtained results are shown in Fig. 7, where ρ̃ = ρ = 0.9 and
γb =−2 dB. In this figure, it is shown clearly that considering
a lower rate for the outer CC moves, for sufficiently large
values of SNRin, the Z−1

o (lower) curve down. Even though this
is positive, the associated increase of the rate of the inner CC
moves the Zi (upper) curve even more down. Overall, reducing
the rate of the outer CC and, correspondingly, increasing the
rate of the inner CC closes the “tunnel” between Zi and Z−1

o ,
i.e., increases the threshold SNR. In other words, since the
outer CC is “helped” by the API, our results show that it
is more convenient to make the inner CC more robust (i.e.,
reducing its rate).

The validity of the proposed design criterion is confirmed
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Fig. 7. Graphical density evolution considering two SCCCs with ν (i) = 2
and ν (o) = 5: SCCCopt (r(o) = 1 and r(i) = 1/2) and SCCCB (r(o) = 2/3 and
r(i) = 3/4). In all cases, ρ̃ = ρ = 0.9 and γb =−2 dB.
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Fig. 8. BEP, as a function of the information sequence length k, considering
various SCCCs. In all cases, γb =−2 dB and ρ = 0.9.

also by the results presented in Fig. 8, where Pb,e is shown, as
a function of the information sequence length k, considering
γb =−2 dB and ρ = 0.9. Together with SCCCopt and SCCCB,
we consider also the SCCC, denoted as SCCCC, derived from
SCCCB by replacing the outer RCC with its corresponding
non-recursive version. As one can see, the proposed design
rule becomes even more appealing for increasing codeword
lengths.

In order to verify the predictions of the density evolution-
based design criterion on the optimum SCCC structure, we
now compare, through Monte Carlo simulations, the perfor-
mance of SCCCopt and SCCCB. All simulated rate-1/2 SCCCs
use random interleavers and the length of the information
sequence is k = 262144. Each BEP value is obtained by con-
sidering 400 information packets.6 The number of iterations
used in the decoder is 50. In Fig. 9, the BEP is shown as a
function of the SNR, considering perfect reliability estimation
(i.e., ρ̃ = ρ) and three possible values of ρ : 0.8, 0.9, and 0.95.

6The simulation set-up guarantees a reliable estimation of a BEP of the
order of 10−5 with more than 1000 errors.
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As expected, SCCCopt offers the best “waterfall” perfor-
mance for all values of ρ . In order to highlight the excellent
behavior of SCCCopt, in Fig. 9 we also show the gaps, with
respect to the corresponding SL SNRs, for the three considered
values of ρ . In particular, owing to the definition of γb (in
Section II) as the SNR at the receiver and taking into account
that 1/2 is the considered code rate, the SNR (dimension: [dB])
corresponding to the SL can be written as 10 log10(2

He(ρ)−1),
where He(ρ) ≜ −ρ log2ρ − (1− ρ) log2(1− ρ). The gap of
SCCCopt from the corresponding SL (for a given value of ρ) is
then evaluated as the SNR difference at a BEP equal to 10−5.
For the three considered values of ρ (0.8, 0.9, and 0.95) the SL
SNRs are −1.87 dB, −4.15 dB, and −6.58 dBs, respectively,
and the corresponding gaps of SCCCopt are 0.72 dB, 0.85 dB,
and 0.98 dB. Considering the cases with ρ = 0.8 and ρ = 0.9,
one can directly compare the performance of SCCCopt with
that of the non-systematic turbo code (NSTC) proposed in [16]
for the same information sequence length. In particular, the
NSTC presented in [16], which, to the best of our knowledge,
is the coding scheme which guarantees the shortest gap from
the SL, allows to reach, for ρ equal to 0.8 and 0.9, gaps
equal to 0.87 dB and 1.05 dB, respectively. Therefore, one
can conclude that the proposed SCCCopt allows to outperform
previously presented coding schemes for medium-to-(very)
high values of ρ . Note that if API were available at the encoder
side, then our optimization approach could be extended to
encompass the use of proper energy allocation techniques,
such as those considered in [26].

Finally, we verify the behavior of the proposed SCCCopt

in the presence of imperfect reliability estimation. In order
to do this, γ th

b (i.e., the minimum value of γb required for
decoding convergence) is evaluated it both through simulations
and through the proposed density evolution-based framework.
More specifically: with the simulation-based approach, γ th

b is
evaluated as the value of γb which allows to achieve a BEP
equal to 10−5; with the the density evolution-based approach,
γ th
b corresponds to the minimum value of γb for which the

curves Zi and Z−1
o do not touch. In Fig. 10, γ th

b of SCCCopt
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Fig. 10. γ th
b , as a function of ρ̃ , computed through simulations (dashed lines

with symbols) and through density evolution (solid lines). Three possible
values of ρ are considered: 0.8, 0.9, and 0.95.

is shown as a function of ρ̃ , considering three possible
values for ρ : 0.8, 0.9, and 0.95. As one can observe, the
density evolution-based analysis allows to predict accurately
the performance of SCCCopt, even in the case of imperfect
estimation of ρ (i.e., ρ̃ ∕= ρ). Obviously, the lowest value of
γ th
b is obtained, in each case, for ρ̃ = ρ . Moreover, it can

be observed that SCCCopt guarantees a limited increase of γb
even in the presence of a moderate reliability estimation error.
In other words, the performance of the proposed optimized
SCCCing scheme is robust against estimation errors.

V. CONCLUSIONS

In this paper, we have first derived a BEP-based analytical
framework for the design of optimized CCs in the presence of
API at the decoder. This BEP union bound-based framework
has then be extended to encompass the design of optimized
SCCCs. In particular, the optimized SCCCs use, as outer
component codes, the previously optimized CCs. Since the
BEP union bound-based approach applies to the BEP floor of
SCCCs, in order to optimize their design in the waterfall re-
gion we have proposed a density evolution-based optimization
approach, which confirms the results obtained with the BEP
union bound-based framework. Experimental results show that
the proposed SCCCing schemes allow to noticeably outper-
form the performance of turbo coding schemes optimized for
scenarios where no API is available at the decoder. Moreover,
in the presence of relevant API the proposed optimized SCCC
allows to approach the SL more than any previously proposed
channel coding scheme.
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