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a b s t r a c t

In this paper,we focus on cognitivewireless networking,where a primarywireless network
(PWN) is co-located with a cognitive (or secondary) wireless network (CWN). The shared
frequency spectrum is divided into disjoint ‘‘subchannels’’ and each subchannel is ‘‘freely’’
assigned (in a unique way) to a node of the PWN, denoted as primary user equipment
(PUE).We assume that the nodes of the CWN, denoted as cognitive user equipments (CUEs),
cooperate to sense the frequency spectrum and estimate the idle subchannels which can
be used by the CWN (i.e., assigned to CUEs) without interfering the PWN. The sensing
correlation among the CUEs is exploited to improve the reliability of the decision, taken
by a secondary fusion center (FC), on the occupation status (by a node of the PWN) of each
subchannel. In this context, we compute the mutual information between the occupation
status and the observations at the FC, with and without knowledge of the positions of
the nodes in the network, showing a potential significant benefit brought by this side
information. Then, we derive the fusion rules at the FC: our numerical results, in terms
of the network-wise probabilities of missed detection (MD) and false alarm (FA) at the
secondary FC, indicate a significant performance improvement when knowledge of the
CUEs’ positions is available at the secondary FC, confirming the mutual information-based
theoretical prediction.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Dynamic spectrumaccess has been proposed to provide
efficient radio spectrum utilization [1–3]. In such systems,
a portion of the spectrum can be allocated to one or
more users, which are called primary user equipments
(PUEs). Such spectrum, however, may not be exclusively
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dedicated to PUEs, but could also be utilized, with lower
priority, by secondary users, also denoted as cognitive
user equipments (CUEs)—the notation comes from cellular
systems where the proposed techniques can also be
applied. In particular, CUEs can access the same spectrum
(as long as the PUEs are not using it at that moment) or
can share the spectrum with the PUEs (as long as the PUEs
can be properly protected from undesired interference).
By doing so, the radio spectrum can be reused in
an opportunistic manner or shared all the time, thus
significantly improving the spectrumutilization efficiency.

To support dynamic spectrum access, CUEs are required
to sense the radio environment, i.e., they also are cognitive
radio users [4,5]. One of the main tasks of a CUE is
represented by spectrum sensing, defined as the task of
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finding portions of spectrum licensed to some PUEs but
left unused for a certain amount of time [6]. Sensing
from a single node does not always guarantee satisfactory
performance because of the following: sensing noise;
the intrinsic random nature of the nodes’ positions; and
unpredictable channel fluctuations. For example, a CUE
could not detect the signal from a primary transmitter
behind ahighbuilding and could decide to access a licensed
subchannel, thus partially interfering with the primary
receiver. On the other hand, collaboration ofmultiple users
may highly improve spectrum sensing performance by
introducing a form of spatial diversity [7,8]. In cooperative
spectrum sensing, CUEs send the collected data to a
combining user or fusion center (FC). Alternatively, CUE
may first independently decide on the statuses of the
subchannels and report binary decisions to the FC, which
uses such data to take a decision on the occupation of each
subchannel.

Although a well-established technique, great attention
has recently been paid to cognitive radio since it has been
identified as a key enabling technology for next-generation
5G systems [9]. Among all possible usages of cognitive ra-
dio in 5G scenario, a very interesting application lies in the
field of the so-called green communications [10], i.e., the
design ofwireless infrastructureswith limited cost and en-
ergy consumption. As an example, in [11] the authors pro-
pose green cognitive relaying, where data transmissions
opportunistically occur when spectrum holes are identi-
fied, whereas energy harvesting is performed when PUEs
occupy the licensed spectrum.

In this paper, we focus on cognitive wireless network-
ing, where a primary (i.e., licensed) wireless network
(PWN) is co-located with a cognitive (or secondary) wire-
less network (CWN). In particular, the nodes of the CWN
reach their associated access point (AP) directly (i.e., sin-
gle hop communications are assumed). The nodes of the
CWN cooperate to sense the frequency spectrum and esti-
mate the subchannels unusedby thenodes of the PWN. The
CUEs transmit packets containing the observations on the
channels’ statuses (idle or busy) to their FC, ‘‘embedded’’ in
the secondary AP, which makes a final decision about the
status of each subchannel and broadcasts this information
to all CUEs. In this context, we first derive an expression
for the mutual information between the occupation status
and the observations at the FC. Then, optimal fusion rules,
with and without the knowledge of the positions of the
nodes, are derived and themissed detection (MD) and false
alarm (FA) probabilities are computed to obtain system re-
ceiver operating characteristic (ROC) curves [12]. Both ap-
proaches indicate a significant performance improvement
when knowledge of the nodes’ positions is available at the
secondary FC. Our work is inspired by recent advances in
wireless communications, where proper transmission and
signal processing-aided schemes are designed to exploit
the knowledge of nodes’ positions [13,14].

This scenario has been preliminarily analyzed in [15],
where the case without knowledge of the positions of
the nodes in the network is considered. Note that related
work is carried out in [16], where a scenario with CUEs
with known positions, close to each other and far from
a PUE, is considered. In this case, the sensing channels
are correlated and, therefore, sub-optimal fusion rules are
devised to take into account this correlation. Unlike [16],
here we consider a more realistic sensing scenario where
CUEs are not necessarily close to each other and, therefore,
channel impairments may be independent. However, the
correlation between the decisions of the CUEs can be
exploited if the secondary AP knows their positions, thus
improving the network performance, in terms of MD and
FA probabilities on the status of each subchannel.

The rest of this paper is structured as follows. In Sec-
tion 2, we present the system model. In Section 3, we
analyze the MD and FA probabilities from a single CUE
perspective. In Section 4, we derive an information-
theoretic framework to compute the ultimate performance
limits, in terms of mutual information between the obser-
vation vector at the FC and the binary data representing the
occupation status of a subchannel, of the considered cogni-
tive networking scenario, distinguishing between the cases
with and without knowledge of the positions of the nodes.
Then, in Section 5 we derive optimal fusion rules at the FC,
with and without knowledge of nodes’ positions, evaluat-
ing theMD and FA probabilities of the decision by a CUE on
the occupation status of a subchannel. Finally, concluding
remarks are given in Section 6.

2. Systemmodel

The scenario of interest is shown in Fig. 1. The FC,
‘‘embedded’’ in the secondary AP, is placed at the center
of the region of interest (ROI), which is a circular cell with
a given radius R, while CUEs and PUEs are independent
and identically distributed (i.i.d.) according to a uniform
distribution in the ROI.1 The numbers of PUEs and CUEs are
indicated as P and N , respectively. The PWN can operate
on Nch orthogonal subchannels corresponding to non-
overlapping frequency bands, i.e., each PUE can transmit
data on one of such Nch channels. Each PUE is assigned
one of the Nch orthogonal subchannels to transmit its own
data (when available) with fixed power PT. Due to the
assumption of orthogonal subchannels, in the rest of the
paperwewill focus, without loss of generality, on a generic
subchannel. The binary status of the reference subchannel
S is defined as follows:

S =


S0 with probability P(S0)
S1 with probability P(S1) = 1 − P(S0).

Data transmissions follow a classical model for cellular en-
vironments, where the path-loss is completely character-
ized by two parameters: (i) the distance attenuation factor
α (adimensional, in the range 2 ÷ 4) and (ii) the standard
deviation σ (in dB) of the log-normal shadowing [17].

Each CUE scans the subchannel in order to detect
the presence of a primary signal transmission. In other
words, each CUE performs a binary hypothesis test on the
presence of a primary signal in the subchannel, which is
idle under hypothesis S0 and busy under hypothesis S1.
The sensing time of the CUEs depends on the particular

1 No assumption is done on the position of the primary AP, which, for
instance, may be co-located with the secondary AP.
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Fig. 1. System model for cognitive networking scenario of interest.

technology and has impact on the achievable throughput
at the secondary FC. However, this goes beyond the
scope of this paper and the interested reader may refer
to the existing literature, e.g., [18]. As for the signal
model, we assume that the primary signal can be modeled
as a zero-mean stationary white Gaussian process—this
is a reasonable assumption when the CWN has no a-
priori knowledge about the possible modulation and pulse
shaping formats adopted by the PWN.

On the basis of the model assumptions above, the kth
CUE (k = 1, . . . ,N) has to distinguish between two
independent Gaussian sequences:

µk(ℓ) =


nk(ℓ) if S0
sk(ℓ) + nk(ℓ) if S1

ℓ = 1, . . . ,m (1)

where m is the number of observed consecutive samples
in a single block used to generate a binary decision. Note
that an implicit assumption in (1) is that the phenomenon
status (S0 or S1) does not change over m consecutive
observations: this is realistic given thatm is typicallymuch
shorter than the duration of a primary signal transmission.
Moreover, the fact that the kth node takes m consecutive
observations {µk(ℓ)}

m
ℓ=1 on the subchannel guarantees

time diversity in the sensing operation. In (1), sk(ℓ) is
the signal received by the kth CUE, which is a sequence
of i.i.d. zero-mean complex Gaussian random variables
with variance P (k)

R (corresponding to the received power).
The power P (k)

R depends on the transmitted power PT and
on the path-loss and shadowing terms of each CUE–PUE
pair. In the following, we assume that the path-loss and
shadowing terms are constant over all m acquisitions:
this is reasonable in a sufficiently slowly varying wireless
scenario. More precisely, typical values for the acquisition
time between consecutive samples are on the order of
a few milliseconds [19] and, therefore, the assumption
is not critical for m on the order of a few tens. The
noise terms {nk(ℓ)} are also modeled as i.i.d. zero-mean
complex Gaussian random variableswith fixed variance PN
(corresponding to the noise power), constant for all CUEs.

Under the observation model (1), an energy detection
(ED) scheme is the optimal detector in the Neyman–
Pearson sense [20]. In particular, the following decision
variable has to be evaluated:

Wk =

m
ℓ=1

|µk(ℓ)|
2

and the binary decision of the CUE is given by

xk =


0 ifWk < τ
1 ifWk ≥ τ

(2)

where τ is a properly selected decision threshold. In other
words, each CUE decides for 0 if the channel is sensed
idle, whereas it decides for 1 if the channel is sensed
busy. The extension to soft decision rules goes beyond
the scope of this paper and is the subject of our current
research activity. The local FA and MD probabilities, under
the proposed ED scheme, can be defined as follows:

P (k)
FA , P(xk = 1|S0) = P(Wk ≥ τ |S0)

P (k)
MD , P(xk = 0|S1) = P(Wk < τ |S0).

Consequently, the correct detection (CD) probability is

P (k)
CD = 1 − P (k)

MD.

The kth CUE then generates its decision xk ∈ {0, 1} on
the absence (xk = 0) or presence (xk = 1) of a primary
signal in the considered subchannel. This data ismodulated
using an antipodal modulation, e.g., binary phase shift
keying, and transmitted to the secondary FC through a
set of independent binary communication channels with
additive white Gaussian noise. The received observable, at
the secondary FC, from the kth CUE and associatedwith the
status of the subchannel is

yk = rk + wk (3)

where rk = 1 − 2xk is the antipodal transmitted version
of the local decision and wk are i.i.d. Gaussian random
variables with zero mean and variance η2. Assuming
unitary bit energy, the (bit) channel signal-to-noise ratio
(SNR), assumed to be the same for all the CUE-FC
communication channels,2 can be expressed as

SNR =
1
η2

.

At the FC, the observation vector on the subchannel status
from the N CUEs is denoted as y = (y1, . . . , yN).

At this point, upon receiving the decisions from all the
CUEs, the FC applies a proper fusion strategy to take a final
decision on the status (idle or busy) of the subchannel. The
FC can thus broadcast this information to all CUEs, possibly
with the assignment of the idle subchannel to the largest
possible number of CUEs, in order to minimize multiple
access interference. The design of proper fusion rules,
either in the absence or in the presence of information
about nodes’ positions, will be the subject of Section 5.

For the sake of clarity, all the acronyms used in the rest
of the paper are summarized in Table 1.

3. Local sensing performance at a CUE

We first recall the performance from a single CUE
perspective (see, for example, [15] and references therein).
This is expedient to derive explicit expressions for the

2 This is realistic in cellular systems, owing to power control.
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Table 1
All the acronyms used in the paper.

PWN Primary Wireless Network
CWN Cognitive Wireless Network
PUE Primary User Equipment
CUE Cognitive User Equipment
AP Access Point
FC Fusion Center
FA False Alarm
MD Missed Detection
CD Correct Detection
ROC Receiver Operating Characteristic
ROI Region Of Interest
ED Energy Detection
PDF Probability Density Function
i.i.d. Independent and Identically Distributed
SNR Signal-to-Noise Ratio

FA and MD probabilities, which will be used later
to assess the gain brought by the knowledge of the
nodes’ positions. Being the subchannels independent, the
sensing capabilities of each CUE and the corresponding
FA and MD probabilities with ED do not depend on the
considered subchannel (i.e., frequency band). Since each
subchannel is assigned to at most one PUE, without loss
of generality we also focus on a single PUE. Extending our
formulation to a multi-subchannel scenario (e.g., bringing
the medium access control protocol into the picture) is a
very interesting research direction, but goes beyond the
scope of the current paper.

Considering the complex plane as the bidimensional
space of reference, we denote as vk = νkeȷ2πθk and vp =

νpeȷ2πφ the positions of the kth CUE and the PUE, respec-
tively, where 0 ≤ νk, νp ≤ R and 0 ≤ θk, φ ≤ 2π . The
Euclidean distance dk between the PUE and the kth CUE is

dk =
vp − vk

 =


ν2
k + ν2

p − 2νkνp cos(θk − φ).

Assuming a fixed transmit power PT for primary nodes, the
power P (k)

R received by the kth CUE can be expressed, ac-
cording to the Friis formula [17], as

P (k)
R =

K
dα
k
hkPT

where: K is the gain at 1 m from the transmitter (i.e., the
PUE); hk is the log-normal shadowing coefficient of the link
between the PUE and the kth CUE; and α is the path-loss
exponent (α = 2 ÷ 4 as in typical urban cellular scenar-
ios [17]). Therefore, the sensing SNRexperienced by the kth
CUE, with respect to the PUE, can be expressed as follows:

γk(dk, h) =
P (k)
R

PN
=

KhkPT
PNdα

k
.

The local FA andMDprobabilities at a CUEwith ED can then
be evaluated as [20]

P (k)
FA = Γu (mτN,m)

P (k)
MD = 1 − Γu


mτN

1 + γk(dk, h)
,m


where τN = PNτ is the normalized threshold with re-
spect to the noise power (with τ introduced in (2)) and
Γu(a, n) ,


∞

a xn−1e−x dx/(n−1)! is the upper incomplete
gamma function.

Note that the FA probability is the same for all CUEs
and does not depend on their distances from the PUE:
we thus denote P (k)

FA = PFA, ∀k ∈ {1, 2, . . . ,N}. The
MD probability, instead, depends on the distance dk and
on the shadowing term hk. Averaging with respect to
the statistical distribution of the shadowing term, the
following expression for the average MD probability at
distance dk can be obtained:

P
(k)
MD(dk) = Ehk


P (k)
MD(dk, hk)


= 1 −

1
√
2πσ 2

×


∞

−∞

Γu


mτN

1 + γk(dk, 10S/10)
,m


e−

S2

2σ2 dS. (4)

Note that, since the average MD probability in (4) is a
function of dk only, for notational simplicitywe remove the
superscript k and denote it as PMD(dk) in the following.

4. Information-theoretic framework

In this section, we derive an information-theoretic
framework to predict the performance of the considered
cognitive radio system and evaluate the benefits brought
by the knowledge of the positions of the nodes in the net-
work. In particular, we evaluate the average mutual infor-
mation between the CUEs’ observation vector at the FC,
namely Y , and the binary data representing the occupation
status of a subchannel S ∈ {0, 1}.3 Note that, owing to the
independence between subchannels, we focus on a generic
subchannel and, therefore, drop the subscript i for nota-
tional simplicity. To illustrate the benefits brought by the
knowledge of nodes’ positions at the FC, we consider four
possible cases: (i) complete knowledge of the positions of
all nodes’ (CUEs and PUE); (ii) no knowledge of nodes’ po-
sitions is available (blind case); (iii) only the positions of
the CUEs are known; and (iv) only the position of the PUE
is known. Note that knowledge of the PUE’s position at the
secondary FC (cases (i) and (iv)) is not of practical interest
(otherwise, CWN and PWNwould not be distinct), butmay
provide additional insights.Moreover, it is interesting from
a theoretical perspective, since it allows to obtain mean-
ingful performance benchmarks. From a practical point of
view, however, it could be possible to estimate the posi-
tion of the PUE through cooperation of the CUEs, e.g., by
comparing the received signal strengths and exploiting the
knowledge of the positions of the CUEs. A possible instance
of this approach is proposed in [21].

4.1. Complete knowledge of nodes’ positions

In this scenario, we assume that the FC is aware of
the position of the PUE and of all the CUEs in the ROI. In
particular, let us denote by V = (Vp, V1, V2, . . . , VN) the

3 In this section, uppercase letters are used to denote random variables,
whereas lowercase letters are used for their realizations.
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random vector, of size N + 1, representing all possible
nodes’ positions in the ROI and by v a possible realization
of it. Themutual information between S andY , conditioned
on a particular realization v, can be evaluated as

IA(S; Y |v)

=


y
p (y|S0) log2


p (y|S0)
p (y|v)


dy


P(S0)

+


y
p (y|S1, v) log2


p (y|S1, v)
p (y|v)


dy


P(S1). (5)

Note that the probability density function (PDF) of Y ,
conditioned on S0, does not depend on v. In order to
approximately compute (5),4 one may resort to Monte
Carlo simulations generating, at each run, a realization of
v. We also generate a realization of vector y considering
only the status S0: the obtained vector is denoted as y(0).
Likewise, we generate a realization of vector y considering
only the status S1: the obtained vector is denoted as y(1).
Therefore, (5) can be approximated as follows:

IA(S; Y |v) ≃ EY (0)


log2


p

y(0)

|S0


p (y|v)


P(S0)

+ EY (1)


log2


p

y(1)

|S1, v


p (y|v)


(6)

where EYi [·] denotes the average with respect to the
random vector Y conditioned on status i ∈ {0, 1}. The
subscript ‘‘A’’ in the mutual information refers to the
fact that the positions of ‘‘all’’ nodes’ (CUEs and PUE) are
assumed to be known.

Under the assumption of independent noise and
shadowing at each CUE, the conditional PDFs in (6) can be
evaluated as

p

y(0)

|S0


=

N
k=1

p

y(0)
k |S0


=

N
k=1

1
√
2πσ 2

(1 − PFA)e
−


y(0)k −1

2
2σ2

+ PFAe
−


y(1)k +1

2
2σ2

 (7)

p

y(1)

|S1, v


=

N
k=1

p

y(1)
k |S1, v


=

N
k=1

1
√
2πσ 2

PMD(dk)e
−


y(0)k −1

2
2σ2

+

1 − PMD(dk)


e

−


y(1)k +1

2
2σ2

 (8)

where we have used the fact that the conditional PDFs
p(y(0)

k |S0) and p(y(1)
k |S1, v) can be written, according to (1)

4 With infinitely long simulations, theMonte Carlo-based computation
of (5) would be exact.
and (2), as weighted sums of Gaussian random variables.
Applying the total probability theorem, from (7) and (8) it
follows that

p (y|v) = p

y(0)

|S0

P(S0) + p


y(1)

|S1, v

P(S1).

4.2. No knowledge of nodes’ positions

In this scenario, the secondary FC has no knowledge
about the actual nodes’ (both CUEs’ and PUE’s) deployment
inside the ROI. Following the approach proposed in
Section 4.1, the mutual information can now be expressed
as

IB(S; Y ) =


y
p (y|S0) log2


p (y|S0)
p (y)


dy


P(S0)

+


y
p (y|S1) log2


p (y|S1)
p (y)


dy


P(S1) (9)

where subscript ‘‘B’’ stands for ‘‘blind’’ scenario. The con-
ditional PDF p(y|S0) in (9) can be approximated, by
Monte Carlo simulations, as in (7). The other conditional
PDF p(y|S1), instead, cannot be directly approximate and,
therefore, will be approximated by a ‘‘manageable’’ PDF,
indicated as q(y|S1), which underlies a different channel
model. Resorting to the theory ofmismatched communica-
tions, the mutual information can be approximated as [22]

IB(S; Y ) ≃


y
p (y|S0) log2


p (y|S0)
q (y)


dy


P(S0)

+


y
q (y|S1) log2


q (y|S1)
q (y)


dy


P(S1). (10)

As in Section 4.1, resorting to a Monte Carlo simulation to
numerically approximate (10) leads to

IB(S; Y ) ≃ EY (0)


log2


p

y(0)

|S0


q (y)


P(S0)

+ EY (1)


log2


q

y(1)

|S1


q (y)


P(S1) (11)

where

q (y) = p

y(0)

|S0

P(S0) + q


y(1)

|S1

P(S1).

We remark that, at this point, the only unknown
term in (11) is q


y(1)

| S1

, which can be computed by

averaging over the distribution of the PUE’s position. We
now propose a simple derivation of this distribution.

We derive the PDF of the distance between the PUE and
the CUE for a given PUE’s position. Owing to the symmetry
of the problem, we can assume, without loss of generality,
that the PUE lies on the real axis, as shown in Fig. 2. Let
us assume, for notational simplicity, that R = 1. It follows
that, forρ < R−ξ = 1−ξ (case 1 on the right side of Fig. 2),
the annulus centered at ξ with inner radius ρ − δρ/2 and
outer radius ρ + δρ/2 is fully included into the unit circle
and, therefore, the PDF of ρ can be expressed as

fd(ρ) =


2ρ 0 ≤ ρ < 1 − ξ
0 otherwise.
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Note that, using similar considerations, it can be shown
that the PDF of the PUE’s position (assuming that it lies as
well on the x axis) can be written as follows:

fν(ξ) =


2ξ ξ ≥ 0
0 otherwise. (12)

On the other hand, for ρ ≥ 1 − ξ , only a portion
of the annulus lies within the unit circle and the PDF is
given by the ratio between such portion and the surface
of the unit circle (case 2 on the left side of Fig. 2). Using
simple geometric considerations, it is then straightforward
to obtain

fd(ρ, ξ) =


2ρ 0 ≤ ρ ≤ 1 − ξ

2ρ

1 −

1
π

arccos

1 − ξ 2

− ρ2

2ξρ


1 − ξ < ρ ≤ 1 + ξ

0 otherwise.

(13)

At this point, one can write

q

y(1)

|S1


=

 1

ξ=0
q

y(1)

|S1, ξ

fν(ξ) dξ (14)

where fν(ξ) is given by (12). In order to compute
q(y(1)

|S1, ξ), we should observe that, since the positions of
the PUE and of the CUEs are i.i.d. within the ROI, for a given
PUE’s position, the local decisions {xk}Nk=1 are conditionally
i.i.d. and, therefore,

q

y(1)

|S1, ξ


=

N
k=1

1
√
2πσ 2

P̆MD(ξ)e
−


y(0)k −1

2
2σ2

+


1 − P̆MD(ξ)


e

−


y(1)k +1

2
2σ2

 (15)

where P̆MD(ξ) is the average MD probability of each CUE
for a given position ξ of the PUE, which can be evaluated
by averaging over the PDF of the distance, given by (13),
between the CUE and the PUE, i.e.,

P̆MD(ξ) =


ρ

PMD(ρR)fd(ρ, ξ) dρ (16)

where PMD(ρR) can be computed according to (4).

4.3. Knowledge of CUEs’ positions

Denoting as Vc = (V1, V2, . . . , VN) the random vector
of CUEs’ positions, one can estimate p (y|S1, vc) in (8), by
still resorting to the theory of mismatched decoding, as

q̌ (y|S1, vc) =


ROI

p

y|S1, vc, vp


f (vp) dvp.

As already done for the ‘‘blind’’ scenario in Section 4.2, the
mutual information becomes

IC(S; Y |vc) ≃ EY (0)


log2


p

y(0)

|S0


q̌ (y|vc)


P(S0)

+ EY (1)


log2


q̌

y(1)

|S1, vc


q̌ (y|vc)


P(S1)
Fig. 2. Illustrative example for the computation of the distance PDF.

where subscript ‘‘C’’ denotes the fact that only CUEs’
positions are available and

q̌ (y|vc) = p

y(0)

|S0

P(S0) + q̌


y(1)

|S1, vc

P(S1).

4.4. Knowledge of the PUE’s position

Using similar mathematical passages as in the previous
cases and using the subscript ‘‘P’’ to denote the fact that
only the PUE’s position is available, one has

IP(S; Y |νp) ≃ EY (0)


log2


p

y(0)

|S0


q̃

y|νp

 
P(S0)

+ EY (1)


log2


q̃

y(1)

|S1, νp


q̃

y|νp

 
P(S1)

where q̃

y(1)

|S1, νp

has the same meaning of the PDF

q

y(1)

|S1, ξ

already derived in (15) and

q̃

y|νp


= p


y(0)

|S0

P(S0) + q̃


y(1)

|S1, νp

P(S1).

4.5. Numerical results

We now present results for the mutual information
to show the potential benefits brought by the knowledge
of information about nodes’ positions in the network.
To this end, we consider an illustrative scenario of
realistic wireless cellular networking, characterized by the
following main system parameters: R = 1 km, PT =

30mW, α = 4, σ = 5 dB, PN = −110 dBm, andm = 10. In
order to obtain statistically accurate performance results,
Monte Carlo simulations are averaged over 5000 different
trials, with independent realizations of the shadowing
terms. Note that similar considerations can be carried out
for different values of such parameters.

It is worth noting that, for all the considered scenarios,
the system performance depends on the values of the
normalized local threshold τN. Note that a small value
of τN yields a high FA probability, whereas a large
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Fig. 3. Mutual information, as a function of the number N of CUEs, for all scenarios described in Sections 4.1–4.4. Different communication scenarios are
considered: (a) noisy communications with SNR = 5 dB and (b) error-free communications.
value of τN entails a high MD probability. The optimized
value of τN obviously depends on the sensing SNR
experienced by each CUE, which, in turn, depends on
several other uncontrollable factors, such as the positions
of CUEs/PUEs and shadowing. We preliminarily observe
that the selection of a different and optimized threshold
for each CUE would involve a huge amount of message
exchange between the FC and the CUEs. Therefore, we
make the reasonable assumption that the threshold is
a predefined system parameter to be optimized off-line
(e.g., in a training phase) assuming no knowledge about
nodes’ positions. Henceforth,we set τN = 1.5 so that, in the
considered settings, the average per-node CD probability
is, according to (4), approximately equal to 0.3. We
remark, however, that the proposed approach is general:
should one have more stringent constraints (e.g., lower CD
probability), the threshold τN should correspondingly be
optimized.

In Fig. 3, the mutual information is shown, as a func-
tion of the number N of CUEs, for all scenarios described in
Sections 4.1–4.4. Two possible values for the communica-
tion SNR are considered: (a) 5 dB and (b) +∞. The latter
ideal case corresponds to error-free communications from
the CUEs to the FC. It can be observed that, in both cases,
knowledge of all nodes’ positions allows to obtain, as ex-
pected, the best performance. Moreover, the improvement
brought by the knowledge of the PUE’s position, with re-
spect to the casewith no knowledge, isminor. On the other
hand, knowledge of the CUEs’ positions leads to a major
performance improvement with respect to the blind case
and the mutual information is close, especially for large
values of N , to that with knowledge of all nodes’ (CUEs’
and PUE’s) positions. By comparing Fig. 3(a) with Fig. 3(b),
it can be observed that increasing the communication SNR
has a limited impact: this indicates that the performance is
mostly influenced by the available information to be fused
at the FC. Finally, as expected, increasing the number N of
CUEs or the SNR improves the performance, thanks to the
larger amount of information,with better quality, available
at the FC.

5. Classical ROC approach

While the focus of Section 4 was on information-
theoretic limits, we now set to investigate the performance
of practical systems, i.e., we consider a ‘‘classical’’ ROC
approach. In order to do this, we first derive optimal
fusion rules at the FC. In particular, we only consider two
cases regarding the availability of information about nodes’
positions: (i) blind scenario (no position information at the
FC) and (ii) knowledge of the CUEs’ positions. We do not
consider the case with knowledge of the PUE’s position,
since this entails a minor performance improvement, as
observed in Fig. 3. Moreover, it is not realistic that the FC of
the secondary network is aware of the position of the PUE,
which belongs to a different network.

We consider the case where data, i.e., local decisions
{xk}Nk=1 on the presence/absence of the PUE’s signal in
the considered subchannel at the CUEs, are transmitted,
without channel coding, by the CUEs to the secondary
FC, using a set of orthogonal error-free communication
channels.5 In fact, the results in Fig. 3 show that, for the
considered value of τN, the performance slightly depends
on the communication SNR.

The optimal fusion strategy at the FC stems from
the application of the Neyman–Pearson criterion and
requires the evaluation of the likelihood ratio (LR) between
the probabilities of the decisions {xk}Nk=1 received from
the nodes (recall that error-free communications are
considered, i.e., yk = xk, k = 1, . . . ,N in (3)) given either
of the two hypotheses S1 and S0, i.e.,

Λ =
P(x1, . . . , xN |S1)
P(x1, . . . , xN |S0)

S1
≷
S0

λ (17)

where λ is a proper fusion threshold to be optimized.
We now specialize (17) for the two cases of interest. In
particular, in Section 5.1 we first focus on a scenario where
the FC has no knowledge of the positions of the CUEs. Then,
in Section 5.2 we assume that the positions of the CUEs are
available at the FC.

5 In other words, we assume the use of a medium access control which
avoids collisions between CUEs’ transmissions, e.g., time divisionmultiple
access.
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5.1. Unknown CUEs’ positions

We first consider the case where the FC is not aware
of any information about the nodes’ positions in the ROI.
Assuming blind detection, i.e., the FC has no knowledge
about the effective sensing accuracy (in terms of local
FA and MD probabilities) of each CUE, and since the
communication channels between the CUEs and the
secondary FC are error-free, the transmitted data are
received correctly and the fusion rule (17) reduces to the
following [23]:

Λ =

N
k=1

xk
S1
≷
S0
T (18)

where T is a ‘‘global’’ decision threshold (i.e., equal
for all subchannels) to be optimized. In other words,
the hypothesis testing problem turns out be a counting
problem: for example, the number of local decisions, at the
CUEs, in favor of S1 is first counted and then comparedwith
the threshold T .

5.2. Known CUEs’ positions

We now consider the case where the positions of the
CUEs in the ROI, denoted as {vk}

N
k=1, are perfectly known

to the FC. This may be reasonable if the CUEs transmit, in
their packets, information about their positions (e.g., based
on acquired GPS data) or if the positions can be inferred
using localization techniques (e.g., triangulation based on
the received signal powers from anchor nodes, such as
cellular base stations).

Assume that the position of the PUE is known and
denote it as vp. Under this assumption, one could easily
evaluate the conditional probabilities of the decisions
{xk}Nk=1 at the CUEs. Indeed, according to the systemmodel
described in Section 2, for a given position vp of the PUE,
the decisions {xk}Nk=1 are independent and it holds that

P(xk = 1|S1, vp) = P
(k)
MD(dk)

where dk = |vk − vp|, and

P(xk = 1|S0) = PFA.

Therefore, one can compute the numerator of (17)
conditioned on the position vp as

P(x1, . . . , xN |S1, vp)

=


k∈X1


1 − P

(k)
MD(dk)

 
q∈X0

P
(k)
MD(dk) (19)

where

X0 , {h ∈ {1, . . . ,N} : xh = 0}
X1 , {j ∈ {1, . . . ,N} : xj = 1}.

Averaging (19) with respect to the position of the PUE, one
can express the unconditional probability at the numerator
of (17) as

P(x1, . . . , xN |S1)

=


ROI

P(x1, . . . , xN |S1, vp)f (vp) dvp (20)
Fig. 4. ROC curves for various values of N (namely 10, 30, and 50),
considering known and unknown positions of the CUEs.

where f (vp) is the PDF of the PUE position in the ROI,
i.e., uniform in the circular cell. The integral (20) does
not have a closed-form expression, but can be numerically
solved. Therefore, in this case closed-form expressions for
PCD,f and PFA,f cannot be obtained and one needs to resort to
simulations to evaluate the systemperformance. However,
proper sub-optimal fusion strategies could be devised to
avoid the computation of the integral in (20): this goes
beyond the scope of this paper and is the subject of our
current research activity. The denominator of (17) can
readily be expressed as follows:

P(x1, . . . , xN |S0) = PN1
FA (1 − PFA)N−N1

where N1 , |X1|.

5.3. Numerical results

We now present numerical results for the practical
scenario of interest in this section. In all simulated
scenarios (with and without knowledge of the CUEs’
positions), the performance is investigated in terms of
ROC curves, for the binary hypothesis testing problem
of interest, showing (in a log–log scale) the final (at the
secondary FC) MD probability as a function of the final FA
probability [12]. In the ROC curve, each point corresponds
to a different value of the global fusion thresholds, namely:
T in the case with unknown CUEs’ positions (Section 5.1)
and λ in the case with known CUEs’ positions (Section 5.2).

In Fig. 4, ROC curves are shown for various values of
N (namely 10, 30, and 50), considering both the cases
with known and unknown positions of the CUEs. It can be
observed that the knowledge of the positions of the CUEs
allows, through the use of the optimal fusion rule outlined
in Section 5.2, to improve the performance for all values
of N . This is to be expected, since the secondary FC can
rely on a larger amount of (statistical) information to take
the final decision. In particular, the larger the number of
CUEs, the more relevant the performance improvement.
Similar results, not shown here for conciseness, hold for
other communication scenarios with different wireless
propagation characteristics.
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6. Concluding remarks

In this paper, we have analyzed cognitive wireless
networking, where CUEs sense the frequency spectrum
(divided into subchannels freely assigned to PUEs) and co-
operate to estimate the idle (primary) subchannels which
can be used to transmit their data. First, a simple an-
alytical framework for characterizing the local sensing
performance, in terms of MD and FA probabilities per sub-
channel at a CUE, has been derived. Then, we have com-
puted the mutual information between the occupation
status and the observations at the FC, with and without
knowledge of the positions of the nodes in the network,
showing a potential significant benefit brought by the use
of this information. Finally, we have derived optimal fusion
ruleswith andwithout knowledge of CUEs’ positions in the
ROI, in the presence of uncoded transmissions over error-
free communication channels between CUEs and the sec-
ondary FC. Our results show a performance improvement
brought by the knowledge of the CUEs’ positions. This per-
formance improvement is more pronounced the larger is
the number of CUEs, as cooperation in channel sensing be-
comes more effective.
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