
670 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 3, JUNE 2017

DINAS: A Lightweight and Efficient Distributed
Naming Service for All-IP Wireless

Sensor Networks
Michele Amoretti, Member, IEEE, Olivier Alphand, Gianluigi Ferrari, Senior Member, IEEE,

Franck Rousseau, Member, IEEE, and Andrzej Duda, Member, IEEE

Abstract—The Internet of Things (IoT) requires a compact
naming scheme, which can also bring significant advantages to
service registration and discovery. We propose a novel approach,
denoted as distributed naming service, which provides a new
naming scheme as well as an efficient service discovery proto-
col for wireless sensor networks. It is based on three pillars:
1) Bloom filters, to create compact names from node descrip-
tions; 2) message propagation strategies, to publish and discover
information—not only names—within the network; and 3) dis-
tributed caches, to store names within the network. In this paper,
we assume ContikiMAC at layer 2, IPv6 and Routing Protocol
for Low-Power and Lossy Networks (RPL) at layer 3, and we
present two particular UDP-based message propagation strategies
that take advantage of the RPL protocol at layer 3. We evaluate
the performance of the proposed solutions through Contiki/Cooja
simulations and on a real testbed, using the open and large scale
FIT IoT-LAB.

Index Terms—Naming and addressing, resource-constrained
networks.

I. INTRODUCTION

WE PROPOSE a novel approach to naming and ser-
vice discovery in resource-constrained wireless sen-

sor networks (WSNs), denoted as DIstributed NAming
Service (DINAS). This paper extends our previous work [1]
with the following additional contributions.

1) Improved description of the DINAS approach.
2) Introduction of a new binding propagation scheme called

Routing Protocol for Low-Power and Lossy Networks
(RPL)-DHT.

3) Extensive evaluation carried out with a hybrid simula-
tion/emulation approach and also on a real testbed, using

Manuscript received May 9, 2016; revised August 17, 2016 and October 31,
2016; accepted November 30, 2016. Date of publication December 15, 2016;
date of current version June 15, 2017. The work of O. Alphand, F. Rousseau,
and A. Duda was supported in part by the European Commission FP7 Project
CALIPSO under Contract 288879 and in part by the French National Research
Agency Project IRIS under Contract ANR-11-INFR-016. The work of G.
Ferrari was supported by the European Commission FP7 Project CALIPSO
under Contract 288879.

M. Amoretti and G. Ferrari are with the Department of Information
Engineering, University of Parma, 43124 Parma, Italy (e-mail:
michele.amoretti@unipr.it; gianluigi.ferrari@unipr.it).

O. Alphand, F. Rousseau, and A. Duda are with the Grenoble Informatics
Laboratory, University of Grenoble, 38041 Grenoble, France (e-mail:
olivier.alphand@imag.fr; franck.rousseau@imag.fr; andrzej.duda@imag.fr).

Digital Object Identifier 10.1109/JIOT.2016.2640317

several topologies with different sizes, as well as a larger
number of performance indicators.

4) Extended discussion of related work with a comparative
perspective with respect to DINAS.

The development of tiny IP stacks, such as Contiki
uIPv6 [2], has allowed the integration of everyday objects,
sensors, and actuators within the Internet, which enables direct
Internet access to such resource-constrained devices. Border
routers allow routing between smart objects or sensor net-
works and traditional IP networks by providing end-to-end IP
connectivity. On top of IP connectivity, the Internet of Things
(IoT) requires standardized and highly scalable schemes to
discover the names of smart objects and also the services that
they may offer. Names are necessary to denote things (nodes,
networks, data, services, etc.). They may be human-readable
or only suitable for machine-to-machine communications: as
names, they need to be globally or locally unique; but, as
services, we may accept that several nodes provide the same
resources and, therefore, have similar names.

The problems that have motivated this paper are as follows.
1) How to effectively and efficiently represent names

within an IPv6-based WSN or in an IPv6-based network
including several WSNs.

2) How to efficiently publish/lookup names within the
networks or outside of them.

Besides solving the basic naming problem, our scheme also
provides a new means for service discovery in sensor networks
in which an efficient and scalable solution is still lacking.

The traditional Domain Name System (DNS) approach
requires that a DNS server, placed at the border router, stores
all bindings and replies to all name resolution queries. Such
operations may result in a large overhead and excessive energy
consumption. The centralized resource directory1 proposed by
the IETF CoRE Working Group suffers from the same limi-
tations. The interest on a distributed service comes from the
constraints of sensor networks. In many cases, information
exchange among co-located sensors is sufficient and there
is no need to interact with the sink (e.g., the control of
air-conditioning, in which actuators consume temperatures pub-
lished by neighboring sensors). In many cases, moreover, nodes
may want to discover services offered in the network through

1[Online]. Available: http://tools.ietf.org/html/draft-ietf-core-resource-
directory-01

2327-4662 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

AMORETTI et al.: DINAS: LIGHTWEIGHT AND EFFICIENT DINAS FOR ALL-IP WSNs 671

a naming service in a way similar to mDNS/Bonjour [3], [4].
Our approach enables such extensions.

DINAS is based on three “pillars.”
1) Bloom filters (BFs) to create compact names from node

and service descriptions.
2) A strategy for propagation of name-address bindings and

queries within the network.
3) Caches, based on name similarity, to distribute name

storage all over the network (instead of concentrating
them at the border router).

Once a node has created its name as a BF, it propa-
gates the information about the name-address binding to other
nodes. The strategy for their propagation and caching policy in
DINAS is that, upon reception of a name notification, a node
decides whether to store the name and where to propagate it
according to the content of the local cache. The strategy leads
to grouping similar names—i.e., similar names are stored at
the same nodes. Moreover, a node chooses the next hop based
on the similarity of a name to be propagated to the names
already stored in its local cache. Name requests (which are
not stored) propagate in the network according to the same
principle. In this paper, we also specialize the general propa-
gation strategy to the case in which the network already builds
its routing structure as a destination-oriented directed acyclic
graph (DODAG) with RPL.2 In this case, name propagation
takes advantage of the network topology structure: each node
sends its name binding to its parent, which, in turn, propagates
it up the DODAG to the root node that sends the binding fur-
ther down to a proper subgraph. Intermediate nodes on the
propagation path store the binding in a cache so that they can
resolve a given name. Name propagation is limited in depth so
that only a portion of the nodes stores the binding: in partic-
ular, such nodes are placed at strategic points in the network,
reachable in a few hops from any node.

This paper is organized as follows. In Section II, we describe
the principles of DINAS. In Section III, we evaluate its
performance, using its current implementation within Contiki.
We discuss the related work in Section IV. Finally, we con-
clude this paper with an overview of future research directions
in Section V.

II. PRINCIPLES OF DINAS

With DINAS, a node joining the network creates its name by
encoding its descriptor (including the list of features, services,
and the information that the node may provide) in a BF of a
given size [5], [6]. DINAS handles the binding between a name
and its IPv6 address so that nodes can resolve a name to obtain
the address. To improve efficiency and distribute bindings over
the network, nodes maintain caches of name-address bindings
based on name similarity.

A. From Descriptors to Names

More formally, the construction of a node name starts with a
m-bit BF B filled with zeros. Let KW = {kw1, kw2, . . . , kwn}
be a set of keywords associated with the node (the set

2[Online]. Available: http://tools.ietf.org/html/rfc6550

Fig. 1. Mapping keywords to a flat name with an m-bit BF.

of its characteristics, service descriptions) and let H =
{h1, h2, . . . , hk} be a set of hash functions, where hj : KW →
{0, m − 1}. The name of the node is built as follows:
B[hj(kwi)] ⇐ 1,∀kwi ∈ KW,∀hj ∈ H. In other words, for
every keyword kwi, we set to 1 the BF’s bits corresponding
to the results of k hash functions computed on the keywords,
as shown in Fig. 1. We assume that the names are unique,
because we can always add a unique identifier as a keyword
when filling a BF.

We have used the basic BF because of the sensor node con-
straints: it is not easy (or even possible) to implement complex
data structures on constrained devices like TMote Sky. To limit
the memory usage, even the code must be as compact as pos-
sible. Enhanced versions of the BF such as compressed BFs
can only slightly reduce the size of the filter while introducing
some computational overhead [7].

To find if keyword kwx is within the set of keywords
encoded in a given BF B, we check the bits at positions
h1(kwx), h2(kwx), . . . , hm(kwx). If one of them is 0, then
kwx is not in the set represented by B. Otherwise, we con-
jecture that kwx is in the set. There is a probability of a “false
positive” or, for historical reasons, a “false drop” if all bit
positions are set to 1 and keyword kwx is not in the set. We
can choose parameters k and m so that the probability of this
case is sufficiently low.

After inserting n keywords into a BF of size m, the
probability that a particular bit is still 0 is the following:

p =
(

1 − 1

m

)kn

. (1)

Hence, the probability of a false positive is

pf + = (1 − p)k ≈
(

1 − e−kn/m
)k

. (2)

Since k must be nonnegative integer, the right hand side of (2)
is minimized for [6]

k =
⌊m

n
ln 2

⌋
. (3)

In practice, one may choose a value lower than the optimal one
to reduce computational overhead. For instance, if we want
to describe each node with up to n = 10 keywords, with
m = 160 and k = 11, the probability of false positives would
be pf + = 4.5 · 10−4.

672 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 3, JUNE 2017

We define similarity between BFs A and B as the number
of bit positions with the same value, that is,

m∑
i=1

Ai ⊕ Bi.

Names in form of a BF allow aggregation of several key-
words in one name, whereas other protocols may need an entry
for each keyword. A request for a name resolution is also
encoded as a m-bit BF so that the name resolution process
consists of searching for names that match the request. The
scheme also supports the resolution of subsets of names. For
example, if we need to find the nodes that deliver the tem-
perature of all rooms in a building, we can make a request
for a BF created from “temperature” and the building name
keywords such as

{data:Temperature; location:EnsimagBuilding;}.

B. Message Types

To maintain name-address bindings in the network and
resolve names, DINAS defines four types of messages: 1) noti-
fication; 2) request; 3) reply; and 4) neighbor announcement.
A notification contains a name-address binding: the BF name
of a node and its IP address. A request includes the BF cor-
responding to the name to be resolved and the IP address
of the node that tries to resolve the name. A reply pro-
vides the requested binding: the name and the associated IP
address. Neighbor announcements are like notifications, but,
once received by the direct neighbors of the notifier, they do
not have to be further propagated. Notifications and requests
also contain a supplementary field, denoted as D, whose role
depends on the binding propagation strategy.

C. Similarity Cache

Nodes store name-address bindings in a similarity cache
having the following structure.

1) Name: BF (m bits).
2) IP address corresponding to the name.
3) Similarity next-hop.
4) Timestamp.
The similarity next-hop is the IP address of the neighbor

that has provided the name.
Upon receiving a notification, a node decides to add a name

to the cache based on similarity—it adds the name if similarity
of the name with the cached names exceeds threshold T1 ∈
{1%, 2%, . . . , 100%} (similarity expressed as a percentage).
If the cache is empty, the name is added unconditionally. If
there is already the name in the cache, the node updates the
timestamp. If the cache is full, the name will replace the oldest
one in the cache, if the similarity exceeds a threshold T2 > T1.
In Fig. 2, the principles of similarity cache filling are shown.

D. Binding Propagation

In DINAS, nodes propagate name binding notifications in a
proactive and periodic manner within the network and some
nodes store them in similarity caches for further name res-
olution. The propagation process is selective, thus resulting

Fig. 2. Principles of similarity cache filling.

in much less overhead than flooding, but, as a consequence,
not all nodes are aware of all names. Therefore, name reso-
lution requires propagation of name requests to find a node
that stores a given name in its cache and can reply with the
desired information. We limit the propagation of name requests
to several hops to reduce overhead. Upon reception of a reply,
nodes may store it in their caches to reinforce the distributed
name resolution process: in fact, this name will appear in an
increasing number of nodes. In this way, the most popular (i.e.,
requested) names are also the most replicated ones. To avoid
inconsistencies, due to nodes joining/leaving or any topology
changes, names are cached as soft states and, therefore, need
to be refreshed periodically for maintenance.

Such a general binding propagation principle can be special-
ized in several different ways. One approach is L3-agnostic,
with each node relying only on L2-based neighborhood infor-
mation to decide where to propagate the message when its
cache is still empty (i.e., the node does not know remote nodes
other than its L2 neighbors). In the second approach, nodes
may only rely on the information available at the application
layer and are both L3- and L2-agnostic. Such an approach
implies that, at startup, each node has to know in advance (or
obtain from a known source) a limited number of other nodes.
The third approach is L2-agnostic, but takes advantage of L3-
specific information. In Sections II-E and II-F, we describe
two binding propagation schemes for DINAS that follow the
third approach.

E. RPL-UpDown

Assuming that each node runs RPL and knows the addresses
of its preferred parent and children in the RPL DODAG,
we propose an RPL-aware binding propagation protocol for
DINAS denoted as RPL-UpDown. Fig. 3 illustrates the oper-
ational principle of RPL-UpDown.

After having joined the network and selected its preferred
parent in the DODAG, a node starts periodically publishing
its name, through a notification sent toward the DODAG root.
The root then propagates the notification downward to a node
chosen on the basis of the similarity of cached names.

More precisely, a node forwards the name notification to the
neighbor from which it has received the most similar name to
the one being notified. Fig. 4 shows an example in which
node A sends a request for “00000100” to node B, instead of

AMORETTI et al.: DINAS: LIGHTWEIGHT AND EFFICIENT DINAS FOR ALL-IP WSNs 673

Fig. 3. RPL-UpDown propagation scheme for DINAS.

Fig. 4. Example of name resolution in RPL-UpDown.

C, because, according to the contents of A’s cache, B previ-
ously provided the most similar name (“00000101” associated
with node E). As the cache aggregates similar names, node B
has also name “00000100” in its cache, provided by node D.
Thus, node B sends a reply to node A with the requested
binding (00000100, D) and A updates consequently its
cache.

The consequence of the propagation is that DINAS becomes
more and more effective for increasing number of propagated
names, because caches become more and more name-specific.
Thus, a name notification and the related requests are for-
warded toward the same node.

The notification propagates further on for D hops. Periodic
name publication supports the name resolution process,
as not requested names may disappear from the network,
because of the content replacement policy for the cache. The
RPL-UpDown scheme also caches replies, always respecting
the similarity principles illustrated in Fig. 2.

The propagation of name resolution requests follows the
same approach. When a node receives a name resolution
request, it first checks if its name matches: if this is the case,
the node sends a reply to the request issuer by providing its
address in the name binding. Otherwise, the node checks its
cache to find the name: if it does not have the binding, it
propagates further the request.

As RPL-UpDown takes advantage of the DODAG struc-
ture built by RPL, it does not require to build and maintain
its own overlay topology for name propagation and request
resolution.

F. RPL-DHT

Another strategy is RPL-DHT,3 whose principle is illus-
trated in Fig. 5. The upward propagation (up to the root) is
similar to RPL-UpDown, but the root then propagates the noti-
fication downward to the child whose name is the most similar
to the one to be published. The name is then further propa-
gated downward in the DODAG, always applying the same
principle.

The propagation stops at a node that does not have a
neighbor with a name closer than its own to the name to
be published. If the DODAG topology does not change over
time, it is sufficient to store the name at the final destina-
tion, i.e., the last node that receives the name.4 Otherwise,
it is prudent to store the name also along the notifica-
tion path (excluding the DODAG root, which is crossed by
all paths), using the similarity cache approach described in
Section II-C. Another obvious approach to face possible topol-
ogy modifications is to periodically repeat the notification
process.

The propagation of a name resolution request follows the
same principle of a notification until it reaches the searched
node or the final node in charge of the name resolution.

Like RPL-UpDown, RPL-DHT also takes advantage of the
DODAG structure built by RPL, but it does not require to build
and maintain its own overlay topology for name propagation
and resolution. However, in RPL-DHT, message forwarding
is only based on topological and naming considerations, not
taking into account the content of the similarity cache.

III. PERFORMANCE EVALUATION

We have implemented DINAS in C on Contiki v2.7.5 The
developed code is available on GitHub.6 The evaluation has
been carried out with a hybrid simulation/emulation approach
using Cooja to run the real code on emulated TMote Sky7

devices in several different network topologies. Simulations
have been executed on a server provided with 2 Intel Xeon
Processors E5-2640 v3 at 2.60 GHz, 64GB of RAM and
Ubuntu operating system. Every simulation has been executed
ten times (using different seeds of the Cooja random number
generator). By averaging over the obtained values, we drew
the performance figures presented below. Moreover, DINAS
has been also evaluated on a real testbed, as described in
Section III-C.

In the considered scenarios, we have used ContikiMAC at
layer 2 and IPv6 and RPL at layer 3. Nodes are organized
in a DODAG, one of them (denoted as node 1) being the
DODAG root. As mentioned above, all nodes are configured as
TMote Sky. We also use the unit disk graph medium distance
loss model with transmission range 100 m, interference range
120 m, and RX and TX success ratios set to 1. These assump-
tions mean that single-link (point-to-point) transmissions are

3DHT stands for Distributed Hash Table.
4At the final destination, the name is stored independently of its similarity

with the names already stored in the cache.
5[Online]. Available:http://www.contiki-os.org/start.html
6[Online]. Available:https://github.com/ardarico/contiki/tree/dinas
7[Online]. Available:http://www.snm.ethz.ch/Projects/TmoteSky

674 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 3, JUNE 2017

Fig. 5. RPL-DHT propagation scheme for DINAS: name notification (left) and lookup (right).

perfect, but collisions are always possible (with Cooja and
Contiki, the whole stack is simulated/emulated including col-
lisions/interference at the PHY/MAC layer). In particular,
collisions are more likely at the sink and this is exacerbated in
the centralized approach, where all messages are sent to the
sink. The decentralized approach is less affected, especially
when the maximum cache size C increases.

All nodes run two processes: one to generate and send
DINAS notifications and requests and the other one to handle
incoming messages. Each node builds its own name as a BF
with m = 40 bits and k = 7 hash functions—these are the
optimal parameters for a node description with n = 4 key-
words (leading to pf + = 8 · 10−3). More specifically, such a
BF is filled with the following keywords.

1) networkService:_dinas._udp.local.
2) application:TemperatureMonitoring or

application:CO2Monitoring.
3) space:Floor1 or space:Floor2.
4) space:Room-loc, where loc is an integer in the set

{1, . . . , N}, where N is the number of nodes.
Each room has its own specific loc value. The application
associated with the node is: temperature monitoring, if loc is
even; CO2 monitoring, if loc is odd. The floor is: 1 if loc ≤
N/2; 2 if loc > N/2. In this way, we ensure that names are
unique and sufficiently diversified. Moreover, it is possible to
generate requests for names that exist for sure, allowing to
measure the percentage of request hits in a consistent way.

The payload (i.e., the DINAS message) is 23 byte long:
5 bytes for the BF name, 16 bytes for the IPv6 address of the
message issuer, 1 byte for configuration purposes (including
the value of D), and 1 byte for the associated request number
(used when the message is a reply, for performance mea-
surement purposes). The actual DINAS implementation uses a
payload of 24 bytes, because of the C struct padding. Such a
payload size is very small with respect to the mDNS ADMC
enhanced messages that are 82 byte long [3]. In theory, the
payload limit to avoid fragmentation is 127 − 38 = 89 bytes,
where 38 is obtained as the sum of: 6 bytes for the PHY
layer, 23 bytes for the 802.15.4 header (with checksum), and
9 bytes for 6LoWPAN compressed header, plus IPv6 and UDP.

The total message size in the DINAS scenarios presented in
this section is 38 + 24 = 62 bytes.

A node publishes its name every T (dimension: [min]) with
a notification message. In between, a node sends a request
every τ min for a randomly generated name (among those that
are possible and excluding its own name). A node sends M
messages, of which
τM/T� are notifications and M−
τM/T�
are requests. T has a low impact on the hit ratio (HR) as
the network is static. In our tests: T = 20 min, τ = 2 min,
and M = 20 messages. Therefore, two notifications and 18
requests are sent by each node over a simulated period of about
40 min. Other tunable parameters are: C (i.e., the number
of items that can be stored in the cache), D (i.e., in RPL-
UpDown, the number of hops from the DODAG root), the
cache thresholds T1 and T2 (defined in Section II-C). In the
following, when we set values for C and D, we do not specify
their units of measure to simplify the notation. All nodes store
replies in the cache with the exception of the DODAG root
(because its cache is targeted by all the notifications, which
completely fill it). Once a name has been found by a node
in its cache, the request is not forwarded, thus saving band-
width and energy. Such a rule applies to this specific scenario,
where requests target full names and no name is equal to
another one.

We consider the following performance indicators.
1) HR: The percentage of name hits with respect to sent

requests.
2) Local HR (LHR): The percentage of locally fulfilled

requests with respect to the total number of hits.
3) Average Response Time (ART): The average time

between a request and the corresponding reply (taking
into account only the requests for which there is a reply).

4) Total Traffic (TT): The total number of “send()” opera-
tions for notifications and requests executed by the nodes
in the network.

5) Average Cache Occupation (ACO): The average number
of cached bindings per node.

6) Max Cache Occupation (MCO): The maximum number
of cached bindings per node.

All indicators are averaged across all the nodes in the network.

AMORETTI et al.: DINAS: LIGHTWEIGHT AND EFFICIENT DINAS FOR ALL-IP WSNs 675

Fig. 6. Example DODAG with N = 20 nodes and Rmax = 3.

A. Small Networks

In the initial evaluation, we have used networks with N = 20
nodes, occupying an area of 500×500 m. The following results
refer to a network in which the DODAG root is placed in the
middle of the area (Fig. 6). The highest rank for this network
is Rmax = 3. We have also tested cases in which the DODAG
root is located on the border of the area, thus resulting in
DODAGs with the highest rank Rmax = 6. We omit the related
results, as the only difference is that the optimal value of D for
RPL-UpDown is higher, because the DODAG rank is higher.

We have compared DINAS with RPL-UpDown to a cen-
tralized solution in which the DODAG root acts as a unique
name service. Thus, the DODAG root has a cache sufficiently
large (of size C ≥ N − 1, to store the names of all other
nodes). Communications between the DODAG root and the
other nodes are only direct UDP unicasts. Notifications and
requests can only be processed by the DODAG root, which
is the only node able to send replies—as it is the only node
that performs name caching. TT of the centralized solution can
be analytically computed given the topology of the DODAG.
Indeed, if the node rank is R, each notification and request to
the DODAG root will cause R send() executions. We use the
following equation:

TT = M
Rmax∑
i=1

i · Ni (4)

where Rmax is the highest rank in the DODAG and Ni is the
number of nodes with rank i. For the DODAG in Fig. 6, where
Rmax = 3, N1 = 4, N2 = 7, N3 = 8, since M = 20, it follows
that TT = 840.

Another important aspect to investigate is how caches are
filled. We analyzed the distribution of node names and the
self-similarity of each cache, after a simulated time sufficiently
long to guarantee that the caches are filled and their content
is almost “stable”—we refer to this situation as the “steady-
state.” Self-similarity is a measure of how much the names
stored in one cache are similar. Cached names can be seen as
a binary matrix. If the ith column has 70% of 0s and 30% of 1s,
then the partial self-similarity index of the ith column (denoted
as PSSIi) is 0.7. The self-similarity index (SSI) is computed as

TABLE I
DINAS WITH RPL-UPDOWN: HR AND ACO AS A

FUNCTION OF (T1, T2), WHEN (C, D) = (9, 2)

Fig. 7. DINAS with RPL-UpDown: HR as a function of C, with T1 = 30
and T2 = 90. Various values of D are considered.

the arithmetic average of the PSSIs. It is not possible to have
SSI = 1, as the cache cannot contain copies of the same name
(it could happen only if there were nonunique node names,
but this is not the case of the simulated scenarios).

Table I shows HR as a function of T1 and T2, when
(C, D) = (9, 2). The reader can observe that, among the tested
configurations, those with (T1 < 70, T2 ≥ T1) lead to the same
values of HR. When T1 is too high, it is difficult to fill the
cache. If a cache is not filled, T2 is non influential and, of
course, name replication is reduced: hence, HR reduces. In the
remainder of this section, the (T1, T2) = (30, 90) configuration
is assumed.

Fig. 7 shows HR as a function of C, considering various
values of D. The best result (HR = 99.16%) is given by
the configuration with C = 11 and D = 3. It is compara-
ble with the performance result of the centralized solution
(HR = 99.41%).

In Figs. 8 and 9, TT and ART are shown as functions of C,
respectively. In both figures, various values of D are consid-
ered. The obtained results show that the centralized solution
can be easily outperformed, in terms of TT and ART , by
DINAS. The best configuration of DINAS appears to be the
one with C = 11 and D = 3, leading to TT = 565 send()
operations and ART = 314 ms. TT and ART of the central-
ized solution are higher, i.e., 840 send() operations and 368
ms, respectively. Having a large cache has pros and cons: it
allows to reduce messaging, as the probability of already hav-
ing the information in the local cache increases, but it requires
more memory resources.

In Fig. 10, LHR is shown as a function of C, considering
various values of D. As expected, the larger the cache, the
higher the percentage of locally fulfilled requests, which

676 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 3, JUNE 2017

Fig. 8. DINAS with RPL-UpDown: TT as a function of C, with T1 = 30
and T2 = 90. Various values of D are considered.

Fig. 9. DINAS with RPL-UpDown: ART as a function of C, with T1 = 30
and T2 = 90. Various values of D are considered.

Fig. 10. DINAS with RPL-UpDown: LHR as a function of C, with T1 = 30
and T2 = 90. Various values of D are considered.

becomes more evident when D increases. The similarity
caching policy prevents the cache from being filled with
all names even if the cache is sufficiently large to contain
all names. Therefore, increasing C does not imply to have
LHR → 100%.

Fig. 11 presents the numbers of cached replicas of a given
name across the nodes. The proposed graphs refer to the
(C, D) = (9, 2) configuration, comparing (T1, T2) = (30, 90)

Fig. 11. DINAS with RPL-UpDown: Steady-state name distribution in
caches, with (C, D) = (9, 2), comparing (T1, T2) = (30, 90) with (T1, T2) =
(90, 90).

Fig. 12. DINAS with RPL-UpDown, N = 20: steady-state SSI of the
caches, with (C, D) = (9, 2), comparing (T1, T2) = (30, 90) with (T1, T2) =
(90, 90).

with (T1, T2) = (90, 90). The results obtained show that, at
the steady state, the names are almost evenly distributed in
the caches. We recall that values are averaged over ten simu-
lation runs. It can be observed that, as expected, when T1 is
too large, it is hard to completely fill the caches.

Fig. 12 shows the SSIs across the nodes. As in Fig. 11,
the proposed graphs refer to the (C, D) = (9, 2) configura-
tion, comparing (T1, T2) = (30, 90) with (T1, T2) = (90, 90).
Our results show that, once in the steady state, the SSI is
high (above 0.8) for all caches. As expected, when T1 = 90,
SSI is higher—caches are less filled, but cached names are
more similar to each other. However, less filled caches lead
to a performance degradation with respect to the case with
completely filled ones (as shown in Table I).

For DINAS with RPL-DHT, HR = 100% is always guar-
anteed (if the topology is stable, which is the case we are
considering), with ACO = 3.73. The best configurations of
RPL-UpDown and RPL-DHT are compared in Table II. We
have studied RPL-DHT without and with redundancy: in the
former case, names are stored at the destination node only; in
the latter case (denoted as RPL-DHT-R for simplicity), names
are stored all along the notification path with the exclusion of

AMORETTI et al.: DINAS: LIGHTWEIGHT AND EFFICIENT DINAS FOR ALL-IP WSNs 677

TABLE II
COMPARISON BETWEEN THE BEST RPL-UPDOWN AND RPL-DHT CONFIGURATIONS, WHEN N = 20. RPL-UPDOWN IS WITH

(C, D) = (11, 3) AND (T1, T2) = (30, 90). RPL-DHT-R MEANS RPL-DHT WITH REDUNDANCY, I.E., NAMES ARE

CACHED ALONG THE NOTIFICATION PATH, WITH (T1, T2) = (60, 90)

TABLE III
SUMMARY (IN TERMS OF ASYMPTOTIC BEHAVIORS) OF THE

PERFORMANCE RESULTS ILLUSTRATED IN FIGS. 13–17

the sink unless it is the final destination for the name. Indeed,
as the sink is traversed by all notification paths, its cache would
be completely filled very quickly, leading to the possible over-
writing of names it would be the only one responsible for. For
both RPL-UpDown and RPL-DHT, we set (T1, T2) = (30, 90).
Instead, for RPL-DHT-R, we set (T1, T2) = (60, 90), to reduce
unnecessary cache filling. The reader can observe that RPL-
UpDown has a much higher ACO value, but also lower TT and
ART values (because of the higher LHR value). Therefore, if
the memory is not a constraint, RPL-UpDown is to be pre-
ferred to RPL-DHT and RPL-DHT-R. Otherwise, RPL-DHT
is the best choice, providing HR = 100% with considerably
reduced memory requirements.

B. Large Networks

Both RPL-UpDown and RPL-DHT strategies have been
tested in networks with increasing number of nodes, namely:
50, 100, 200, and 400. Tables IV–VII illustrate the best
performance of the strategies, considering stable networks. In
this case as well, we consider RPL-DHT without and with
redundancy. Regarding RPL-UpDown, we have observed that,
when N increases, if there is a constraint on the similarity
cache (i.e., T1 > 0, meaning that not all items will be cached),
then MCO converges to a value lower than C. As a conse-
quence, HR decreases when N increases, as the caches are not
fully exploited. Instead, if T1 = 0, MCO becomes equal to C
and HR has acceptable values (∼99%), provided that C and
τ are suitably large. The performance of RPL-DHT, instead,
is only affected by τ . It is worth noting that, regarding RPL-
UpDown, C = 70 was the maximum reachable limit with
TMote Sky devices. With larger values of C, the performance
of RPL-UpDown, with N ≥ 200 nodes, in terms of HR, would
certainly be better. However, most names would be cached
by the sink and the benefit, with respect to the centralized
solution, would not be obvious. With RPL-DHT-R, instead,
the maximum limit for the cache size is C = 60 for TMote
Sky devices: such a cache size is not sufficient to guaran-
tee HR = 100%. With N = 400, τ = 2 min, the request
frequency is too high, considering that the requests are all
driven toward the sink, regardless of the strategy. With τ = 4

Fig. 13. RPL-UpDown and RPL-DHT: HR versus N.

Fig. 14. RPL-UpDown and RPL-DHT: MCO versus N.

min, the performance of RPL-DHT is acceptable (HR ∼ 95%).
In Figs. 13–17, the performance, in terms of HR, MCO, ACO,
ART , and TT as functions of N (with τ = 2 and C = 70), is
investigated considering different strategies and configurations.
The results, in terms of asymptotic behaviors of the consid-
ered performance metrics, are summarized in Table III. It can
be concluded that the most “critical” performance metrics are
HR and TT .

We have also studied the behavior of the considered strate-
gies, in the presence of a failure probability pfail > 0
at each node. In Fig. 18, we show how HR is affected
by increasing values of pfail, considering the RPL-UpDown
and RPL-DHT-R configurations that guarantee the best
performance. As expected, RPL-UpDown appears to be more
robust than RPL-DHT-R.

In Fig. 19, we compare the distributions of cache sizes,
still considering the best RPL-UpDown and RPL-DHT-R

678 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 3, JUNE 2017

TABLE IV
COMPARISON BETWEEN THE BEST RPL-UPDOWN AND RPL-DHT CONFIGURATIONS, WHEN N = 50. RPL-UPDOWN

IS WITH (C, D) = (30, 5) AND (T1, T2) = (30, 90). RPL-DHT-R IS WITH (T1, T2) = (60, 90)

TABLE V
COMPARISON BETWEEN THE BEST RPL-UPDOWN AND RPL-DHT CONFIGURATIONS, WHEN N = 100. RPL-UPDOWN

IS WITH (C, D) = (50, 15) AND (T1, T2) = (0, 90). RPL-DHT-R IS WITH (T1, T2) = (60, 90)

TABLE VI
COMPARISON BETWEEN THE BEST RPL-UPDOWN AND RPL-DHT CONFIGURATIONS, WHEN N = 200. RPL-UPDOWN

IS WITH (C, D) = (70, 15) AND (T1, T2) = (0, 90). RPL-DHT-R IS WITH (T1, T2) = (60, 90)

TABLE VII
COMPARISON BETWEEN THE BEST RPL-UPDOWN AND RPL-DHT CONFIGURATIONS, WHEN N = 400. RPL-UPDOWN

IS WITH (C, D) = (70, 15) AND (T1, T2) = (0, 90). RPL-DHT-R IS WITH (T1, T2) = (60, 90)

Fig. 15. RPL-UpDown and RPL-DHT: ACO versus N.

configurations. We observe that in RPL-DHT-R the majority of
nodes cache a few items. In RPL-UpDown, instead, the distri-
bution is Gaussian-like and some nodes, namely the DODAG
root and its children, have full caches.

In conclusion, the DODAG size should take into account
the characteristics of the devices. With TMote Sky devices,
the ideal DODAG size is between N = 100 and N = 200.
If the network is not affected by node failures, RPL-DHT
is the best solution in terms of memory occupation, at the
expense of higher ART and TT . RPL-UpDown is more robust
to node failures and more efficient in terms of ART and TT ,

Fig. 16. RPL-UpDown and RPL-DHT: ART versus N.

as caches are better exploited (at the expense of higher ACO).
RPL-DHT-R is an interesting tradeoff between RPL-DHT and
RPL-UpDown.

C. Testbed Evaluation

In this section, we describe the experimental performance
evaluation carried out at the open and large scale FIT IoT-
LAB8 infrastructure spread across different sites in France.

8[Online]. Available: https://www.iot-lab.info

AMORETTI et al.: DINAS: LIGHTWEIGHT AND EFFICIENT DINAS FOR ALL-IP WSNs 679

Fig. 17. RPL-UpDown and RPL-DHT: TT versus N.

Fig. 18. RPL-UpDown and RPL-DHT: HR versus pfail.

Fig. 19. RPL-UpDown and RPL-DHT: cache distribution (case N = 100).

The main motivation behind real experiments is to comple-
ment simulation results by observing how DINAS behaves in
a realistic dynamic radio environment and how it copes with
the resulting RPL topology changes. We use two different
testbeds, one in Strasbourg and another one in Lille, to benefit
from their heterogeneity in terms of physical topology and
radio environment. While the original DINAS code could
only run on TMote Sky nodes, since COOJA only emulates
this platform, the code was then adapted to run on M3 Open

TABLE VIII
IOT-LAB EXPERIMENT PARAMETERS

Nodes9 (ARM Cortex M3 with 64 KB RAM and 802.15.4
ATMEL radio), which are the most up-to-date devices
deployed on IoT-LAB. Considering that Contiki v2.7 for M3
nodes was already made available by the IoT-LAB team10 and
that DINAS runs at the application layer, only a few adjust-
ments were necessary to port the code. Most of the efforts
were focused on automating experiments and getting as close
as possible to previous COOJA topologies by tuning radio
parameters and choosing relevant nodes to avoid too unstable
RPL DODAGs. The IoT-LAB DINAS code is available at
https://github.com/bobib22/{contiki-iotlab-dinas,iot-lab-dinas}
for possible reproduction of the experiments. The repository
also contains the logs of the detailed experimental results as
well as the involved nodes and their radio configurations.

Table VIII summarizes the most characteristic parameters
of our experiments. To investigate multihop topologies, we
have changed the default radio transmission power and packet
reception RSSI. Table IX presents the detailed results obtained
by averaging over 40 experiments for each DINAS propaga-
tion strategy and for each site. The traffic pattern is similar to
the one used in COOJA simulations, except for the message
period reduced to 10 s, which allows one to run a signifi-
cant number of experiments in an acceptable time while, at
the same time, testing the robustness of DINAS in more strict
traffic conditions. Therefore, in addition to the time required
by nodes to boot and to be integrated in the RPL DODAG,
the experiment duration drops from 40 min (simulated time)
in COOJA to 6 min (real time) on IoT-LAB.

In Fig. 20, we show tw illustrative topologies formed dur-
ing real experiments (the one on the left in Strasburg and the
one on the right in Lille). The figure provides insights on the
dynamically formed network topologies during such exper-
iments and to which extent these topologies compare with
those generated by COOJA. The DODAGs shown in Fig. 20
are obtained by overlapping all the DODAGs formed during
the experiment. Therefore, each edge refers to a topological
change either due to a (local or global) DODAG repair or to a
change of a preferred parent advertising a better rank (accord-
ing to the ETX metric). Despite being incomplete (i.e., no
details about link duration or potential disconnection from the
parent), the illustrative representation in Fig. 20 shows, for

9[Online]. Available: https://www.iot-lab.info/hardware/m3/
10[Online]. Available: https://github.com/iot-lab/contiki

680 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 3, JUNE 2017

Fig. 20. DODAGs formed during two illustrative experiments: one on the Strasbourg platform (left) and the other one on the Lille platform (right).

TABLE IX
IOT-LAB EXPERIMENTAL RESULTS WITH N = 20

TABLE X
DETAILED EXPERIMENTAL STATISTICAL CHARACTERIZATION OF PACKET LOSSES FOR N = 30 (IOT-LAB STRASBOURG TESTBED)

instance, that node 115 in the Lille testbed has experienced
three topological changes (the preferred parent is either nodes
11 or 141) during the 6-min experiment—for the sake of clar-
ity, we have chosen to display topologies among the most
stable ones observed. The number of global repairs in Lille
experiments ranges from 0 to 6, with an average (over all the
experiments) number of global repairs per experiment equal
to 3.64.

Considering the metrics ACO, LHR, ART , and TT , the
experimental results, shown in Table IX, are comparable to
the results obtained with COOJA (Table II). The slight dif-
ferences can be explained by the differences in the involved
topologies. Considering, for example, the ART metric, it can
be seen that, in both cases, it is an increasing function of the
average path length of the topology.

The main difference between simulations and experiments,
for 20-node topologies, is observed in terms of HR. Despite
a performance degradation in real experiments with respect to
simulations, DINAS scales well since it still has high values
of HR (over 94%) except for the RPL-DHT experiments on
the Lille platform, where HR drops to approximately 89%.

This performance degradation comes from the increase of
DINAS traffic (in the experiments, each node generates one
message every 10 s instead of one message per minute) and
more realistic radio interference conditions (with respect to
the UDG distance loss model assumed in simulations) that
lead to a larger number of collisions and, thus, to a larger
number of packet drops, which in turn, creates topology
instabilities.

We have run further experiments in harsher conditions (i.e.,
with higher spatial node density and a larger number of nodes)
on the Strasbourg platform to get more insights into the con-
sidered name propagation performance. Table X presents a
detailed statistical characterization of the packet losses and
their distribution at each layer. Resolved requests (unlike HR)
is a parameter corresponding to the percentage of requests for
which a response is returned to the requester. The causes of
unresolved requests can be outlined as follows, in order of the
decreasing relevance.

1) At layer 2 (L2−dropped frames): Drop of frames at the
MAC layer.

2) At layer 3 (L3−no route): Route missing when sending
or relaying a notification/request/reply.

3) At layer 5 (L5 − deadend): Unresolved requests that do
not reach a node with the requested name in its cache.

We now comment in more detail on the losses layer by
layer.

First, L2-dropped frames correspond to the number of uni-
cast packets (e.g., DINAS UDP datagrams or Unicast RPL
packets like DAOs) that are dropped every time the CSMA/CA
protocol (that handles retransmissions at layer 2) reaches the
maximum number of retransmission attempts.

The L3-no route situation happens when a node wants to
send or relay a DINAS message, but the next hop of the default
route is missing. This temporary loss of a RPL parent or of a
route is related to RPL global repairs as well as to the degra-
dation of the ETX metric of the link with the preferred parent
(which leads to an unacceptable rank and parent removal).

AMORETTI et al.: DINAS: LIGHTWEIGHT AND EFFICIENT DINAS FOR ALL-IP WSNs 681

Finally, L5-deadends have different origins. First, the name
might have been overwritten or not stored in the caches along
the path followed by the requests. Second, the DINAS routing
strategy might not route the request toward the right caches.
Finally, the DINAS routing information might not be up-to-
date with respect to RPL reconfigurations.

Table X confirms that the higher traffic generated by
the DINAS propagation strategy degrades the performance.
Therefore, RPL-DHT exhibits, averaging over 40 runs, 27%
less resolved requests than RPL-UpDown. RPL-DHT also
shows 127 more drops, 30 more L3-no route losses, and 8 more
global repairs than RPL-UpDown. L5-deadends have little
influence on performance degradation and are approximately
the same in the three strategies.

DINAS packet drops happen at few nodes, especially at
those belonging to higher density regions, i.e., at the sink and
at its one-hop neighbors, where caches are fuller due to con-
verging traffic. Another factor contributing to the performance
degradation is related to global repairs triggered when incon-
sistencies are detected in the DODAG that reset the trickle
timer of all nodes and lead to a non-negligible localized
increase of signaling traffic (DIOs and DAOs) in the network.
Thanks to redundancy, RPL-UpDown and RPL-DHT-R expe-
rience less collisions (and drops) since names are resolved
earlier, when possible, in the DODAG, thus avoiding the bot-
tleneck of the sink for both requests and replies. On the
opposite, the RPL-DHT propagation scheme does not benefit
from redundancy and, therefore, is less robust in the pres-
ence of a drastic traffic increase at the sink or in more mobile
scenarios.

IV. RELATED WORK

A. Naming

Concerning the general problem of naming,
Balakrishnan et al. [8] proposed to use flat names for
network elements. Such an approach is already used to
name nodes in structured peer-to-peer (P2P) networks.
However, if flat names are not obtained from the descrip-
tions of the individuals, they are not flexible and, as a
consequence, not useful. In their seminal work about
content-centric networking (CCN), Jacobson et al. [9]
proposed a naming scheme in which names are hierarchically
structured with components encoded one by one. Such an
approach is adopted, for example, in the architecture recently
proposed by Waltari and Kangasharju [10]. However, as
Andreolini and Lancellotti [11] have shown, it is possible to
map a resource descriptor composed by several keywords to
a unique machine-readable flat name, by means of a BF. A
comparison between hierarchical and flat naming approaches
has been recently proposed by Adhatarao et al. [12], where it
is concluded that using flat names is likely to be much more
scalable. DINAS adopts this latter approach.

Intanagonwiwat et al. [13] introduced directed diffusion, a
data-centric approach to organize interest-based interactions
among nodes in WSNs. In directed diffusion, tasks are named
by a list of attribute-value pairs. A task description specifies an
interest for data matching the attributes. For this reason, task

descriptions are called “interests.” The data sent in response
to interests are also named using a similar naming scheme.
A node requests data by sending interests for named data.
Data matching the interest are then drawn down toward that
node. Intermediate nodes can cache, or transform, data and
may direct interests based on previously cached data. For
each active task, the sink periodically broadcasts an interest
message to each of its neighbors.

With respect to directed diffusion, DINAS supports archi-
tectures in which every node may act as a sink. Moreover,
DINAS does not support only interest-based interactions—
all nodes are also allowed to publish their own descriptors.
In this way, interests (which coincide with name requests, in
DINAS) can find matching node descriptors that have been
stored in the cache of an intermediate node. In other words,
to enable the interaction between the requester and the source,
it is not necessary that the request arrives at the source.
Furthermore, DINAS messages are compact, as node descrip-
tors and requests are encoded with BFs. Finally, DINAS is
application-independent. More precisely, the way requesters
and sources interact, after they find each other, is independent
of DINAS.

More recently, Yue et al. [14] introduced the DataClouds
architecture, whose basic building blocks are called commu-
nities and consist of users with common interests in data
and information. Users within the same community are well
connected in the network, so that desired data can be effi-
ciently collected, disseminated, and shared among them. Data
dissemination is achieved via community-oriented communi-
cations, where name resolution and data routing are restricted
within each community. This approach improves scalability
and is suitable to be used in conjunction with DINAS (whose
scalability limits have been analyzed in Section III-B).

DIAT [15] is a distributed architecture for IoT with a strong
emphasis on device virtualization and semantics. The virtual
object layer (VOL) plays the role of bridging the gap between
the physical and the cyber world. Moreover, the VOL enables
the communication with the devices. As VO hosting may be
decentralized, the architecture is scalable. However, as the
authors admit, not all devices may be able to run a fully
functional DIAT IoT Daemon, which includes the VOL and
other upper layers. Thus, a depreciated IoT Daemon may run
on constrained devices. With respect to DIAT’s VOL, DINAS
supports any kind of device.

Li et al. [16] have proposed an IoT middleware architec-
ture over information-centric network, based on named data
networking (NDN) [17]. Rooted in CCN, NDN changes the
semantics of network service from delivering the packet to a
given destination address to fetching data identified by a given
name. An interesting future direction for this paper is to adapt
DINAS to the NDN context.

The SPITFIRE EU project [18], [19] considered the follow-
ing technologies.

1) Constrained Application Protocol (CoAP)11 (a
lightweight RESTful transfer protocol for accessing

11[Online]. Available: http://www.ietf.org/rfc/rfc7252.txt

682 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 3, JUNE 2017

data on constrained devices) to connect sensors to the
Internet and the Web.

2) RDF,12 OWL,13 and SPARQL14 to allow machines
to discover and understand the semantics of the data
returned by the sensors.

Even though SPITFIRE’s approach is interesting, its tech-
nologies for semantic annotation and reasoning may require
important computational resources, so that scalability may
be guaranteed only if reasoning tasks are executed by cloud
computing facilities. Conversely, the CoAP protocol allows
to benefit from the advantages of HTTP, without its draw-
backs, in the context of sensor networks. CoAP keeps message
overhead as small as possible and may get rid of TCP
complexity by providing IoT-adapted interaction primitives
over UDP.

In RFID systems, there are several standards for giving
names to items. The standardization effort led by GS1 has
recently resulted in the EPC Tag Data Standard (TDS),15 also
known as GEN2 RFID TDS, which specifies the following
format for RFID tags:

urn:epc:id:scheme:component1.component2. ...
This scheme defines a uniform resource name (URN) which
uniquely specifies an item, while being location-independent.
The prefix urn:epc:id: is fixed; the scheme can be selected
among sgtin (trade item), sgln (location), gdti (document),
gsrn (service relation, e.g., loyalty card), etc.; and compo-
nents are numbers whose semantics depends on a particular
scheme—for example sgtin requires three components: one
for the company prefix, one for the item reference, and one
for the serial number.

Schmidt et al. [20] proposed to share RFID tags by
means of the Chord DHT, where resource keys are obtained
by hashing their tags. A similar approach, introduced by
Fabian et al. [21], uses the FreePastry DHT to share document
fragments (obtained by means of the Shamir secret sharing
scheme), whose keys are generated with hashing functions like
SHA-1.

B. Service Discovery

Traditional IP-based service discovery protocols, such
as Service Location Protocol16 and Universal Description,
Discovery, and Integration,17 are hardly applicable in con-
strained environments such as 6LoWPAN networks. Beside
centralized solutions, distributed directory solutions also exist,
but rely on a few very powerful nodes that are not always
available in sensor networks.

The IETF CoRE Working Group recognizes the need for
finding sensors and interacting with them without human
intervention. The most advanced one is the centralized CoAP-
based resource directory approach.18 The resource directory

12[Online]. Available: http://www.w3.org/RDF/
13[Online]. Available: http://www.w3.org/TR/owl-ref/
14[Online]. Available: http://www.w3.org/TR/sparql11-query/
15[Online]. Available: http://www.gs1.org/gsmp/kc/epcglobal/tds/
16[Online]. Available: http://tools.ietf.org/html/rfc2608
17[Online]. Available: http://www.uddi.org/pubs/uddi-v3.0.1-20031014.htm
18[Online]. Available: http://tools.ietf.org/html/draft-ietf-core-resource-

directory-01

periodically announces itself (e.g., with Zeroconf [22]) or is
discovered by sensors thanks to an anycast address or a specific
CoAP request. At startup, the nodes register to the discovered
resource directory that, in turn, polls each registered node. The
response from each node is a descriptor that includes some
information such as node ID and offered services. Finally,
the proxy adds the node descriptor to a local table. Thus,
the resource directory must be contacted to learn about other
nodes in the WSN, a possible bottleneck and a single point
of failure for the system. An IETF draft19 further discusses
the issues related to CoAP, specifies guidance on how CoAP
should be used in a group communication context, and details
an approach for using CoAP on top of IP multicast.

Regarding directory-less approaches, three categories are
considered in the literature: push, pull, and hybrid. In push
models, such as DEAPspace [23], service providers proac-
tively send service advertisements. While latency is reduced,
this approach introduces a large amount of traffic, making
it unsuitable for highly dynamic networks. In pull models,
requests issued by clients propagate across the network. From
the latency point of view, pull models are less efficient that
push models. On the other hand, pull models are more suit-
able for dynamic environments, as they generate less traffic.
Hybrid push–pull models benefit from both aforementioned
approaches. ADDER [24] is characterized by periodic adver-
tisements, which reduces latency, but generates high push
overhead. NanoSD [25] attempts to minimize packet sizes and
service descriptions, but like ADDER, it does not propose
advanced forwarding mechanisms to minimize push traffic.

In terms of interoperability, uBonjour [26] adapts traditional
mDNS and DNS-SD operations to WSNs. Despite its message
compression optimization [3], it still suffers from its original
drawbacks: heavy messages, high communication overhead,
and its need for multicast support that is not always available
or efficient in multihop WSNs.

The efficient application-layer discovery protocol
(EADP) [27] is based on the hybrid push–pull model.
It provides advanced forwarding mechanisms for advertise-
ment as well as two interesting features to minimize the push
traffic. The first one is the use of the trickle algorithm20

to exponentially increase the transmission window (during
the push phase) as long as neighboring nodes do not show
any inconsistencies among their shared data. The second
one is the systematic aggregation of service descriptions
(learned from neighboring nodes or locally owned) within
advertisements, to gather with an independent consistency
counter for each stored service that allows to only advertise
inconsistent services every transmission window. However,
the authors emphasize that EADP is not limited to a single
service description, but do not explain how long descriptions
could fit into small packets (as only around 61 bytes are left,
at application layer, in 6LoWPAN networks). Furthermore, the
use of limited flooding to discover services is not convincing
and the proposed performance evaluation does not help,

19[Online]. Available: http://tools.ietf.org/html/draft-ietf-core-
groupcomm-24

20[Online]. Available: https://tools.ietf.org/search/rfc6206

AMORETTI et al.: DINAS: LIGHTWEIGHT AND EFFICIENT DINAS FOR ALL-IP WSNs 683

because of the lack of information about the adopted routing
protocol and the network topology.

Still directory-less and based on a hybrid push–pull model,
6LoWDIS [28] is a recently proposed application layer service
discovery protocol for 6LoWPAN-based networks. 6LoWDIS
is built on CoAP/HTTP and requires the support of multicast
routing in the network layer.

DINAS is also directory-less and relies on a hybrid push-
pull model for service discovery. Its main novelties, with
respect to the state of the art, can be summarized as follows.

1) The name and the service descriptions of a node
coincide (to solve two problems—naming and service
discovery—with one protocol).

2) Push and pull forwarding are based on unicast and driven
by the content of local caches (to optimize latency and
overhead).

Finally, an interesting approach to large-scale service dis-
covery has been proposed by Cirani et al. [4]. Small IoT
networks are connected by means of IoT Gateways that par-
ticipate in a layered P2P network. Each layer is organized as
a DHT, characterized by a lookup time that is a logarithmi-
cally increasing in function of the number of peers. It is worth
noting that structured overlay networks, such as DHTs, are
affected by non-negligible maintenance overhead. Thus, IoT
Gateways can be federated in a DHT, but resource-constrained
IoT nodes cannot. The RPL-DHT binding propagation proto-
col introduced in the current paper is as effective as traditional
DHT lookup protocols (HR = 100%) but, not relying on a
structured overlay network, is less efficient in terms of the
lookup time.

V. CONCLUSION

In this paper, we have presented DINAS, a novel approach
for publishing and retrieving information about names and
services. DINAS creates names as BFs based on node or
service descriptions. We have first outlined the main princi-
ples of DINAS, then we have investigated the performance of
its Contiki implementation with a hybrid simulation/emulation
approach and also on a real testbed. Performance results are
encouraging in various scenarios, associated with different (in
shape and size) DODAGs.

Regarding future work, we would like to test alternative
message propagation schemes. One of this paper directions
consists in implementing a propagation strategy that takes
advantage of the L3 topology provided by LOADng,21 a
lightweight variant of AODV.22 Furthermore, we plan to
design an L3-agnostic propagation scheme with nodes relying
only on L2-based neighborhood information.

ACKNOWLEDGMENT

The work reflects only the authors views; the European
Community is not liable for any use that may be made of
the information contained herein.

21[Online]. Available: http://tools.ietf.org/html/draft-clausen-lln-loadng-11
22[Online]. Available: https://tools.ietf.org/html/rfc3561

REFERENCES

[1] M. Amoretti, O. Alphand, G. Ferrari, F. Rousseau, and A. Duda,
“DINAS: A distributed naming service for all-IP wireless sensor net-
works,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Istanbul,
Turkey, Apr. 2014, pp. 2781–2786.

[2] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki—A lightweight and flex-
ible operating system for tiny networked sensors,” in Proc. IEEE Conf.
Local Comput. Netw. (LCN), Tampa, FL, USA, Nov. 2004, pp. 455–462.

[3] R. Klauck and M. Kirsche, “Enhanced DNS message compression—
Optimizing mDNS/DNS-SD for the use in 6LoWPANs,” in Proc.
IEEE Int. Conf. Pervasive Comput. Commun. Workshops (PERCOM
Workshops), San Diego, CA, USA, Mar. 2013, pp. 596–601.

[4] S. Cirani et al., “A scalable and self-configuring architecture for service
discovery in the Internet of Things,” IEEE Internet Things J., vol. 1,
no. 5, pp. 508–521, Oct. 2014.

[5] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-
able wide-area Web cache sharing protocol,” IEEE/ACM Trans. Netw.,
vol. 8, no. 3, pp. 281–293, Jun. 2000.

[6] A. Broder and M. Mitzenmacher, “Network applications of Bloom
filters: A survey,” Internet Math., vol. 1, no. 4, pp. 485–509, 2004.

[7] M. Mitzenmacher, “Compressed Bloom filters,” in Proc. PODC, vol. 1.
Newport, RI, USA, 2001, pp. 144–150.

[8] H. Balakrishnan et al., “A layered naming architecture for the Internet,”
in Proc. ACM SIGCOMM, Portland, OR, USA, Aug. 2004, pp. 343–352.

[9] V. Jacobson et al., “Networking named content,” in Proc. ACM Int.
Conf. Emerg. Netw. Exp. Technol. (CoNEXT), Rome, Italy, Dec. 2009,
pp. 1–12.

[10] O. Waltari and J. Kangasharju, “Content-centric networking in the
Internet of Things,” in Proc. 13th IEEE Annu. Consum. Commun. Netw.
Conf. (CCNC), Las Vegas, NV, USA, Jan. 2016, pp. 73–78.

[11] M. Andreolini and R. Lancellotti, “A flexible and robust lookup algo-
rithm for P2P systems,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp. (IPDPS), Rome, Italy, May 2009, pp. 1–8.

[12] S. S. Adhatarao, J. Chen, M. Arumaithurai, X. Fu, and
K. K. Ramakrishnan, “Comparison of naming schema in ICN,”
in Proc. IEEE Int. Symp. Local Metropolitan Area Netw. (LANMAN),
Rome, Italy, Jun. 2016, pp. 1–6.

[13] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A
scalable and robust communication paradigm for sensor networks,” in
Proc. ACM MobiCOM, Boston, MA, USA, Aug. 2000, pp. 56–67.

[14] H. Yue, L. Guo, R. Li, H. Asaeda, and Y. Fang, “DataClouds: Enabling
community-based data-centric services over the Internet of Things,”
IEEE Internet Things J., vol. 1, no. 5, pp. 472–482, Oct. 2014.

[15] C. Sarkar et al., “DIAT: A scalable distributed architecture for IoT,”
IEEE Internet Things J., vol. 2, no. 3, pp. 230–239, Jun. 2015.

[16] S. Li et al., “IoT middleware architecture over information-centric net-
work,” in Proc. IEEE Globecom Workshops, San Diego, CA, USA,
Dec. 2015, pp. 1–7.

[17] L. Zhang et al., “Named data networking,” SIGCOMM Comput.
Commun. Rev., vol. 44, no. 3, pp. 66–73, Jul. 2014.

[18] D. Pfisterer et al., “SPITFIRE: Toward a semantic Web of Things,” IEEE
Commun. Mag., vol. 49, no. 11, pp. 40–48, Nov. 2011.

[19] E. D. Porteer, I. Moerman, and P. Demeester, “Enabling direct connec-
tivity between heterogeneous objects in the Internet of Things through a
network-service-oriented architecture,” EURASIP J. Wireless Commun.
Netw., vol. 61, no. 1, pp. 1–14, 2011.

[20] L. Schmidt, N. Mitton, D. Simplot-Ryl, R. Dagher, and R. Quilez, “DHT-
based distributed ALE engine in RFID middleware,” in Proc. IEEE
Int. Conf. RFID Technol. Appl. (RFID-TA), Sitges, Spain, Sep. 2011,
pp. 319–326.

[21] B. Fabian, T. Ermakova, and C. Muller, “SHARDIS: A privacy-enhanced
discovery service for RFID-based product information,” IEEE Trans.
Ind. Informat., vol. 8, no. 3, pp. 707–718, Aug. 2012.

[22] E. Guttman, “Autoconfiguration for IP networking: Enabling local
communication,” IEEE Internet Comput., vol. 5, no. 3, pp. 81–86,
May/Jun. 2001.

[23] M. Nidd, “Service discovery in DEAPspace,” IEEE Pers. Commun.,
vol. 8, no. 4, pp. 39–45, Aug. 2001.

[24] G. Oikonomou, I. Philips, L. Guan, and A. Grigg, “ADDER:
Probabilistic, application layer service discovery for MANETs and
hybrid wired-wireless networks,” in Proc. IEEE Conf. Commun. Netw.
Services Res. (CNSR), Ottawa, ON, Canada, May 2011, pp. 33–40.

[25] A. Kovacevic, J. Ansari, and P. Mahonen, “NanoSD: A flexible service
discovery protocol for dynamic and heterogeneous wireless sensor net-
works,” in Proc. IEEE Int. Conf. Mobile Ad Hoc Sensor Netw. (MSN),
Hangzhou, China, Dec. 2010, pp. 14–19.

684 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 3, JUNE 2017

[26] R. Klauck and M. Kirsche, “Bonjour Contiki: A case study of a DNS-
based discovery service for the Internet of Things,” in Proc. 11th
Int. Conf. Ad Hoc Netw. Wireless (ADHOC-NOW), Belgrade, Serbia,
Jul. 2012, pp. 316–329.

[27] B. Djamaa, M. Richardson, N. Aouf, and B. Walters, “Towards efficient
distributed service discovery in low-power and lossy networks,” Wireless
Netw., vol. 20, no. 8, pp. 2437–2453, 2014.

[28] K. Q. AbdelFadeel and K. Elsayed, “6LoWDIS: A lightweight service
discovery protocol for 6LoWPAN,” in Proc. IEEE Int. Conf. Commun.
Workshops (ICC), Kuala Lumpur, Malaysia, May 2016, pp. 284–289.

Michele Amoretti (S’01–M’06) received the Laurea
and Ph.D. degrees from the University of Parma,
Parma, Italy.

He is currently an Assistant Professor with the
Department of Information Engineering, University
of Parma. He has authored or co-authored over
100 technical papers in refereed international jour-
nals, conference proceedings, and books. His current
research interests include complex and adaptive dis-
tributed systems, service-oriented architectures and
distributed middleware, wireless sensor networks,

and quantum computing architectures and protocols.

Olivier Alphand received the Ph.D. degree from
the Institut National Polytechnique de Toulouse,
Toulouse, France, in 2005.

He is involved in several national and European
projects. He has authored or co-authored several
papers ranging from admission control and signal-
ing in satellite networks to medium access control
and routing protocols in sensor networks. His current
research interest includes wireless networking.

Gianluigi Ferrari (S’96–M’98–SM’12) received
the Laurea (summa cum laude) and Ph.D. degrees
from the University of Parma, Parma, Italy.

He is currently an Associate Professor of
Telecommunications with the Department of
Information Engineering, University of Parma, and
coordinates the Internet of Things (IoT) Laboratory.
His scientific activity has led to around 300 works
(in terms of papers, book chapters, patents, and
books). His current research interests include signal
processing, advanced networking/communication,

and IoT and smart systems.
Prof. Ferrari was the recipient of several Technical/Best Paper Awards.

Franck Rousseau (M’04) received the Ph.D.
degree from the Grenoble Institute of Technology,
Grenoble, France, in 1999.

He is an Associate Professor with the Grenoble
Institute of Technology/Ensimag. He was a
Technical Staff Member with the OSF Research
Institute, Grenoble. He is actively involved in
national and European projects. His current
research interests include communications and
security for the Internet of Things, wireless mobile
networks, and sensor networks.

Prof. Rousseau has served as a Program Committee Member for several
networking conferences.

Andrzej Duda (M’10) received the Ph.D. degree
from the Universitè de Paris-Sud, Orsay, France, in
1984, and the Habilitation Diploma degree from the
University of Grenoble, Grenoble, France, in 1994.

He is a Professor with the Grenoble Institute
of Technology/Ensimag, Grenoble. He is a Head
of the Networks and Multimedia Group, Grenoble
Informatics Laboratory, University of Grenoble. He
was an Assistant Professor with the Université
de Paris-Sud, from 1983 to 1986, a Chargé de
Recherche with CNRS, Paris, France, from 1986 to

1995, and a Visiting Scientist with the MIT Laboratory for Computer Science,
Cambridge, MA, USA, from 1992 to 1994. From 2002 to 2003, he was an
Invited Professor with the Swiss Federal Institute of Technology, Lausanne,
Switzerland. He authored or co-authored over 150 papers in the areas of
performance evaluation, distributed systems, multimedia, and networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

