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Investigating the Resilience of Unstructured Supernode Networks
Michele Amoretti, Member, IEEE, and Gianluigi Ferrari, Senior Member, IEEE

Abstract—In this letter, we present a novel analytical frame-
work to analyze the resilience of Unstructured Supernode Net-
works (USNs), where a “leaf” node can be promoted, after
a fixed time interval, to the role of “supernode,” with non-
preferential attachment to a given number of existing supernodes.
In particular, relying on an Absorbing Markov Chain (AMC)-
based model of a supernode behavior, we derive an efficient
approximation of the node degree distribution of an USN.
This model also allows to estimate a supernode’s probability
of isolation. The proposed analytical framework is validated by
simulation results.

Index Terms—Peer-to-peer, network resilience, Absorbing
Markov Chain (AMC).

I. INTRODUCTION

PEER-TO-PEER (P2P) networks are inherently robust
against churns, i.e., random departures and arrivals of

nodes [1]. The isolation time T is defined as the time before all
neighbors of a generic peer are simultaneously in the departed
state [2]. The expected isolation time E[T ] is a useful metric
to evaluate the resilience of a given P2P overlay scheme and
to compare different replacement strategies.

A P2P overlay network is unstructured if the statistical
characterization of the links among peers (being them actual
or potential connections) are usually unknown to the peers
and are not relevant to their message routing strategies.
Unstructured Supernode Networks (USNs) are characterized
by a group of peers, denoted as “supernodes,” which have
the responsibility of routing messages. Conversely, other peers
(“leaf” nodes) are only resource providers and consumers, and
need to connect to the supernode layer in order to publish and
discover resources. A leaf node is promoted, after a proper
time span, to the role of supernode. At promotion, it connects
to other supernodes, selected either randomly (this will be the
case of the current work) or according to a specific strategy.
While a supernode can be connected to many other supernodes
at the same time, a leaf node usually maintains only one
connection with a supernode. The node degree distribution of
the whole network can be obtained from those of supernodes
and leaf nodes [3].

In this letter, we present a novel analytical framework for
the evaluation of the resilience of USNs with non-preferential
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attachment at the moment of supernode promotion. In particu-
lar, we first show how to model a supernode behavior through
an Absorbing Markov Chain (AMC). This is an expedient to
derive the node degree distribution of an USN. By denoting
as m the number of connections (to other supernodes) created
at the moment of promotion of a leaf node to the role
of supernode, we evaluate the node degree distribution of
supernodes and the probability of a supernode’s isolation
as functions of m. Our analytical results are confirmed by
realistic simulations.

II. ANALYTICAL FRAMEWORK

A. Continuous Time Domain

In order to describe USNs and analyze their resilience, we
build on the modeling framework introduced in [3]. A network
is modeled as an undirected graph, where the node degree,
which is the number of links starting from a node, is described,
with reference to the whole network, in terms of its Probability
Mass Function (PMF):

P (k) = P{node degree = k} k = 0, 1, . . .

The topology of the network emerges from the peer dy-
namics, that are necessarily modeled as stochastic processes,
due to the lack of centralized control in the network. Two
fundamental churn properties are: (i) the inter-arrival time,
i.e., the time interval between the beginning of one session
and the beginning of the next session (not necessarily by
the same peer); and (ii) the session length L, i.e., the time
interval between the beginning and the end of a session. The
inter-arrival time in BitTorrent peergroups (that are relatively
small, including tens to hundreds of peers, depending on the
popularity of the shared file) is well modeled by a Weibull
distribution [4]. In Gnutella, the exponential distribution is
a suitable model [5]. It has also been observed that the
distribution of the session length is often heavy-tailed, as most
users spend minutes per day browsing the network, while a
few other peers exhibit server-like behavior and keep their
computers online continuously for weeks [6].

Suppose that a leaf node v joins at time tv, and di is the
departure time of the i-th neighbor of v, i ∈ {0, 1, .., kv},
where kv is the number of neighbors of node v at the given
time. The residual lifetime of neighbor i (at time tv) is
Ri = di − tv . According to renewal theory [7], if F (x) is
the distribution of the session length L, then the distribution
of the residual lifetime R is

FR(x) =
1

E[L]

∫ x

0

[1− F (y)] dy. (1)

Let d be the fixed session length after which a node is
promoted to the supernode state. The session length Ls = L−
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Fig. 1. The AMC that models the evolution of the node degree of a
supernode.

d of the a supernode has the following Cumulative Distribution
Function (CDF):

Fs(x) = P{Ls ≤ x} = P{L− d ≤ x|L > d}

=
F (x+ d)− F (d)

1− F (d)
. (2)

Theorem 1. Consider L with a shifted Pareto CDF F (x) =
1 − (1 + x/β)−α, x > 0, α > 1, β > 0. Then, the expected
value of Ls is:

E[Ls] =

(
1 +

d

β

)
E[L]. (3)

Proof: Since Ls is a non-negative random variable, its
expected value can be written as

E[Ls] =

∫ +∞

0

[1− Fs(x)] dx.

Using (2), the latter becomes

E[Ls] =

(
1 +

d

β

)α ∫ +∞

0

(
1 +

x+ d

β

)−α

dx

=
β

α− 1

(
1 +

d

β

)
(4)

which, owing to the fact that E[L] = β/(α − 1), proves (3).

Let us now focus on a scenario of particular interest.
Suppose that all nodes are initially in leaf state. As already
introduced above, if the lifetime L of a node is longer than
d, then at time d the leaf node becomes a supernode and,
according to a non-preferential attachment rule, connects to
m other randomly selected supernodes. In next subsection,
we show that the evolution of the node degree of a supernode
can be modeled by means of an embedded AMC, where each
state corresponds to a different value of the node degree.

B. Embedded AMC

An illustrative representation of the AMC model of a
supernode evolution is shown in Fig. 1. The generic state
k (corresponding to k connections to other supernodes) can
change upon: a neighbor departure, corresponding the neigh-
bor’s death (k → k − 1); a neighbor arrival (k → k + 1); or
the supernode death, modeled as the entrance into the unique
absorbing state (k → A).

The transition matrix of any AMC can be written in the
following canonical form [8]:

P =

(
I R
0 Q

)

where: I is an r-by-r identity matrix, with r being the number
of absorbing states; 0 is an r-by-q zero matrix, with q being
the number of transient states; R is a nonzero q-by-r matrix;
and Q is an q-by-q matrix. The transition matrix of the AMC
of a supernode is

P =


1 c0 c1 c2 · · · · · · · · · ckmax
0 0 d1 0 · · · · · · · · · 0
0 b0 0 d2 0 · · · · · · 0
0 0 b1 0 d3 0 · · · 0

...
...

...
...

...
...

...
...

0 0 0 · · · · · · bkmax−2 0 dkmax
0 0 0 · · · · · · 0 bkmax−1 0


where: kmax is the maximum node degree; bk is the probability
of leaving state k to go into state k+1; dk is the probability of
leaving state k to go into state k−1; and ck is the probability
of leaving state k to go into the absorbing state A.

The maximum node degree kmax is, in theory, Ns−1, where
Ns is the number of supernodes. In practice, a reasonable
value1 is m+E[Ls]λs, where λs (dimension: [nodes/min]) is
the arrival rate of supernode’s neighbors and can be expressed
as

λs = λ [1− F (d)]
m

E[Ns]
(5)

where λ is the average arrival rate of leaf nodes; [1 − F (d)]
is the fraction of nodes which is promoted (i.e., with lifetime
longer than d); the probability m/E[Ns] is due to the non-
preferential attachment strategy adopted by the supernodes.
Since

E[Ns] = λ [1− F (d)]E[Ls] (6)

from (5) and (6) if follows that kmax ≃ m+ E[Ls]λs = 2m.
We recall that, for any AMC, being Vi(n) the number of

visits to the i-th transient state (i ∈ {1, . . . , q}) in the discrete-
time interval2 {0, .., n}, then

E[V(n)] =

n∑
j=0

Qj · p(0)

where, according to the proposed USN model,

p(0) = (0, . . . , 0, 1︸︷︷︸
m-th position

, 0, . . . , 0).

Therefore, the expected number of visits of a supernode to
state k is

E[Vk(n)] =

n∑
j=0

q
(j)
km (7)

where q
(j)
km is the (k,m)-th element of the matrix Qj .

The PMF of the node degree of a supernode at step n can
then be expressed as follows:

Ps(k, n) =
E[Vk(n)]∑kmax

l=0 E[Vl(n)]
=

∑n
j=0 q

(j)
km∑kmax

l=0

∑n
j=0 q

(j)
lm

. (8)

If there exists m′ such that, ∀m ≥ m′, it holds that Ps(0, n) =
0 (which is equivalent to E[V0(n)] = 0), then E[T ] → ∞, i.e.,
a supernode never becomes isolated. In Subsection III-A, the
existence of such a value of m will be shown.

1In fact, during the average lifetime E[Ls] as supernode, at most E[Ls]λs

newly promoted supernodes can connect to the supernode as neighbors.
2Each discrete time instant corresponds to a state change in the AMC.
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At this point, we need to compute the transition probabilities
of the AMC in order to evaluate the PMF of the node degree
distribution. Denote as Rs the residual lifetime of a supernode
at its promotion. With reference to a supernode at a generic
instant (after promotion), denote: its residual lifetime as Rss;
the residual lifetimes of its neighbors as {Rn1 , .., Rnk

}; and
as A the time interval before the arrival of the next supernode
neighbor. The one-step transition probabilities of the AMC in
Fig. 1 can then be expressed as follows:

bk = P{A < min{Rss, Rn1 , .., Rnk
}}

= P{A < Rss}P{A < Rn1}..P{A < Rnk
}

ck = P{Rss < min{A,Rn1
, .., Rnk

}}
= P{Rss < A}P{Rss < Rn1}..P{Rss < Rnk

}
dk = 1− bk − ck.

Since the residual lifetimes of different supernodes are in-
dependent and have the same distribution, by defining p as
P{Rx > A} (x ∈ {ss, n1, . . . , nk}) and observing that
P{Rx < Ry} = 1/2 (x, y ∈ {n1, . . . , nk}, x ̸= y), it follows
that

bk = pk+1 (9)
ck = (1/2)k(1− p) (10)
dk = 1− pk+1 − (1/2)k(1− p). (11)

Therefore, it is sufficient to evaluate p to fully characterize
the AMC.

The following theorem shows that, in the scenario of interest
(leaf nodes have Poisson arrivals and shifted Pareto lifetimes),
p can be approximated with an expression which does not
depend on d and λ.

Theorem 2. Suppose that (i) the inter-arrival time (into the
network) of leaf nodes has an exponential distribution with
parameter λ (Poisson arrivals) and (ii) a leaf’s node lifetime
L has a shifted Pareto CDF equal to F (x) = 1−(1+x/β)−α,
x > 0, α > 1, β > 0. Assuming that a leaf node with
L > d is promoted to a supernode after d time units,
attaching non-preferentially to m already present supernodes,
the characteristic parameter p of the supernode’s AMC model
can be approximated as follows:

p ≃ 1− (α− 1)(βm/E[L])α−1eβm/E[L]Γ(−α+1, βm/E[L])

being Γ(a, b) ,
∫ +∞
b

ta−1e−tdt the incomplete gamma func-
tion.

Proof: As shown above, the average arrival rate λs of a
supernode’s neighbors is given by (5). By approximating the
distribution of the arrival process of a supernode’s neighbors
as Poisson(λs), the distribution of the residual time A before
the arrival of the next supernode neighbor can be approximated
as exponential with parameter λs, i.e.,

FA(x) ≃ 1− e−λsx x ≥ 0.

Similarly to (1), the distribution of the residual lifetime of a
supernode (after promotion) can be written as

FRs(x) =
1

E[Ls]

∫ x

0

[1− Fs(y)] dy x ≥ 0.

By using Theorem 1 and using the same substitution strategy
used in its proof to solve the integral above, one obtains

FRs(x) = 1−
(

β + d

β + x+ d

)α−1

x ≥ 0. (12)

Therefore, taking into account that A and Rs are independent
and using (5) and (6), it follows:

p = P{Rs −A < 0} =

∫ +∞

−∞

∫ y

−∞
fARs(x, y)dxdy

=

∫ +∞

−∞
fRs(y)

∫ y

−∞
fA(x)dxdy =

∫ +∞

−∞
fRs(y)FA(y)dy

≃ C

∫ +∞

0

(1 + (y + d)/β)−α(1− e−λsy)dy

where C , [(α − 1)(1 + d/β)α−1]/β. With some simple
substitutions and taking into account the expression of the
incomplete gamma function, one can show that

p ≃ 1− (α−1)((β+d)λs)
α−1e(β+d)λsΓ(−α+1, (β+d)λs).

The proof is completed by making the following substitution
in the previous expression of p: (β + d)λs = (β + d)m/(1 +
d/β)E[L]) = βm/E[L].

C. Generalizations

The arrival process of a supernode’s neighbors is not
Poisson, as assumed in the proof of Theorem 2: in fact, some
of the leaf nodes, which arrive with Poisson distribution with
parameter λ, die before being promoted to supernodes. The
derivation of the exact distribution of the arrival process of a
supernode’s neighbors and, therefore, of the distribution of A
and of an exact expression for p, is an open problem.

Moreover, other attachment strategies, besides non-
preferential, may be adopted. For example, the attachment
strategy could privilege supernodes which are more powerful
(in terms of resources) or have longer lifetimes. In this
case, the resulting node degree distribution is likely to be
characterized by a power law [9] and the extension of our
framework in this direction is interesting. For instance, with
a preferential attachment strategy the average arrival rate of
a supernode’s neighbors, now completely characterized by λs

in (5), would require to take into account the node degree of
the specific supernode [10]. Obviously, this complicates the
framework.

Another interesting generalization of our framework is
related to a scenario where a peer can indefinitely change
its status from supernode to leaf, and vice versa. In this case,
new expressions for Fs(x) and E[Ls] would be derived.

III. PERFORMANCE ANALYSIS

A. Analytical vs Simulation Results

We have simulated 7 days of the life of an USN, where leaf
nodes are have inter-arrival time modeled by an exponential
distribution with parameter λ = 34.8 nodes/min—this value
corresponds to the value of 0.58 nodes/s obtained in [5]. Leaf
nodes are promoted to the supernode state if their session
length L exceeds d = 3 hours. L has a shifted Pareto



4 IEEE COMMUNICATIONS LETTERS, ACCEPTED FOR PUBLICATION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14

P
s(
k)

k

an. model

sim

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14

P
s(
k)

k

an. model

sim

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7

P
s(
0
)

m

an. model

sim

(a) (b) (c)
Fig. 2. Steady-state USN scenario with α = 3, β = 60, E[L] = 30: in (a)-(b), node degree distributions of supernodes with m = 2 and m = 5, respectively;
in (c), fraction of isolated supernodes as a function of m.

distribution with α = 3 and β = 60, so that E[L] = 30 mins—
this corresponds to a realistic value according to [2]. After
a transient period of about 14 hours, the network reaches
a “stable” size, with on average λE[N ] = λE[L] = 1044
nodes, of which 6% are supernodes. The average lifetime of
supernodes is 120 minutes, as predicted by equation (3).

In Figs. 2 (a) and (b), the node degree PMFs of the
supernodes are shown for m = 2 and m = 5, respectively.
For each value of m, the analytical results predicted by the
proposed framework (with kmax = 15 and n = 2m) are
directly compared with simulation results. It can be observed
that the agreement is good. The numerical solutions of the
analytical model have been obtained with n = 2m instead of
n → ∞ because the former is the realistic number of state
changes over the AMC.3 We discuss this aspect further in the
following Subsection III-B.

In Fig. 2 (c), the probability of supernode isolation (i.e.,
Ps(0)) is shown as a function of m. In the simulation case,
this probability is evaluated as the percentage of isolated
supernodes, with respect to the total number of promoted
supernodes, after the entire simulation duration (7 days). As
for the evaluation of the PMF, in this case as well a good
agreement between simulation and analytical results can be
observed. In particular, the proposed framework allows to
evaluate very effectively the resilience of an USN by simply
evaluating Ps(0).

B. Discussion
As we observed in Subsection II-C, the sojourn time in a

given state of the AMC, i.e., the time interval during which
a supernode has a given number of neighbors, is not expo-
nentially distributed. Nevertheless, the AMC-based approach
allows to derive a PMF of the node degree which approximates
well the simulation-based (realistic) PMF, provided that a
proper value is assigned to the number n of state changes
before absorption. Our analysis indicates that n = 2m is the
optimized value—this is expected, as the average numbers of
supernodes’ arrivals and departures, during E[Ls], are both
equal to E[Ls]/λs = m.

From the results in Fig. 2 (c), we see that the analytical
approach predicts an isolation probability Ps(0) slightly higher
than the value given by the simulation. However, both analysis
and simulations lead to the conclusion that selecting a value
m ≥ 6 guarantees, in the considered scenario, that Ps(0) = 0,

3Other simulation results, not shown here for lack of space, indicate that
the real number of state changes, evaluated with simulations, is approximately
2m− 0.3.

i.e., there is no supernode isolation—for other scenarios, the
minimum value of m for no supernode isolation might be
different.

IV. CONCLUSION

In this letter, we have illustrated a novel analytical frame-
work for the evaluation the resilience of USNs. The supernode
behavior, in terms of connections with other supernodes,
has been described by a proper AMC, fully characterized
by a single parameter p, for which a simple approximate
expression has been derived. The proposed framework leads
to the derivation of the minimum number of connections m
that a supernode must activate, at its promotion, towards other
supernodes in order to avoid isolations. Simulation results,
related to a realistic scenario, confirm the analytical ones. In
general, depending on the application(s) running over a P2P
network, the parameters which allow to compute the minimum
value of m may change over time. Therefore, the minimum
value of m required for no node isolation should be dynam-
ically adjusted, e.g., using gossiping strategies to propagate
value updates. It is important to underline that nothing prevents
supernodes from establishing a number of connections m
much larger than the minimum one—for instance, to be robust
against sudden churn rate variations and network performance
issues. A practical implementation of the proposed system is
currently under investigation.

REFERENCES

[1] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” IEEE Commun.
Surveys & Tutorials, vol. 7, no. 2, pp. 72–93, 2005.

[2] D. Leonard, Z. Yao, V. Rai, and D. Loguinov, “On lifetime-based node
failure and stochastic resilience of decentralized peer-to-peer networks,”
IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 644–656, June 2007.

[3] M. Amoretti, “A modeling framework for unstructured supernode net-
works,” IEEE Commun. Lett., vol. 16, no. 10, pp. 1707–1710, Oct. 2012.

[4] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proc. 2006 ACM SIGCOMM Conference on Internet
Measurement, pp. 189–202.

[5] D. Ilie and A. Popescu, “Statistical models for gnutella signaling traffic,”
Computer Networks, vol. 51, no. 17, pp. 4816–4835, Dec. 2007.

[6] F. E. Bustamante and Y. Qiao, “Friendships that last: peer lifespan and
its role in p2p protocols,” in Web Content Caching and Distribution,
F. Douglis and B. D. Davison, editors. Kluwer Academic Publishers,
2004, pp. 233–246.

[7] S. I. Resnick, Adventures in Stochastic Processes. Birkhauser, 2002.
[8] G. Bolch, S. Greiner, H. D. Meer, and K. S. Trivedi, Queueing Networks

and Markov Chains. Wiley-Interscience, 2005.
[9] B. Yang and H. Garcia-Molina, “Designing a super-peer network,” in

Proc. 2003 Int.’l Conference on Data Engineering, pp. 49–60.
[10] R. Albert and A.-L. Barabasi, “Statistical mechanics of complex net-

works,” Rev. Mod. Physics, vol. 74, no. 1, pp. 47–92, Jan. 2002.


