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A B S T R A C T

In this paper, we propose an effective target localization strategy for Internet of Things (IoT) scenarios, where
positioning is performed by resource-constrained devices. Target-anchor links may be impaired by Non-Line-Of-
Sight (NLOS) communication conditions. In order to derive a feasible IoT-oriented positioning strategy, we rely
on the acquisition, at the target, of a sequence of consecutive measurements of the Received Signal Strength
Indicator (RSSI) of the wireless signals transmitted by the anchors. We then consider a pragmatic approach
according to which the NLOS channels are pre-mitigated and ‘‘transformed’’ into equivalent Line-Of-Sight (LOS)
channels to estimate more accurately each target-anchor distance. The estimated distances feed ‘‘agnostic’’
localization algorithms, operating as if all links were LOS. We experimentally assess the performance of our
approach in indoor (IEEE 802.11-based) and outdoor (Long Term Evolution, LTE-based) scenarios, considering
both geometric and Particle Swarm Optimization (PSO)-based localization algorithms. Even if NLOS mitigation
per single communication link is very effective, our results show that, in a given environment, it is possible
to derive an ‘‘average’’ NLOS mitigation strategy regardless of the specific position of the target in the given
environment. This is crucial to limit the computational complexity at IoT nodes performing localization, yet
guaranteeing a relatively high (for IoT scenarios) localization accuracy, especially in an IEEE 802.11-based
indoor case (with six anchors). The obtained performance compares favorably (in relative terms) with that
obtained with more sophisticated wireless technologies (e.g., Ultra-WideBand, UWB).
1. Introduction

User localization is a crucial requirement for modern networks
(e.g., cellular networks), since it allows providers to offer enhanced
location-based services [1]. The Internet of Things (IoT) will also
benefit from these services, as adding location information may limit
the need for human intervention [2].

Radio-based positioning relies on distance estimates between the
target and a few reference (with known positions) nodes, denoted as
anchors. Such estimates can be obtained from relevant parameters,
depending on the considered radio technology, such as: Received Signal
Strength Indicator (RSSI), Angle of Arrival (AoA), Time of Arrival
(ToA), Time Difference of Arrival (TDoA) [3]. In [4], an enhanced fin-
gerprinting method is considered, by relying on crowdsourced data kept
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from smartphones. In [5], a few positioning techniques are analyzed
considering various experimental IoT wireless technologies: Zigbee,
Bluetooth Low Energy (BLE), and WiFi (2.4 GHz band). In [6], AoA
fingerprinting is improved by leveraging the available Channel State
Information (CSI). In [7], RSSI-based localization is improved by means
of Machine Learning (ML)-based techniques and, in particular, using
Deep Reinforcement Learning (DRL).

User and device localization has been already exploited in IoT-based
applications by leveraging various technologies. In the presence of large
networking scenarios, the number of acquired RSSI data may explode.
In order to reduce the amount of acquired RSSI data, in [8] a compres-
sion method is proposed. Low-complexity data processing for position-
ing in resource-constrained devices is also addressed in [9]. In [10],
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low-complexity RSSI-based localization in WiFi networks is proposed.
In [11], visible light communications are considered to achieve a
centimeter level accuracy. Range-free methods can also be considered
to limit the complexity of the localization system, as shown in [12].

Radio-based positioning algorithms are impaired by physical ob-
structions and interference present in the surrounding environment,
especially in indoor scenarios. In particular, in the presence of Line-
Of-Sight (LOS) communications between the target and the anchors,
the reliability of the position estimate may be very high. On the other
hand, in the presence of Non-Line-Of-Sight (NLOS) links, the reliability
of the position estimate may drastically reduce [13]. Therefore, the
problem of channel status (i.e., LOS/NLOS) identification is crucial in
radio-based localization—see, for example, [14] and references therein.
In [15,16], the LOS/NLOS classification problem is tackled, from an
experimental point of view, in indoor IEEE 802.11-based scenarios.
In [16], the authors propose a Deep Learning (DL)-based method in
which RSSI and CSI data are jointly used for classification. In [17], DL
is used for LOS/NLOS link classification in Ultra-WideBand (UWB) sce-
narios. In [15], we have proposed channel status identification based on
thresholding of simple RSSI statistical features. The use of thresholding
on simple RSSI statistical features for LOS/NLOS identification purposes
is also considered in Radio Frequency IDentification (RFID) schemes.
For instance, in [18] the authors propose a threshold-based method on
the variance of RSSI and received phase values.

In general, the performance of a localization strategy can be im-
proved by properly taking into account the presence of NLOS links.
In [19], the authors discuss NLOS identification and mitigation in
UWB scenarios: channel identification and mitigation algorithms are
based on ML techniques fed by fine-grained features extracted from
the received waveform (e.g., received energy, maximum amplitude,
rise time, etc.) and acquired with extensive experimental measurement
campaigns. A similar scheme is proposed in [20]. In [21,22], NLOS mit-
igation schemes are proposed under the assumption of a constant bias
in the estimated target-anchor distances. In particular, novel location
estimators are designed and validated in realistic UWB-based setups.
Similarly, in [23] a position estimator is derived using optimization
techniques and is validated using UWB communications. In [24], the
authors propose identification and mitigation in indoor WiFi scenarios,
by relying on fine-grained CSI at the physical layer. In [25], a UWB
identification and mitigation approach based on a Convolutional Neural
Network (CNN) architecture is proposed. This method leverages the
availability of the Channel Impulse Response (CIR), which obviously
provides more information on the channel status than the RSSI does.
However, the use of RSSI is attractive in IoT scenarios with constrained
nodes (with limited processing capabilities).

In this paper, we consider a static localization scenario, where
positioning is performed by static (resource-constrained) IoT devices.
In order to keep the computational complexity limited and derive a
feasible approach, we simply rely on the use of RSSI measurements
instead of more powerful ToA/TDoA processing strategies, which are
not feasible in IoT scenarios (e.g., because of stringent synchronization
requirements). RSSI values can be easily obtained with Commercial
Off-The-Shelf (COTS) devices and we focus on IEEE 802.11 (WiFi) and
Long Term Evolution (LTE) technologies (easily integrable). It is known
that RSSI in NLOS links can be characterized by statistical features,
such as skewness, kurtosis, and others—see, e.g., [15,16]. We leverage
the identification method proposed in [15] to define and implement a
NLOS mitigation scheme for enhanced localization. In particular, we
use the feature-based classifier in [15] is a first processing stage to
detect the presence of NLOS communication links; then, we exploit
a linear combination of the same features to mitigate NLOS-induced
ranging errors. Finally, after NLOS measurements are ‘‘corrected’’, a
localization algorithm is applied to estimate the target position.

Unlike previous literature works which propose advanced signal
processing strategies to incorporate NLOS mitigation (with complexity
2

which may not be compatible with the constraints imposed by IoT s
devices), we aim at showing the effectiveness of a heuristic (yet reason-
able) global NLOS mitigation method in an experimental environment.
In particular, our proposed localization approach involves the following
two steps.

• The first pre-processing step consists of the extraction, by the tar-
get node, of five statistical features from 𝑁 (whose value is prop-
erly chosen) consecutive RSSI measurements from each link be-
tween the target and an anchor. These features are then compared
to pre-determined thresholds to classify the status (LOS/NLOS) of
the link [15]. In an initial ‘‘training phase’’, once a sufficiently
large number of features have been collected over representative
links in the environment where target will be placed, features’
regression is considered to derive a unique average correction
parameter to be applied to any NLOS link. This correction aims
at mitigating the link distance error induced by NLOS effects and,
thus, at ‘‘transforming’’ NLOS links into equivalent LOS ones.
Our approach differs from those proposed in other literature
works (see, e.g., [26,27]), in which mitigation is achieved by
means of more sophisticated algorithms requiring an a-priori sta-
tistical characterization of LOS/NLOS channel status. The use of
a common correction parameter, representative of the average
NLOS conditions of the environment where the target is placed, is
expedient to reduce the required complexity since no parameter
retraining is needed if the target remains in the same environ-
ment. On the other hand, one may optimize the NLOS mitigation
parameter for each target-anchor communication link to achieve
a higher localization accuracy. However, this comes at the price
of a higher computational complexity, which may be critical for
IoT-oriented applications.

• In the second step, all estimated link distances are input to an ‘‘ag-
nostic’’ localization algorithm, which operates as if all links were
in LOS conditions. In other words, unlike previous works aim-
ing at designing novel localization algorithms embedding NLOS
mitigation, we investigate the direct applicability of existing lo-
calization algorithms after the proposed NLOS link pre-processing
stage. This approach (together with RSSI-based processing) fur-
ther keeps the overall computational complexity limited.

An experimental IoT-oriented performance analysis of the proposed
localization strategies is carried out in both indoor (IEEE 802.11) and
outdoor (LTE) scenarios.2 Our results show that, in the best cases, the
positioning error with average NLOS mitigation (i.e., using the same
correction parameter for all links) is around (approximately) 30% and
60% of the maximum target-anchor distance in indoor and outdoor
scenarios, respectively. The obtained performance is worse than, yet
aligned with, that of more powerful communication technologies such
as UWB, which, however, is not always suitable for IoT scenarios. In
particular, in indoor scenarios, our results show that, with probability
equal to 80%, the error with UWB is around 12% of the average
target-anchor distance, whereas with WiFi is around 37%. Finally,
if per-link optimized NLOS mitigation is applied (i.e., considering a
specific correction parameter per link), this error can be significantly
reduced, with a reduction up to 90% in outdoor scenarios and over 80%
in indoor scenarios. As mentioned above, this comes at the price of a
much higher computational complexity.

The rest of the paper is organized as follows. In Section 2, we
introduce the system model. In Section 3, the proposed localization
method with NLOS identification/mitigation is presented. Experimental
results for IoT-oriented IEEE 802.11 and LTE systems are discussed in
Section 4. Finally, concluding remarks are given in Section 5.

2 For LTE-based analysis, we rely on the use of a smartphone. However,
he obtained results are also meaningful for 4G NarrowBand-IoT (NB-IoT)
cenarios, as the same RSSI values can be exploited.
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2. System model

Let us consider a wireless scenario, in which a static3 target node,
at coordinates 𝒖 = [𝑥, 𝑦]𝑇 , receives packets from 𝑀 transmitters,
either Access Points (APs) or Base Transceiver Stations (BTSs), acting
as anchors. The known position of the 𝑖th anchor is denoted as 𝒔𝑖 =
[𝑥𝑖, 𝑦𝑖]𝑇 , 𝑖 ∈ {1,… ,𝑀}, where [⋅]𝑇 is the transpose operator. The set of
anchor nodes’ coordinates can be organized in the following matrix:

𝑺 =
[

𝑥1 𝑥2 … 𝑥𝑀
𝑦1 𝑦2 … 𝑦𝑀

]

=
[

𝒔1,… , 𝒔𝑀
]

. (1)

This scenario is meaningful for applications in which targets (people
and/or objects) to be localized are moving on the 𝑥–𝑦 plane, e.g., IoT
tags moving on a given building floor. The extension to a three-
dimensional case is straightforward, but goes beyond the scope of this
paper.

The goal of a localization system is to derive an estimate of the
target node’s position, denoted4 as 𝒖̂ = [𝑥̂, 𝑦̂]𝑇 , given 𝑺 and a set of
measurements of the target-anchor links. The Euclidean norm of the
𝑖th anchor’s coordinates, i.e., the distance of that anchor from the axes’
origin, is defined as

𝑘𝑖 = ‖

‖

𝒔𝑖‖‖ =
√

𝒔𝑇𝑖 𝒔𝑖 𝑖 = 1,… ,𝑀.

he anchors’ norm vector is then 𝒌 = [𝑘1,… , 𝑘𝑀 ]𝑇 .
Let 𝒅 = [𝑑1, 𝑑2,… , 𝑑𝑀 ]𝑇 be the vector containing the (true) link

distances between the target node and the 𝑀 anchors, where the 𝑖th
distance can be written as

𝑑𝑖 = ‖

‖

𝒖 − 𝒔𝑖‖‖ =
√

(𝒖 − 𝒔𝑖)𝑇 (𝒖 − 𝒔𝑖) 𝑖 = 1,… ,𝑀. (2)

Let 𝒅̂ denote the corresponding vector of distance estimates, in which
the 𝑖th term can be written as

𝑑𝑖 = ‖

‖

𝒖̂ − 𝒔𝑖‖‖ =
√

(𝒖̂ − 𝒔𝑖)𝑇 (𝒖̂ − 𝒔𝑖) 𝑖 = 1,… ,𝑀. (3)

or instance, 𝑑𝑖 is the 𝑖th link distance estimate computed from the
cquired data (e.g., RSSIs).

The localization problem can be generally modeled as the following
ystem of equations containing anchors’ positions and range estimates:

(𝑥̂ − 𝑥1)2 + (𝑦̂ − 𝑦1)2 = 𝑑21
⋮

(𝑥̂ − 𝑥𝑀 )2 + (𝑦̂ − 𝑦𝑀 )2 = 𝑑2𝑀 .

(4)

n order to solve this system of equations in the unknowns [𝑥̂, 𝑦̂],
ifferent solutions will be proposed in Section 3.4.

While ToA-based localization algorithms work on the basis of esti-
ated distances {𝑑𝑖}, TDoA-based algorithms rely on relative distance

stimates with respect to a reference anchor. Assuming, for notational
implicity, that 𝒔1 is the anchor with the shortest estimated distance,
hen the vector of relative distances (with respect to 𝒔1) is defined as
= [𝛥1,… , 𝛥𝑀 ]𝑇 , in which the 𝑖th term is

𝑖 = 𝑑𝑖 − 𝑑1 (5)

nd its estimate is

̂𝑖 = 𝑑𝑖 − 𝑑1. (6)

ote that 𝛥1 = 𝛥1 = 0 by construction. The quantities {𝛥𝑖}𝑀𝑖=1 can be
nterpreted as TDoA-based relative distance estimates with respect to
he first anchor.

3 Locating a mobile node is an interesting research direction, but goes
eyond the scope of this paper.

4 In the remainder of this paper, the symbol 𝜁 will denote an estimate of
the generic quantity 𝜁 , e.g., calculated from experimental measurements or
inferred through proper signal processing.
3

At each time instant, a received power measurement, e.g., the
RSSI, is acquired. In order to perform target-anchor 𝑖 channel status
classification, 𝑁 consecutive RSSI measurements are collected into the
following ‘‘observation’’ vector:

𝑧(𝑗)𝑖 =
[

𝑧((𝑗−1)𝑁+1)
𝑖 , 𝑧((𝑗−1)𝑁+2)

𝑖 ,… , 𝑧(𝑗𝑁)
𝑖

]

here 𝑗 is a block (of 𝑁 RSSI values) time index. We assume that there
are 𝐾 consecutive and disjoint blocks of 𝑁 RSSI values each, for a total
of 𝐾 ⋅𝑁 overall collected RSSI samples over each link.

The target-anchor 𝑖 communication channel is assumed to have the
same binary status over the RSSI observation block 𝑗, and we refer to
this status as

𝓁(𝑗)
𝑖 =

{

1 if the link is LOS
0 if the link is NLOS.

(7)

We denote the collection of 𝐾 consecutive observation vectors and
corresponding true channel statuses as the dataset relative to the 𝑖th
anchor, i.e.:

𝑖 =
{

𝒛(𝑗)𝑖 ,𝓁(𝑗)
𝑖

}𝐾

𝑗=1
𝑖 = 1,… ,𝑀. (8)

In other words, 𝒛(1)𝑖 contains the first 𝑁 acquired RSSI measurements
associated with the true channel status 𝓁(1)

𝑖 over the link 𝑖, 𝒛(2)𝑖 contains
the next 𝑁 acquired RSSI measurements associated with the true
channel status 𝓁(2)

𝑖 over link 𝑖, and so on for 𝑗 ∈ {3,… , 𝐾}. Note that no
a-priori information about the target-anchor 𝑖 distance is contained in
the dataset 𝑖, 𝑖 = 1,… ,𝑀 . We assume that each RSSI entry in the 𝑁-
sample observation vector 𝒛(𝑗)𝑖 is a realization of a random variable 𝑍(𝑗)

𝑖
(the same for all entries of the 𝑗th block) whose statistical distribution
depends on the LOS/NLOS condition of the target-anchor 𝑖 link during
the 𝑗th RSSI observation block, i.e., 𝓁(𝑗)

𝑖 . The dependence of 𝑍(𝑗)
𝑖 on

𝓁(𝑗)
𝑖 would depend on the very specific propagation conditions of the

associated 𝑖th link in the 𝑗th block: we give up finding an accurate
statistical characterization of 𝑍(𝑗)

𝑖 but, rather, extract simple statistical
features. More precisely, the dataset 𝑖 will be at the basis of the
extraction of relevant statistical features of the received signal to be
used to classify the status of the communication channel between the
target and the 𝑖th anchor.

3. Localization approach

The block diagram associated with the proposed localization ap-
proach is shown in Fig. 1. The localization method has two steps.
First, for each anchor we process the received signal (in terms of
RSSI) to classify the LOS/NLOS status of the channel (Section 3.1)
and to estimate the distance from the anchor (Section 3.2 for LOS
and Section 3.3 for NLOS). Then, ‘‘agnostic’’ localization algorithms
are used, taking as input the link distance estimates (for all anchors)
obtained from the previous step (Section 3.4).

3.1. LOS/NLOS classification

We now briefly recall the feature-based LOS/NLOS classification
method proposed in [15]. Let us focus on a single target-anchor link
over an observation window of 𝑁 RSSI samples.5 Given the observation
vector 𝒛 = [𝑧(1), 𝑧(2),… , 𝑧(𝑁)] and the corresponding random variable
𝑍 (as described at the end of Section 2), let us define the 𝑘th order
moment of the distribution of the random variable 𝑍 as

𝑚𝑘 = 1
𝑁

𝑁
∑

𝑖=1

(

𝑧(𝑖) − 𝜇
)𝑘 (9)

5 The anchor subscript 𝑖 and the observation window superscript 𝑗 used in
Section 2 are eliminated for notational simplicity. Therefore, the derivation
refers to a generic 𝑁-sample block of consecutive RSSI values over a generic
target-anchor link.
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Fig. 1. Block diagram of the proposed localization approach for a generic observation window.
Fig. 2. Illustrative qualitative examples of RSSI distributions, for a given target
location, in both LOS and NLOS link conditions.

where

𝜇 = 1
𝑁

𝑁
∑

𝑖=1
𝑧(𝑖) (10)

is the sample mean for the observation vector. The five considered
statistical features are the following:

• standard deviation 𝜎, defined as
√

𝑚2;
• skewness 𝑆, defined as 𝑚3∕𝜎3;
• kurtosis 𝐾, defined as 𝑚4∕𝜎4;
• hyper-skewness S , defined as 𝑚5∕𝜎5;
• Peak Probability (PP), defined as

P ≜ Pr
{

𝑧(𝑖) ∈
[

max
𝑖

𝑓
(

𝑧(𝑖)
)

− 𝜀,max
𝑖

𝑓
(

𝑧(𝑖)
)

+ 𝜀
]}

where 𝜀 is a ‘‘sufficiently’’ small non-negative value (𝜀 → 0+). In
particular, if 𝜀 = 0, P reduces to the relative frequency of the
mode value within the observation vector 𝒛. Moreover, skewness,
kurtosis, and hyper-skewness can be referred to as third, fourth, and
fifth order standardized moments, respectively—in fact, the 𝑘th order
standardized moment is defined as 𝑚𝑘∕𝜎𝑘 (𝑘 ≥ 1).

In correspondence to the observation vector 𝒛, we define the feature
dataset ̃ as the set of statistical features extracted from 𝒛 together with
the true channel status 𝓁, i.e.,

̃ = {𝜎, 𝑆,𝐾,S ,P ,𝓁} . (11)

Obviously, ̃ depends on the (extended) dataset, defined in (8),
associated with the link status and the RSSI observation block.

As outlined in [15], in LOS scenarios the direct path is characterized
by a much higher received power than the reflected ones. Therefore, the
RSSI distribution is expected to be peaky and left-skewed, and can then
be well approximated by a Weibull distribution. On the other hand, in
NLOS scenarios there may be several scattered and reflected paths with
smaller received power. Consequently, the RSSI distribution is expected
to be symmetric and less peaky, and can then be well approximated
by a Gaussian distribution. A qualitative illustrative example of RSSI
distributions, for a given target location, in both LOS and NLOS link
4

conditions are shown in Fig. 2. Note that our work aims at determining
fixed NLOS identification and mitigation parameters, representative
of average NLOS conditions of the environment where the target is.
This approach significantly limits the computational complexity of the
localization algorithm. In other words, one has to evaluate an ‘‘average’’
Probability Density Function (PDF) of the RSSI in representative (in
the environment where the target is placed) LOS conditions and an
‘‘average’’ PDF of the RSSI in representative NLOS conditions. This
‘‘training phase’’ allows to derive a set of features’ values applicable
to any LOS link and another set of features’ values applicable to any
NLOS link. Radically different environments are (obviously) expected
to lead to different values of the features.

In [15], various classification algorithms are proposed for the identi-
fication of the link status: a Probability Mass Function (PMF)-based one;
a Neural Network (NN)-based one; and a weighed threshold classifier.
The first is shown to have very poor performance; on the other hand,
the second is one of the possible Artificial Intelligence (AI)-based
schemes suitable for such an application. In particular, a three-layer
NN is considered with the following characteristics: (i) the input layer
extracts the five statistical features; (ii) the hidden layer is a 8-neuron
fully connected layer; and (iii) the output layer generates the estimated
channel status. The activation functions for the hidden and output
layers are sigmoid and softmax functions, respectively. Even if other AI
algorithms can be applied (this goes beyond the scope of this paper),
the NN can be considered as a reasonable state-of-the-art benchmark.
In the following, we focus on the weighed threshold classifier, whose
architecture is shown in Fig. 3.

The key idea is to compare each statistical feature with properly
chosen threshold values {𝜎∗, 𝑆∗, 𝐾∗,S ∗,P∗}, in order to derive the
following single feature channel estimates:

𝓁𝜎 = 𝑈 (𝜎∗ − 𝜎)

𝓁𝑆 = 𝑈 (𝑆∗ − 𝑆)

𝓁𝐾 = 𝑈 (𝐾 −𝐾∗) (12)
𝓁S = 𝑈 (S ∗ − S )

𝓁P = 𝑈 (P − P∗)

where 𝑈 (⋅) is the unit-step function, i.e., it equals 1 for positive ar-
gument and 0 otherwise. The rationale behind (12) is that for LOS
links, one expects smaller values of 𝜎, 𝑆, and S , and larger values
of 𝐾 and P for NLOS links. This is due to the fact that the direct
component is dominant in LOS conditions, whereas the reflected paths
provide a minor contribution. In particular, in LOS links, the odd-order
statistical features 𝑆 and S are expected to be negative (due to the
left-skewed distribution). The chosen values of the feature thresholds
depend on the considered wireless technology (namely, IEEE 802.11
and LTE) and corresponding network parameters (transmit power,
RSSI resolution, etc.). However, such thresholds can be set offline to
achieve the desired classification accuracy, provided that the relevant
parameters are known and/or fixed in advance. As will be shown in
Section 4, in our numerical results we rely on measurements taken
under different conditions and we identify a unique threshold that can
achieve, on average, good performance.6

6 We remark that we do not aim at identifying a universal classifier for any
scenario. Our goal is to find a ‘‘locally universal’’ classifier for a given scenario.
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The single-feature decisions can be collected into the vector 𝓵̂ =
[𝓁𝜎 ,𝓁𝑆 ,𝓁𝐾 ,𝓁S ,𝓁P]𝑇 . At this point, each single decision is weighed
by a proper coefficient 𝛼𝑖 ∈ [0, 1], 𝑖 = 1, 2,… , 5, to take into account
possibly different reliabilities of the single decisions. Let us denote as
𝜶 = [𝛼1, 𝛼2,… , 𝛼5]𝑇 the vector of weighing coefficients, with ‖𝜶‖1 = 1.
The final decision variable 𝓁 ∈ [0, 1] is

𝓁 = 𝜶𝑇 𝓵̂ (13)

and the channel status is finally estimated as

𝓁 = 𝑈 (𝓁 − 𝓁th) (14)

where 𝓁th ∈ [0, 1] is a proper threshold. Note that if 𝜶 = 0.2 ⋅ 𝟏5,
being 𝟏𝑛 the all-one 𝑛 × 1 vector, this approach is equivalent to an
unweighed majority logic threshold detector, i.e., all features have the
same relevance. On the other hand, if one of the weights is equal to 1
(and, consequently, the others are 0), this rule is equivalent to a single-
feature threshold detector for the feature corresponding to the unitary
weight.

3.2. LOS distance estimation

Assuming the applicability of Friis formula, the estimated distance
on a generic link, on the basis of the received power 𝑃R (dimension:
[dBm]), can be expressed as [28]

𝑑 = 𝑑0 10
𝑃0−𝑃R
10 𝛽 (15)

here 𝑃0 is the received power (dimension: [dBm]) at the reference
istance 𝑑0 (dimension: [m]) and 𝛽 is the path loss exponent (adi-
ensional). The estimate in (15) can be applied to transmissions over

hannels with LOS conditions, considering 𝛽 = 2. Assume that the
eceiver can collect RSSI samples, where RSSI is the actual power level
dimension: [dBm]) measured by the receiver.7 Considering the average
SSI (denoted as RSSI) over the observation window of 𝑁 samples, the
stimated distance can be approximated as follows:

̂ ≃ 𝑑0 10
𝑃0−RSSI

20 . (16)

Note that the use of the average RSSI is expedient to eliminate statisti-
cal fluctuations (especially in experimental scenarios).

3.3. NLOS mitigation and distance estimation

As shown in Fig. 2, for a NLOS link a direct path (with dominant
received power) between the transmitter and the receiver does not
exist. Therefore, the electromagnetic signal travels along a longer path

Different scenarios would require to identify a proper threshold by averaging
over various conditions.

7 This assumption is typical for IoT devices. Moreover, in most cases the
available RSSI values are quantized.
5

k

Fig. 4. Block diagram of the proposed NLOS mitigation scheme.

through reflections and/or refractions, thus reducing (with respect to
the direct path) the received power. The application of (15) is critical,
as the value of 𝛽 would depend on the specific path. Therefore, the use
of (15) with a fixed value of 𝛽 (for instance, the use of (16)) may likely
lead to a wrong distance estimate in NLOS conditions. To this end, we
propose to mitigate the NLOS effect by deriving a more reliable link
distance estimation strategy starting from (16), rather than adapting 𝛽
n (15) link by link. In particular, we propose to transform a NLOS link
nto an ‘‘equivalent’’ LOS one, using a heuristic ‘‘universal’’ correction
independent of the specific NLOS link), as will be described in the
ollowing.

Let us focus on the 𝑘th observation window (𝑘 = 1,… , 𝐾) of a
eneric target-anchor link. When the link is classified as NLOS (accord-
ng to the strategy outlined in Section 3.1), the corresponding estimated
istance 𝑑nlos obtained with (16) may be heuristically corrected by
eans of a scalar coefficient as

̂(𝑘)
nlos−c =

𝑑(𝑘)nlos

𝑐(𝑘)
(17)

where 𝑑(𝑘)nlos−c is the estimated distance after the correction and 𝑐(𝑘) > 1
s a proper correction parameter, which quantifies the NLOS effect.
n particular, the correction coefficient at the 𝑘th time epoch can be
mpirically computed as a linear regression, with proper coefficients,
f the statistical features extracted online from the current block of 𝑁
SSI samples. In other words,

̂(𝑘) = 𝜸𝑇 𝒇 (𝑘) (18)

pictorial description of the NLOS mitigation scheme is provided in
ig. 4.

The regression weight vector 𝜸 can be computed offline during a
ystem calibration phase as follows. Assume that the target is placed at
nown pre-defined positions, so that 𝐿 estimated distances associated
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with NLOS links are available8 and collected in the vector 𝒅̂nlos =
[𝑑(1)nlos,… , 𝑑(𝐿)nlos]

𝑇 . Assume also that the corresponding true distances are
known and collected in the vector 𝒅true = [𝑑(1),… , 𝑑(𝐿)]𝑇 . The statistical
features over the entire observation window can be collected in the
following 𝐿 × 6 matrix:

𝑭 =
[

𝒇 (1)𝑇 ,𝒇 (2)𝑇 ,… ,𝒇 (𝐿)𝑇
]𝑇

. (19)

The optimal weight vector solves the following minimization problem:

𝜸 = arg min
𝒂=[𝑎0 ,…,𝑎5]𝑇

‖

‖

‖

‖

𝒅true − 𝒅̂nlos ⊙
1

𝑭 𝒂
‖

‖

‖

‖

(20)

where ⊙ denotes element-wise vector multiplication. In other words,
the weight vector minimizes the error between the true distance and the
corrected one. In order to make the calibration method accurate, the
total number 𝐿 of collected RSSI blocks must be sufficiently large. From
a practical point of view, this corresponds to considering a sufficiently
large number of NLOS links (sufficiently heterogeneous) with known
distances and carry out data collection. The weight vector 𝜸 will then
e used, during online operations, if a link is identified as NLOS. The
dentification of an efficient calibration dataset (in terms of set of 𝐿
LOS links) is an interesting research problem.

Obviously, this approach applies to a given scenario of interest.
hould the scenario change (significantly), calibration should be carried
ut again.

.4. ‘‘Agnostic’’ localization

Once the estimated distances are available from all the 𝑀 anchors,
n ‘‘agnostic’’ localization algorithm can be run to derive a final target
osition estimate. The algorithm is agnostic in the sense that it acts
s if all links were LOS. In fact, a NLOS link is transformed into an
quivalent LOS one according to the steps discussed in Sections 3.1 and
.3.

In general, a localization algorithm solves a system of equations of
he type shown in (4). As illustrative (but not exhaustive) examples of
gnostic localization algorithms, we now briefly recall two geometric
lgorithms, namely Two-Stage Maximum-Likelihood (TSML) [29] and
lane Intersection (PI) [30], which will be used for localization pur-
oses. In particular, TDoA-based implementation of TSML and PI are
onsidered. Besides geometric solutions, Particle Swarm Optimization
PSO)-based solutions will also be considered. An exhaustive analysis
f RSSI-based least squares lateration algorithms is presented in [31].

We remark that the localization accuracy of ToA-based algorithms,
ot shown here for lack of space, is lower than that of TDoA-based
nes. Even if ToA-based processing may be more attractive from an
mplementation point of view, we focus on TDoA-based processing,
hich guarantees the best performance. In this case, inter-anchor syn-

hronization is crucial: in IoT scenarios, this can be delegated to the
nfrastructure, i.e., to the cooperating anchors. The investigation of
his aspect goes beyond the scope of this paper, see, e.g., [32] and
eferences therein.

.4.1. Two-stage maximum-likelihood (TSML)
The TSML algorithm resorts to a two-step approach and solves, in

ach step, a smaller system of equations (with respect to the starting
ne) [29]. Defining the unknown vector as 𝝓1 =

[

𝒖𝑇 , 𝑑1
]𝑇 , one obtains

the following system of equations for the first step:

𝑮1𝝓1 = 𝒉1 (21)

8 𝐿 consecutive 𝑁 RSSI samples’ blocks are collected sequentially.
6

t

where 𝑮1 is a (𝑀−1)×3 matrix and 𝒉1 is a length-(𝑀−1) vector defined
as follows:

𝑮1 = −2
⎡

⎢

⎢

⎣

𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝛥2
⋮ ⋮ ⋮

𝑥𝑀 − 𝑥1 𝑦𝑀 − 𝑦1 𝛥𝑀

⎤

⎥

⎥

⎦

(22)

𝒉1 =
⎡

⎢

⎢

⎣

𝑘21 − 𝑘22 + 𝛥2
2

⋮
𝑘21 − 𝑘2𝑀 + 𝛥2

𝑀

⎤

⎥

⎥

⎦

. (23)

As 𝑮1 is not a square matrix, the solution 𝝓̂1 can be obtained, by
resorting to a Least Squares (LS) method [33], as follows:

𝝓̂1 =
(

𝑮𝑇
1 𝑮1

)−1 𝑮𝑇
1 𝒉1. (24)

At this point, since the third unknown in 𝝓1 (namely, 𝑑1) depends on
the other two (namely, 𝒖), one has to solve a system of equations to
eliminate this dependence. Denoting 𝝓2 = (𝒖 − 𝒔1)2, the following final
system of equations has to be solved:

𝑮2𝝓2 = 𝒉2 (25)

where 𝑮2 is a 3 × 2 matrix, whereas 𝒉2 is a length-3 vector defined,
respectively, as follows:

𝑮2 =
⎡

⎢

⎢

⎣

1 0
0 1
1 1

⎤

⎥

⎥

⎦

(26)

𝒉2 =
(

𝝓̂1 −
[

𝒔𝑇1 , 0
]𝑇
)2

. (27)

The LS solution is then

𝝓̂2 =
(

𝑮𝑇
2 𝑮2

)−1 𝑮𝑇
2 𝒉2 (28)

and the final position estimate is obtained combining 𝝓̂1 and 𝝓̂2 accord-
ing to

𝒖̂ = sign
(

𝝓̆1 − 𝒂1
)

⊙ 𝝓̂2 + 𝒂1 (29)

where sign(⋅) represents the sign operator and 𝝓̆1 is a bi-dimensional
vector formed by the first two vector components of 𝝓̂1.

Note that evaluating (24) has complexity on the order of 𝑂(𝑀2)
[34]. On the other hand, the solution of (28) leverages operations on
small-size matrices and vectors, with negligible computation complex-
ity, especially in the presence of a large number of anchors.

3.4.2. Plane intersection (PI)
The rationale behind this approach is that any pair of TDoA mea-

surements, coming from a group of three anchors, leads to an equation
which identifies the major axes of a conic, whose focus should lie in the
target [30]. Therefore, having at least three of these equations allows
to determine the target position by solving the corresponding system
of equations.9

The system of equations to be solved is

𝑨𝒖 = 𝒃 (30)

where 𝑨 is a (𝑀 −2)×2 matrix and 𝒃 is a length-(𝑀 −2) vector defined
as follows:

𝑨 =
⎡

⎢

⎢

⎣

(𝑥1 − 𝑥2)𝛥3 − (𝑥1 − 𝑥3)𝛥2 (𝑦1 − 𝑦2)𝛥3 − (𝑦1 − 𝑦3)𝛥2
⋮ ⋮

(𝑥1 − 𝑥2)𝛥𝑀 − (𝑥1 − 𝑥𝑀 )𝛥2 (𝑦1 − 𝑦2)𝛥𝑀 − (𝑦1 − 𝑦𝑀 )𝛥2

⎤

⎥

⎥

⎦

(31)

𝒃 =
⎡

⎢

⎢

⎣

−𝛥2 𝛥3(𝛥3 − 𝛥2) + (𝑘21 − 𝑘22)𝛥3 − (𝑘21 − 𝑘23)𝛥2
⋮

−𝛥2 𝛥𝑀 (𝛥𝑀 − 𝛥2) + (𝑘21 − 𝑘22)𝛥𝑀 − (𝑘21 − 𝑘2𝑀 )𝛥2

⎤

⎥

⎥

⎦

. (32)

9 Note that, in this case, a second reference anchor is needed to determine
he system of equations. To this end, for notation simplicity, we will assume
hat 𝒔 is the second anchor closest to the target.
2
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Hence, the LS solution can be computed as

𝒖̂ =
(

𝑨𝑇𝑨
)−1 (𝑨𝑇 𝒃

)

(33)

with complexity on the order of 𝑂(𝑀2) [34] (similar arguments to those
for TSML can be applied).

3.4.3. Particle swarm optimization (PSO)
The previously outlined geometric-based algorithms (TSML and PI)

analytically solve the systems of equations described above. However,
it may happen that the matrices involved in these systems of equations
become ill-conditioned, thus leading to a very inaccurate target position
estimate [35,36]. The rationale behind the use of the PSO algorithm is
to re-interpret the above systems of equations as minimization prob-
lems, avoiding numerical problems in finding their solutions. More
precisely, the solution of the general localization problem (4) can be
written as

𝒖̂ = arg min
𝒑

𝑔(𝝆) 𝝆 ∈ R2 (34)

where 𝑔(⋅) is the so-called fitness function and depends on the starting
system of equations.

The fitness function should take into account the error, in the system
of equations, when a wrong position is estimated: in particular, the
larger the error, the higher the value of the fitness function. Starting
from (21) for the TSML algorithm, the following fitness function can
be considered:

𝑔(𝝆) = ‖

‖

‖

𝜟̂2 − (𝒌2 − 𝑘21) + 2 𝜟̂ ‖

‖

𝝆 − 𝒔1‖‖ + 2 (𝑺 − 𝒔1)𝑇 𝒑‖‖
‖

(35)

where 𝜟̂2 stands for the element-wise square of the vector 𝜟̂. We refer
to the PSO solution of (35) as PSO-TSML. Note that (35) provides a
solution which is ‘‘biased’’ towards the first anchor 𝒔1, especially for
large values 𝜟̂, due to the presence of the term 2 𝜟̂ ‖

‖

𝝆 − 𝒔1‖‖.
If, instead of the system given by (21), the system given by (30) is

considered for the PI algorithm, the following fitness function can be
used:

𝑔(𝝆) = ‖𝒃 −𝑨𝝆‖ . (36)

We refer to the PSO solution of (36) as PSO-PI.
At this point, we resort to the standard implementation of the

PSO (see, e.g., [37]) to solve the minimization problem (34) with
fitness function equal either to (35) or (36). According to the PSO
algorithm, the set of potential solutions of each optimization problem,
i.e., of the system of equations associated with the chosen localization
algorithm, can be modeled as a swarm of particles. We denote the set
of particles as  and its size as ||. The positions of the particles are
randomly initialized in the region of interest and the key idea is to
iteratively ‘‘guide’’ them towards the optimal solution by exploring the
interactions between them.

At iteration10 𝑛 (𝑛 = 0, 1,… , 𝑛it , where 𝑛it is the number of iter-
ations), the position and velocity of the 𝑖th particle are represented
by the two-dimensional vectors 𝝅𝑖[𝑛] and 𝒗𝑖[𝑛], respectively. The PSO
algorithm assumes that each particle knows, at each iteration, its own
best position (as will be discussed in the following) as well as the global
best position among all the particles and the corresponding values of
the fitness function.

The update rule for particles’ velocities is given by

𝒗𝑖[𝑛 + 1] = 𝜔[𝑛] 𝒗𝑖[𝑛] + 𝑐1 𝜒1[𝑛]
{

𝒑𝑖[𝑛] − 𝝅𝑖[𝑛]
}

10 The use of an inherently iterative algorithm leads to a delay in the
stimation procedure, which may be critical (depending on the available
omputation hardware) for real-time applications or dynamic scenarios with
obile targets. The investigation of refined techniques to reduce the number

f iterations in conjunction with target tracking will be subject of future
7

nvestigation. p
+ 𝑐2 𝜒2[𝑛]
{

𝒑[𝑛] − 𝝅𝑖[𝑛]
}

(37)

where: 𝜔 is the PSO inertial factor; 𝑐1 and 𝑐2 (𝑐1, 𝑐2 ∈ R, 𝑐1, 𝑐2 ≥ 0) are
the so-called cognition and social parameters; and 𝜒1[𝑛] and 𝜒2[𝑛] are
independent random variables uniformly distributed in [0, 1]. Finally,
𝑖[𝑛] and 𝒑[𝑛] represent, respectively, the position of the 𝑖th particle
ith the best fitness function (over the 𝑛 iterations) and the position
f the particle with the best (among all particles) fitness function up to
teration 𝑛, i.e.,

𝑖[𝑛] = arg min
𝝆∈{𝝅𝑖[𝑗]}𝑛𝑗=0

𝑔(𝝆)

𝒑[𝑛] = arg min
𝝆∈{𝒑𝑖[𝑛]}||

𝑖=1

𝑔(𝝆).

sing (37), the update rule for the particles’ positions is

𝑖[𝑛 + 1] = 𝝅𝑖[𝑛] + 𝒗𝑖[𝑛 + 1].

n other words, the idea of the PSO algorithm is to check the system
f equations in correspondence to some test positions, find the position
ith best fitness, and try to iteratively converge to the best position,
y also exploring other positions in the surrounding space. The final
olution is given by

̂ = arg min
𝝆∈{𝒑𝑖[𝑛it ]}||

𝑖=1

𝑔(𝝆).

As a final remark, one can note that the inertial factor 𝜔[𝑛] is
epresentative of the ability of the particles to explore new areas in the
urrounding space. However, taking into account the results in [35], in
he following we will consider 𝜔[𝑛] ≃ 0 ∀𝑛 in (37).

Since at each iteration the fitness function has to be evaluated for
ll particles, it can be shown that the complexity is 𝑂(|| ⋅𝑛it ⋅𝑀) [34].
ince ||, 𝑛it ≫ 𝑀 , the complexity of this algorithm may be unfeasible
n most realistic applications with computational and (possibly) latency
onstraints (e.g., those involved in IoT scenarios).

. Experimental performance analysis

We now present an experimental performance analysis in IEEE
02.11 (indoor) and LTE (outdoor) wireless scenarios. The indoor
cenario is shown in Fig. 5 and corresponds to the WiFi network
eployed at the ground floor of the Building n. 2 of the Department of
ngineering and Architecture of the University of Parma, Italy. The six
nchors (denoted by blue circles) are IEEE 802.11 Cisco AIR-CAP3702I-
-K9 APs transmitting over 3 disjoint IEEE 802.11 20 MHz bandwidth
hannels (channels 1, 6, and 11). On the other hand, the target (denoted
y a red cross/circle/diamond and placed in 3 illustrative positions)
s shown in Fig. 6 and corresponds to a Raspberry Pi 3 Model B+
RPi) Single Board Computer (SBC), equipped with (i) an external
EEE 802.11 Linksys TL-WN722N USB dongle, with a 1 dB granularity
SSI measurement capability, and (ii) an on-board-plugged Waveshare
IM7600E-H 4G HAT expansion board, with a 1 dB granularity RSSI
easurement capability. In the RPi, Wireshark is running to extract
SSI measurements from the beacon packets received by the APs.
or each target position, the corresponding LOS/NLOS links are listed
n Table 1. LOS is associated with direct visibility, whereas NLOS is
ssociated with the presence of at least one large obstructive object
etween target and anchor (e.g., wall, thick door, cabinet). Then,
easurements are taken under different conditions (e.g., at various
ours with different WiFi traffic loads, people passing by, etc.). Note
hat all the positions have the same number (namely, 2) of links in
LOS conditions.

In the LTE outdoor scenario, the anchors are evolved Node Bs (eNBs)
ransmitting with an uplink frequency equal to 847 MHz and a down-
ink frequency equal to 806 MHz, over a bandwidth of 10 MHz. The
arget corresponds to the aforementioned IoT node in Fig. 6 running a
roper script which collects RSSI data through the LTE hat’s internal
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Fig. 5. Indoor WiFi-based localization scenario, with three possible target positions.
Fig. 6. IoT target node used for the experimental performance analysis in indoor and
outdoor localization scenarios.

Fig. 7. Outdoor LTE-based ‘‘virtual’’ localization scenarios: LOS links are indicated with
solid lines and NLOS links are indicated with dashed lines. The target position is fixed
and, next to each anchor, the scenarios where the anchor is involved are indicated.

Application Programming Interfaces (APIs). Since the available APIs
do not allow for simultaneous data collection from several eNBs, we
collect single link measurements from a single eNB under different
LOS/NLOS channel conditions and then build a ‘‘virtual’’ scenario, as
shown in Fig. 7, where solid and dashed lines correspond to LOS and
NLOS links, respectively. The virtual scenario is obtained by placing
‘‘virtual’’ eNBs at distances, from the target, equal to the distances
from the real eNB at which real experimental data were collected.
Moreover, for each virtual eNB, LOS or NLOS channel status is selected
on the basis of the corresponding experimental data: LOS is associated
with direct visibility of anchors and target, whereas a NLOS status is
8

Table 1
Configurations of LOS and NLOS links for the considered three experimental WiFi-based
indoor scenarios. The target-anchor (AP) links are LOS/NLOS depending on the position
of the target.

Scenario (target position) LOS links NLOS links Not considered anchors

1 3,4,5,6 1,2 –
2 3,4 2,5 1,6
3 4,5 3,7 1,2,6

Table 2
Configurations of LOS and NLOS links for the considered ‘‘virtual’’ LTE-based outdoor
scenarios. The target is fixed and the status (LOS/NLOS) of each link depends on the
anchor (eNB). Each scenario involves a different configuration of anchors.

Scenario LOS links NLOS links Not considered anchors

1 1,2 3,4 5,6
2 1,2 3,4,5 6
3 1,2 3,5 4
4 1,2,6 3 5
5 1,2,6 3,4,5 –

associated with the presence of either the target inside a building or
with the presence of at least one building between target and anchor. In
particular, the data associated with link between the 𝑖th virtual anchor
(𝑖 = 1, 2,… , 6) and the target corresponds to the measured RSSI values
at the 𝑖th eNB-target distance under different LOS/NLOS conditions. As
for the indoor scenario, in this case as well measurements are taken un-
der different environmental conditions for fixed target-eNBs’ distances
and LOS/NLOS conditions (e.g., node inside a building, presence of
thick walls, etc.). The considered scenarios (with different LOS/NLOS
conditions) are described in Table 2. Unlike the indoor case, in the
outdoor case the target is fixed and the links statuses depend on the
‘‘virtual’’ anchor. Different scenarios involve different configurations of
anchors.

In both cases, data are collected at the target with a RSSI sampling
interval of 100 ms. The number 𝑇 of collected RSSI blocks from all the
anchors is 842 for WiFi and 757 for LTE, each block containing 𝑁 = 30
consecutive RSSI samples, corresponding to an observation time of 3
seconds. Note that this interval may be too large for scenarios where
the target is a moving person. However, the focus of the proposed
approach is on IoT applications in which the nodes are quasi-static and,
therefore, the communication channel experiences limited variations.
Note also that the overall acquisition time can be farther reduced, for a
fixed value of 𝑁 , with a shorter sampling interval, i.e., higher sampling
rate. As preliminarily shown in [15], the accuracy of NLOS identifi-
cation improves if 𝑁 increases. Consequently, the performance of the
mitigation can improve as well, since the NLOS links can be identified
more accurately. However, increasing 𝑁 leads to a longer delay in the
acquisition process: this can be critical in dynamic scenarios with a
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Fig. 8. ROC curves of the considered classifiers in the indoor WiFi scenario with the
target in position 1 (see Fig. 5 and Table 1). For each curve, the marker shows the
working point for final classification accuracy of approximately 84%.

Fig. 9. ROC curves of some of the proposed classifiers in the indoor WiFi scenario
position 1, see Fig. 5 and Table 1) and various values of 𝑁 . A comparison with the
lassifiers in [16] is provided.

obile target. In this case, in fact, if the acquisition delay is too long,
he LOS/NLOS classification may refer to an outdated target position
nd may make the entire localization process inaccurate. Our results
with various values of 𝑁), not presented here for lack of space, show
hat 𝑁 = 30 is a good trade-off between position estimation accuracy
nd delay. The number 𝐿 of blocks of RSSI measurements associated
ith NLOS links is 278 for the WiFi scenario and 405 for the LTE

cenario. Therefore, the number 𝑇 − 𝐿 of blocks associated with LOS
inks is 564 for the WiFi case and 352 with LTE.

Channel classification is performed for each of the 𝑇 blocks of RSSI
easurements—channel status is considered constant over a block.
hen the reference NN classifier is considered, the input layer extracts

he set of features ̃, while the output generates the estimated channel
tatus 𝓁. Internally, the hidden layer is a 5-neuron fully connected
ayer using the scaled conjugate gradient training function. The size
f the training, validation, and testing dataset are 80%, 10%, and
0% of 𝑇 , respectively [15]. These values are chosen as a reasonable
rade-off between training duration and NN performance. Moreover,
ross-validation has been performed by considering different subsets’
raining, validation, and testing and, then, computing the average
erformance.
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Table 3
Parameters for NLOS classification and mitigation in the indoor WiFi scenario with the
target in position 1 (see Fig. 5 and Table 1).

Feature Threshold Classification
weights

Mitigation weights
(𝛾0 = −1.39)

𝜎 𝜎∗ = 2 𝛼1 = 0.2 𝛾1 = 0.56
𝑆 𝑆∗ = 0.6 𝛼2 = 0.1 𝛾2 = −1.59
𝐾 S ∗ = 5 𝛼3 = 0.1 𝛾3 = 0.31
S S ∗ = 5 𝛼4 = 0.1 𝛾4 = 0.04
P P∗ = 0.7 𝛼5 = 0.5 𝛾5 = 3.40

Regarding channel mitigation, the regression weight vector 𝜸 in (20)
is computed using all the 𝐿 blocks of the NLOS measurements to
generate the matrix 𝑭 in (19). Then, this vector is used to compute the
distance correction coefficient for the specific link and block according
to (18). Note that this training operation, including the computation
of the thresholds for NLOS classification, occurs only once at the
deployment of the localization system.

Finally, a localization act is performed every time the target ac-
quires a block of 𝑁 = 30 RSSI measurements from each of the 𝑀
anchors (i.e., after 𝑁 ⋅ 𝑀 RSSI values are acquired)—the values of
𝑀 depend on the specific scenario (see Tables 1 and 2). The total
number of performed localization acts, denoted as 𝐾 ′, is between 100
and 150 and depends on two aspects: (i) the number of times that
the target is able to collect data from the all the anchors; and (ii)
the application (or not) of an outlier removal strategy. In particular,
the acquisition of the set of 𝑁 ⋅ 𝑀 RSSI values is stopped when a
sufficient number of localization acts can be performed also in the
presence of outlier removal. Regarding the outlier removal strategy, in
this work we a-priori assume that the position estimate should lie inside
the polytope identified by the anchors, i.e., the anchors should be at
the boundary of the monitored area. Therefore, the considered outlier
removal strategy eliminates position estimates that are significantly
outside such a polytope.11 In particular, we discard decisions for which
|𝑥̂𝑗 | > 2max𝑖 |𝒔𝑖| or |𝑦̂𝑗 | > 2max𝑖 |𝒔𝑖|, where 𝑥̂𝑗 and 𝑦̂𝑗 are the coordi-
nates of the position estimate 𝒖̂𝑗 at the 𝑗th localization act. For example,
this could be appropriate for in-region user presence verification. Note
that the outlier removal strategy only affects the localization algorithm
and not the NLOS identification stage. In the indoor WiFi scenarios,
the percentage of outliers is between 0% (for PSO-TSML) and 27% (for
TSML), whereas it ranges between 0% (for PSO-TSML) and 50% (for
TSML) in the outdoor LTE scenarios.

4.1. Indoor WiFi scenarios

We first analyze the performance of the NLOS classifier in terms
of its Receiver Operating Characteristic (ROC) curve, defined as the
probability of correct LOS classification, i.e., 𝑃D = 𝑃 (𝓁 = 1|𝓁 = 1), as
a function of the probability of incorrect NLOS classification, i.e., 𝑃F =
𝑃 (𝓁 = 1|𝓁 = 0). The ROC curve for the indoor WiFi scenario is shown in
Fig. 8, considering various classifiers and the target in position 1 (see
Fig. 5). For each considered classifier, the ROC curve is composed of
points associated with different decision strategies, namely the values
of single thresholds for the single-feature classifiers and 𝓁th for the
weighed classifier. The markers on the curves (one per curve) show the
operational points in correspondence to which the final classification
accuracy is approximately 84%.12 The values of the thresholds and
weights of the various classifiers needed to achieve a final classification
accuracy of approximately 84% are shown in Table 3. In this case,
𝓁th = 0.5.

11 Improved outlier removal strategies can be considered, but this goes
beyond the scope of this paper.

12 This value is chosen as a reasonable performance trade-off.
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Fig. 10. Estimated positions in indoor WiFi scenario (position 1, see Fig. 5 and Table 1) with outlier removal.
Fig. 11. RMSE for the indoor WiFi scenario and position 1 (see Fig. 5 and Table 1).

Fig. 12. RMSE for the considered indoor WiFi-based scenario (position 1, see Fig. 5
and Table 1), comparing the average mitigation with per-link optimized mitigation.

As can be seen from the results in Fig. 8, the NN-based classifier
provides the best solution, yet paying a higher price in terms of
computational complexity and training needs. Moreover, for a final
classification accuracy of 84%, properly weighing all the five con-
sidered features allows to achieve the best performance among the
considered classifiers. However, the single-feature classifiers based on
PP or 𝜎 achieve very good results (for instance, the performance with
PP at 84% accuracy overlaps with the performance with weighing)
with a very simple implementation. This behavior makes single-feature
classifiers attractive for energy conservation purposes (especially for
mobile and constrained devices, such as in IoT-oriented scenarios). On
the other hand, other single-feature classifiers (based on 𝑆, 𝐾 and S )
do not provide acceptable performance.

In Fig. 9, we compare our classification results in the indoor WiFi
scenario (considering two values of 𝑁 , namely 30 and 100) with those
in [16], where the following approaches have been considered: (i) a
reference case with Recurrent Neural Network (RNN) and 𝑁 = 10 and
(ii) a single statistical feature (namely the skewness) classifier with 𝑁 =
100. One can observe that the NN (ours) and RNN [16] benchmarks
have similar performance. Moreover, our single-feature classifier (based
10
Fig. 13. CDF of the localization error normalized to the average anchor-target distance,
comparing the PSO-TSML (our best performing algorithm with WiFi communications)
with the experimental performance of the bisection-based algorithm detailed in [21]
using 6 anchors and UWB communications.

Fig. 14. RMSE results for indoor WiFi scenario and different positions of the target
(see Fig. 5 and Table 1).

on the PP) with 𝑁 = 30 outperforms single-feature classifier (based on
skewness) of [16] with 𝑁 = 10. Note that our accuracy, precision, and
sensitivity results are in agreement with those in [25, Table 1].

After classification, NLOS mitigation is carried out. In Table 3, the
weights for the mitigation procedure, corresponding to each feature,
are shown.

After mitigation of the 2 NLOS links associated to anchors 1 and
2 (see Fig. 5), localization is carried out. The estimated positions are
shown in Fig. 10. As a concise performance indicator of the localization
accuracy, we evaluate the Root Mean Square Error (RMSE, dimension:
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Fig. 15. ROC curves of the considered classifiers in the outdoor LTE scenario 1 (see
ig. 7 and Table 2). For each curve, the marker shows the working point for final
lassification accuracy of approximately 75%.

[m]), defined as
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he RMSE results are shown in Fig. 11 for the indoor WiFi scenario.
he case without and with NLOS mitigation are compared. In the latter
ase, we show the results for both the cases without and with outlier
emoval. One can observe that our (pre-localization) NLOS mitigation
trategy significantly reduces the RMSE, especially if carried out with
utlier removal. The only exception is the PSO-TSML algorithm, which
erforms well also in the absence of correction, provided that a suf-
icient number of particles and iterations are performed. However, as
reviously observed, the complexity of a PSO-based solution is typically
igh and, therefore, the adoption of such a solution is unfeasible in IoT
cenarios. Moreover, PSO requires an iterative process, which may also
inder its applicability from a latency point of view. However, PSO-
SML represents a relevant performance benchmark. In fact, the latency

s caused by the localization algorithm, but the initial training phase to
etermine the parameters for NLOS identification and mitigation is the
ame as for the other algorithms.

While our approach entails a fixed mitigation parameter 𝜸 in (20),
valid for all links, it is of interest to compare its performance with
that obtained in the case in which NLOS identification and mitigation
parameters are optimized for each target-anchor communication link.
In Fig. 12, the RMSE is shown for the considered indoor WiFi scenario,
comparing our ‘‘average mitigation’’ with per-link optimized mitiga-
tion. In all the cases, NLOS correction and outlier removal is considered.
As expected, the localization accuracy improves when the mitigation
coefficient is optimized for each NLOS link. In particular, the PI is the
algorithm which mostly benefits from NLOS mitigation. However, this
comes at the price of an increased complexity and no scalability, since
one has to train the system for each specific link.

We now compare our performance with that of [21], considered
as a literature benchmark. In Fig. 13, the Cumulative Distribution
Function (CDF) of the localization error, normalized to the average
anchor-target distance, is shown, comparing the PSO-TSML (namely,
the algorithm with the best performance with our approach) with the
experimental results of [21] using 6 anchors. One can observe that
the performance of our scheme is aligned with that of [21], even if
the latter uses a different NLOS model (with constant bias) and UWB
signaling (which achieves a significantly higher ranging accuracy). In
11

particular, with probability equal to 80%, the error with UWB is around
Table 4
Parameters for NLOS classification and mitigation in the outdoor LTE scenario 1 (see
Fig. 7 and Table 2).

Feature Threshold Classification Mitigation weights
weights (𝛾0 = −0.62)

𝜎 𝜎∗ = 1.7 𝛼1 = 0.2 𝛾1 = 5.58
𝑆 𝑆∗ = 0 𝛼2 = 0.2 𝛾2 = −1.83
𝐾 S ∗ = 3 𝛼3 = 0.3 𝛾3 = 6.51
S S ∗ = −0.1 𝛼4 = 0.2 𝛾4 = −7.88
P P∗ = 0.7 𝛼5 = 0.1 𝛾5 = 0.71

12% of the average target-anchor distance, whereas with WiFi is around
37%. Moreover, our strategy has the advantage of being agnostic to
the considered localization algorithm, whereas the approach in [21]
requires to change the entire localization procedure.

We finally show in Fig. 14 the performance, in terms of RMSE,
for different target positions (see Fig. 5). Note that positions 2 and
3 show a higher localization error, due to the smaller number of
employed anchors in the localization process (i.e., 4 anchors instead
of 7). Moreover, NLOS classification accuracy worsens, especially with
the target in position 2 .

4.2. Outdoor LTE scenarios

We now analyze the performance in the outdoor LTE scenario. We
first consider scenario 1 (see Fig. 7 and Table 2). The ROC curves for
the considered classifiers are shown in Fig. 15. Considerations similar
to those carried out for Fig. 8 are still valid, except for the fact that,
in general, link classification and, therefore, NLOS mitigation is less
accurate. In Fig. 15, the operational points indicated with a symbol
over the ROC curves correspond to a final localization accuracy of
75% (the highest with LTE). As can be seen, the weighed classifiers
(both using all features) allow to achieve the best performance (for a
final accuracy of 75%), whereas the performance with the single-feature
classifiers degrades. Therefore, the weighed classifier can be consid-
ered as ‘‘universal’’, in the sense that it allows to achieve almost the
best performance in both (indoor and outdoor) considered scenarios—
obviously, by properly setting the algorithms’ parameters according
to the scenario. The thresholds and weights of the NLOS classifier, to
achieve a final classification accuracy of approximately 75%, are shown
in Table 4, together with the corresponding mitigation weights. In this
case as well, 𝓁th = 0.5.

The estimated positions and the RMSE for the outdoor LTE scenario
are shown in Fig. 16 and 17, respectively. From the results in Fig. 17, it
can be observed that, even if our mitigation strategy drastically reduces
the RMSE, the localization error still seems significant (on the order of
400 m in the best case). This is probably due to the fact that using only
four anchors (eNBs) is not sufficient in LTE scenarios. In this case as
well, the only exception is the PSO-TSML algorithm, which works very
well also in the absence of NLOS link mitigation. While in IoT scenarios
the complexity of PSO-TSML prevents its use, this may be attractive in
cellular (4G/5G) scenarios.

As in Section 4.1, we now compare the performance of our scheme
with a scenario in which the NLOS identification and mitigation pa-
rameters are optimized for each target-anchor communication link. In
Fig. 18, the RMSE is shown for the considered outdoor LTE scenario,
comparing our ‘‘average mitigation’’ approach with that based on per-
link optimized mitigation. In all the cases, the best algorithm, i.e., the
one with NLOS correction and outlier removal, is considered. Similarly
to what observed in Fig. 12 for the indoor WiFi scenario, considering
per-link mitigation improves the performance, especially when PI is
used.

In order to investigate the impact of LOS/NLOS links, we investi-
gate the performance in other scenarios summarized in Table 2 (with
reference to Fig. 7). In Fig. 19, we directly compare the performance

in all LTE virtual scenarios. One should note that, unlike scenario 1
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Fig. 16. Estimated positions in the outdoor LTE scenario 1 (see Fig. 7 and Table 2) with outlier removal.
Fig. 17. RMSE for the outdoor LTE scenario 1 (see Fig. 7 and Table 2).

Fig. 18. RMSE for the considered outdoor LTE-based scenario 1 (see Fig. 7 and
Table 2), comparing our ‘‘average mitigation’’ approach with an approach based on
per-link optimized mitigation.

where all the algorithms achieve approximately the same performance,
in other cases the TSML algorithm guarantees the lowest position
error. Moreover, the PI has the worst performance approximately in
all scenarios.

4.3. Indoor/outdoor scenario comparison

We finally compare directly the performance of the proposed local-
ization method, with NLOS pre-mitigation, in the considered outdoor
(LTE) and indoor (WiFi) scenarios. In Fig. 20, the ROC curves for the
outdoor LTE scenario 1 (see Fig. 7 and Table 2) and indoor WiFi sce-
nario 1 (see Fig. 5 and Table 1) are directly compared, considering both
the reference NN and the best (weighed) classifier. One can observe that
the reference NN classifier has approximately the same performance in
indoor and outdoor scenarios. On the other hand, the weighed classifier
has better performance in the indoor case. The shapes of the ROC
curves with the weighed classifier are the same in indoor and outdoor
scenarios.

We now set to compare the localization accuracy in outdoor LTE
scenario 1 (see Fig. 7 and Table 2) and indoor WiFi scenario 1 (see
Fig. 5 and Table 1). In order to make a fair comparison, we ‘‘normalize’’
12
the RMSE with respect to the average distance between target and
anchors, which is 650 m in the outdoor scenario and approximately
8.62 m in the indoor scenario. Therefore, the normalized RMSE is a
relative measure of the localization estimation error with respect to the
considered topology. In Fig. 21, we compare the normalized RMSEs in
outdoor LTE (from Fig. 17) and indoor WiFi (from Fig. 11) scenarios:
in all cases, NLOS pre-mitigation, together with outlier removal, is con-
sidered. It is worth noting that, except for the PSO-TSML, the relative
RMSE is approximately the same for all considered algorithms in both
scenarios. This is a desirable feature of the proposed strategy, since it
means that its performance is not affected by the specific scenario. Intu-
itively, this can be justified by the fact that communication bandwidths
are similar in outdoor and indoor scenarios and it is well-known that
the localization error is approximately inversely proportional to such a
quantity [38]. A thorough analytical demonstration of this behavior is
the subject of on-going research.

5. Concluding remarks

In this paper, we have investigated a pragmatic approach to RSSI-
based localization. This is attractive in scenarios where positioning
is performed by (resource-constrained) IoT COTS devices. In order to
limit the computational complexity, the key idea is to perform channel
status identification (LOS/NLOS), in order to mitigate the identified
NLOS links before carrying out localization. In particular, identification
and mitigation are based on the computation of significant statistical
features over observation windows of 𝑁 consecutive RSSI samples.
Our results show that high channel status identification accuracy can
be achieved by simply using a threshold detector based on a single
statistical feature of the RSSI, namely the PP. Mitigation has then
been performed by deriving a single average correction coefficient
for the distance estimates associated with NLOS links, in order to
transform them into equivalent LOS links. The use of a single average
correction coefficient significantly limits the computational complexity
of the mitigation phase. The performance can be significantly improved
considering per link optimized identification and mitigation, at the cost
of a much higher computational complexity.

A few state-of-the-art localization algorithms have then been con-
sidered and experimental performance assessment has been carried
out in indoor (WiFi) and outdoor (LTE) scenarios. Our results show
that (low-complexity) localization algorithms (namely, TSML and PI)
significantly benefit, in terms of position error reduction, from the
use of NLOS mitigation. In general, TSML-PSO guarantees the best
performance in all considered scenarios, regardless of NLOS link miti-
gation. In indoor (WiFi-based) and outdoor (LTE-based) scenarios, with
average NLOS mitigation (applied to any target-anchor NLOS link), the
lowest RMSEs are around 30% and 60% of the average target-anchor
distance, respectively. When NLOS mitigation is performed on a per-
link basis, the PI algorithm can achieve a RMSE, normalized to the
average target-anchor distance, on the order of 10% in both indoor
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Fig. 20. Comparison of the ROC curves for the outdoor LTE scenario 1 (see Fig. 7 and
Table 2) and indoor WiFi scenario 1 (see Fig. 5 and Table 1), considering both the
reference NN and the best (weighed) classifier.

Fig. 21. Comparison of the normalized RMSE for the outdoor LTE scenario 1 (see
Fig. 7 and Table 2) and indoor WiFi scenario 1 (see Fig. 5 and Table 1).

WiFi and outdoor LTE scenarios. The performance of our approach in
indoor WiFi scenarios compares favorably with that of an approach
which relies of UWB RSSI.
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