
508 IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 5, OCTOBER 2014

A Scalable and Self-Configuring Architecture
for Service Discovery in the

Internet of Things
Simone Cirani, Luca Davoli, Gianluigi Ferrari, Rémy Léone, Paolo Medagliani, Marco Picone, and Luca Veltri

Abstract—The Internet of Things (IoT) aims at connecting
billions of devices in an Internet-like structure. This gigantic infor-
mation exchange enables new opportunities and new forms of
interactions among things and people. A crucial enabler of robust
applications and easy smart objects’ deployment is the availabil-
ity of mechanisms that minimize (ideally, cancel) the need for
external human intervention for configuration and maintenance
of deployed objects. These mechanisms must also be scalable,
since the number of deployed objects is expected to constantly
grow in the next years. In this work, we propose a scalable and
self-configuring peer-to-peer (P2P)-based architecture for large-
scale IoT networks, aiming at providing automated service and
resource discovery mechanisms, which require no human inter-
vention for their configuration. In particular, we focus on both
local and global service discovery (SD), showing how the proposed
architecture allows the local and global mechanisms to successfully
interact, while keeping their mutual independence (from an opera-
tional viewpoint). The effectiveness of the proposed architecture is
confirmed by experimental results obtained through a real-world
deployment.

Index Terms—Constrained Application Protocol (CoAP),
distributed hash tables (DHTs), Internet of Things (IoT),
peer-to-peer (P2P), self-configuration, service discovery
(SD), zero-configuration (ZeroConf).

I. INTRODUCTION

T HE INTERNET of Things (IoT) is envisioned to bring
together billions of devices, also denoted as smart

objects, by connecting them in an Internet-like structure, allow-
ing them to communicate and exchange information and to
enable new forms of interaction among things and people.
Smart objects are typically equipped with a microcontroller,
a radio interface for communication, sensors and/or actuators.
Smart objects are constrained devices, with limited capabili-
ties in terms of computational power and memory. They are

Manuscript received June 23, 2014; accepted August 29, 2014. Date of
publication September 16, 2014; date of current version October 21, 2014.
The work of S. Cirani, G. Ferrari, and L. Veltri was supported by the European
Community’s Seventh Framework Programme, area “Internetconnected
Objects,” under Grant 288879, CALIPSO project—“Connect All IP-based
Smart Objects!” The work of P. Medagliani was supported by the French
National Research Agency (ANR) under Grant IRIS ANR-11-INFR-0016. The
work of M. Picone was supported by Guglielmo srl, Reggio Emilia (RE), Italy.

S. Cirani, L. Davoli, G. Ferrari, M. Picone, and L. Veltri are with the
Department of Information Engineering, University of Parma, 43124 Parma,
Italy.

R. Léone and P. Medagliani are with Thales Communications and Security,
92622 Gennevilliers, France.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JIOT.2014.2358296

typically battery-powered, thus introducing even more con-
straints on energy consumption: this motivates the quest for
energy-efficient technologies, communication/networking pro-
tocols and mechanisms. The Internet Protocol (IP) has been
widely envisaged as the true IoT enabler, as it allows to
bring the full interoperability among heterogeneous objects.
As part of the standardization process which is taking place,
new low-power protocols are being defined in international
organizations, such as the IETF and the IEEE. At the appli-
cation layer, the Constrained Application Protocol (CoAP) [1]
has been designed to bring the REpresentational State Transfer
(REST) paradigm, which was originally conceived for appli-
cations based on HTTP [2], to the IoT and is expected to
become the standard communication protocol for constrained
applications.

Together with application-layer protocols, suitable mecha-
nisms for service and resource discovery should be defined.
In particular, CoAP defines the term service discovery (SD)
as the procedure used by a client to learn about the endpoints
exposed by a server. A service is discovered by a client by learn-
ing the uniform resource identifier (URI) [3] that references a
resource in the server namespace. Resource discovery is related
to the discovery of the resources offered by a CoAP endpoint.
In particular, M2M applications strongly rely on this feature to
keep applications resilient to changes, without the need for any
external human intervention. A Resource Directory (RD) [4]
is a network element hosting the description of resources held
on other servers, allowing lookups to be performed for those
resources.

A crucial issue for the robust applications, in terms of
resilience to changes that might occur over time (e.g., avail-
ability, mobility, and resource description), and the feasible
deployment of (billions of) smart objects is the availability of
mechanisms that minimize, if not remove, the need for human
intervention for the configuration of newly deployed objects.
In fact, the RESTful paradigm is intended to promote soft-
ware longevity and independent evolution [5], which are both
extremely important aspects for IoT and M2M applications
deployed on smart objects that are expected to stay operational
for long periods of time (e.g., years). Self-configuring service
and resource discovery mechanisms should take into account
the different scopes that these operations might have: 1) within
a local scope, an SD mechanism should enable communication
between geographically concentrated smart objects (i.e., resid-
ing in the same network) and 2) within a global (large-scale)

2327-4662 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CIRANI et al.: SCALABLE AND SELF-CONFIGURING ARCHITECTURE FOR SD IN IoT 509

scope, it should enable communication between smart objects
residing in different (and perhaps geographically distant) net-
works. These approaches should also be scalable, since the
expected number of deployed objects is going to be on the order
of billions.

Self-configuration is another crucial feature for the diffusion
of IoT systems, where all the objects equipped with a radio
interface are potential sources of information to be intercon-
nected. An external operator managing a network first needs
to configure the system. Clearly, if this operation is carried
out manually, possible misconfigurations may arise. This is far
more likely when thousands of devices are involved. In addi-
tion, an occasional manual network reconfiguration may cause
a remarkable system outage: for instance, in an industrial plant,
machines may need to be stopped during a normal technical
intervention. For this reason, a self-configurable IoT system is
expedient to prevent long outages and configuration errors.

Peer-to-peer (P2P) networks have been designed to provide
some desirable features for large-scale systems, such as scala-
bility, fault-tolerance, and self-configuration. The main feature
that makes P2P networks appealing is the fact that as the num-
ber of participating nodes increases, the overall system capacity
(in terms of processing and storage capabilities) increases
as well. This challenges classical client/server architectures,
where an increase in the number of clients may bring the system
to saturation and/or failure. P2P networks arrange participating
nodes in an overlay network, built on top of an existing net-
work, such as the Internet. The algorithm through which the
overlay is created can be used to make a distinction between
structured and unstructured P2P networks. Structured P2P net-
works, such as distributed hash tables (DHTs), are built using
consistent hashing algorithms, which guarantee that the routing
of requests takes a deterministic and upper-bounded number of
hops for completion, at the cost of having network traffic for
managing and maintaining the overlay. Historically, P2P net-
works have been associated with file sharing applications, such
as eMule1 and BitTorrent.2 The decrease in the popularity of
file sharing applications has cooled down the interest toward
P2P, even though notable applications, such as Skype, histori-
cally, use a P2P overlay as backbone to provide a scalable and
efficient service. However, the features that P2P networks have
been designed for are very appealing for IoT scenarios, where
large-scale and robust applications need to be supported. IoT
thus represents an opportunity of redemption and renaissance
for P2P.

In this work, we propose a scalable and self-configuring
architecture for service and resource discovery in IoT aiming
at providing mechanisms, which require no human interven-
tion for configuration and simplifying the deployment of IoT
applications. Our approach is based on: P2P technologies, at
a large scale, to provide a distributed large-scale service dis-
covery infrastructure; and, at a local scale, zero-configuration
(Zeroconf) mechanisms. Information on resources provided by
smart objects attached to a local wireless network is gathered by
a special boundary node, referred to as “IoT Gateway,” which is

1[Online]. Available: http://www.emule-project.net/
2[Online]. Available: http://www.bittorrent.com/

also part of a P2P overlay used to store and retrieve such infor-
mation, resulting in a distributed and scalable RD. As will be
shown, the performance of the global SD depends only on the
number of peers in the P2P overlay: this makes the proposed
approach directly scalable when the size of the IoT network
increases. The presence of a local SD at the IoT Gateways,
instead, makes the process of discovery of new resources auto-
matic. In particular, in our experimental tests, we refer to CoAP
for the description of the available endpoints. To the best of
our knowledge, this is the first work that provides an architec-
ture and mechanisms that integrate SD on both global and local
scales into a unique self-configuring system. We also provide
some preliminary results obtained by an implementation and a
real-world deployment of our architecture, thus demonstrating
its feasibility.

We point out that the proposed architecture is built upon
components designed to be absolutely agnostic regarding the
format of service and resource descriptors, in order to avoid
the introduction of application-specific constraints. In fact, the
architecture provides mechanisms for publishing and retriev-
ing information, mapped to service or RD URIs, which can be
represented in any suitable content format for service/resource
description, either already available, such as CoRE Link Format
[6], or foreseeable. The adoption of standard description for-
mats is mandatory to guarantee maximum interoperability, but
it is a service’s responsibility to enforce this practice. It is also
important to remark that IoT applications should be imple-
mented according to the REST paradigm and the definition of
CoAP is intended exactly to accomplish this. Client applica-
tions, in order to comply with the RESTful paradigm, must
follow the Hypermedia as the Engine of Application State
(HATEOAS) principle [2], which forbids applications from
driving interactions based on out-of-band information rather
than on hypermedia. The existence of prerequisites, in terms
of resource representation, is a violation of the REST paradigm
and cannot be attributed to the SD architecture. The latter is,
on the contrary, extremely flexible as it can possible handle
any resource description format. The absence of content-related
dependencies leads to more robust implementations, in terms of
longevity and adaptability to changes that resource descriptions
might undergo.

This paper is organized as follows. In Section II, an overview
of related work on service and resource discovery mechanisms
for IoT systems is provided. In Section III, a detailed descrip-
tion of the basic building blocks of our architecture is given.
In Section IV, we describe the architecture for large-scale SD,
whereas Section V illustrates the architecture for Zeroconf local
service and resource discovery. In Section VI, experimental
results based on the deployment of the proposed architecture
are presented. Finally, in Section VII, we draw our conclusion.

II. RELATED WORK

In the literature, there already exist some mechanisms imple-
menting SD. Most of them, however, have been conceived for
local area networks (LANs) and, then, have been extended
for constrained IPv6 over low-power wireless personal area
networks (6LoWPAN) networks. One of these mechanisms is

510 IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 5, OCTOBER 2014

Universal Plug and Play (UPnP) [7], a protocol that allows to
automatically create a device-to-device network. However, as
UPnP uses TCP as transport protocol and XML as the message
exchange format, it is not suited for constrained devices.

Another proposed mechanism is based on the Service
Location Protocol (SLP) [8], [9] through which computers and
devices can find services in LANs without prior configura-
tion. Devices use SLP to announce in the local network their
available services, which are grouped into scopes, i.e., simple
strings that allow to classify services. The use of SLP may be
important in large-scale IoT scenarios, in order to make SD
automatic. However, SLP is not targeting constrained devices,
such as those used in IoT. In addition, it relies on centralized
approaches, which may be prone to failures. Our approach,
instead, is based on a redundant and distributed mechanism for
resource location based on a P2P overlay. Finally, by now, no
SLP implementation is available for Contiki-based devices.

An alternative to UPnP is Zeroconf [10] networking protocol,
which allows to automatically create computer networks based
on the TCP/IP Internet stack and that does not require any exter-
nal configuration. Zeroconf implements three main functional-
ities: 1) automatic network address assignment; 2) automatic
distribution and resolution of host names; and 3) automatic
location of network services. The automatic network assign-
ment intervenes when a node first connects to the network.
The host name distribution and resolution is implemented using
multicast DNS (mDNS) [11], a service that has the same inter-
faces, packet formats, and semantic of the standard Domain
Name System (DNS) messages to resolve host names in net-
works that do not include a local name server. Concerning
the SD phase, Zeroconf implements the DNS-based Service
Discovery (DNS-SD) [12]. Using standard DNS queries, a
client can discover, in a given domain, the named instances of
the service of interest.

Within the field of ubiquitous computing, P2P Interactive
Agent eXtensions (PIAX), a P2P platform for geographic
service location, has been proposed [13], [14]. Unlike our
approach, in PIAX, every node is a peer of the overlay.
This approach is not suitable for IoT, since many nodes
are constrained in terms of processing capabilities. In addi-
tion, PIAX does not provide a URI resolution service, so
that it can only take care to route the query to the correct
area of the network but not to resolve the endpoint to be
contacted.

Efforts have been done to adapt these solutions to the world
of constrained devices. In [15], Busnel et al. introduce a P2P
overlay to perform broadcast or anycast in wireless sensor net-
works (WSNs) without any centralized element. Sensors are
clustered according to their types into specific layers. However,
in [15], Busnel et al. take into account neither the local SD
nor the computational complexity due to the existence of nodes
belonging to different layers. In [16], instead, Gutierrez et al.
introduce the separation between WSNs and P2P networks.
Their focus is on exploiting these two types of network to
develop a feedback loop to allow developers to define self-
managing behaviors. However, Gutierrez et al. [16] do not take
into account aspects like energy efficiency, self-discovery of
resources, or large-scale deployments. In [17], an automatic

discovery mechanism has been implemented: each node is
responsible for announcing itself to the main gateway through
HELLO messages. These messages are sent either in response
to a discovery request or proactively sent in an automatic way.
The gateway will then be in charge of addressing the requests
coming from external networks to the right nodes. In [18],
Kovacevic et al. propose NanoSD, a lightweight SD protocol,
designed for highly dynamic, mobile, and heterogeneous sen-
sor networks. This solution requires extensive multicast and
broadcast messages to keep track of service information of the
neighboring nodes. Another solution is presented in [19], where
a RESTFul web service is developed using HTTP-based SD.
However, it does not provide management and status mainte-
nance of existing services. Finally, in [20], Butt et al. divide
the network in groups, assigning different roles to the nodes
in each group. In this way, embedding a directory agent into
the border router, a more effective scalability can be handled.
However, this architecture tends to be too fragile in the presence
of failures of the central border router. In addition, the protocol
focuses on in-network service location, but it lacks coordi-
nation with other similar entities, thus preventing large-scale
discovery.

A few works related to SD in IoT systems are also appearing.
In [21], Jara et al. sketch an architecture for large-scale SD and
location. However, they rely on a centralized solution exposing
a search engine to make the integration of distributed service
directories feasible. In [22], Paganelli and Parlanti exploit an
underlying distributed P2P overlay to support more complex
queries, such as multiattribute and range queries. This approach
is more focused on service resolution rather than on the creation
of the overlay by automatically discovering existing services.
Unlike our approach, which aims at being transparent and
agnostic of the underlying technology, the P2P overlays have
been presented in [23]–[25] focusing especially on RFID for
supply chains.

CoAP natively provides a mechanism for SD and loca-
tion [1]. Each CoAP server must expose an interface /.well-
known/core to which the RD or, more generally, a generic
node can send requests for discovering available resources. The
CoAP server will reply with the list of resources and, for each
resource, with an attribute that specifies the format of the data
associated to that resource. CoAP, however, does not specify
how a node joining the network for the first time must behave
in order to announce itself to the RD node. In [26], this func-
tionality is extended to multicast communications. In particular,
multicast resource discovery is useful when a client needs to
locate a resource within a limited scope, and that scope sup-
ports IP multicast. A GET request to the appropriate multicast
address is made for /.well-known/core. Of course, this multicast
resource discovery works only within an IP multicast domain
and does not scale to larger networks that do not support end-
to-end multicast. However, in CoAP, there is no specification
on how a remote client can lookup into the RD and query for
the resource of interest.

Centralized approaches for SD, such as, for instance, the RD
of the CoAP protocol, suffer from scalability and availability
limitations and are prone to attacks, such as denial of service
(DoS). Possible alternatives to this problem may consist of the

CIRANI et al.: SCALABLE AND SELF-CONFIGURING ARCHITECTURE FOR SD IN IoT 511

use of distributed hast tables (DHTs). Key/value pairs are stored
in a DHT and any participating node can efficiently retrieve the
value associated with a given key. Responsibility for maintain-
ing the mapping from keys to values is distributed among the
nodes, in such a way that a change in the set of participants
causes a minimal amount of disruption (consistent hashing).
This allows a DHT to scale to extremely large numbers of
nodes and to handle continuous node arrivals, departures, and
failures. Different algorithms and protocols have been already
proposed for DHTs; the most significant are Chord [27] (for
its simplicity) and Kademlia [28] (for its efficiency). Some
works have been published also on the use of P2P for SD.
In [29], Yulin et al. combine P2P technology and central-
ized Universal Description Discovery and Integration (UDDI)
technology to provide a flexible and reliable service discovery
approach. In [30], Kaffille et al. apply the concepts of DHTs
to the SD creating an overlay P2P to exchange information
about available services without flooding the entire network.
However, these approaches do not take into account constraints
and requirements of IoT. In the following, we will detail our
P2P implementation for large-scale service/resource discovery
in IoT networks, extending the P2P DHT solution by taking into
account the requirements of scalability and self-configuration
typical of constrained networks.

III. IOT GATEWAY

As anticipated in Section I, the SD architecture proposed
in this work relies on the presence of an “IoT Gateway.” By
combining different functions, the IoT Gateway provides both
IoT nodes and standard (nonconstrained) nodes with service
and resource discovery, proxying, and (optionally) caching and
access control functionalities. In this section, the internal archi-
tecture of the IoT Gateway and its associated functions will be
detailed.

A. Proxy Functionality

The IoT Gateway interacts, at the application level, with
other IoT nodes through CoAP and may act as both CoAP client
and CoAP server. More precisely, according to CoAP specifi-
cations, it may act as CoAP origin server and/or proxy. The
CoAP specification defines an origin server as a CoAP server
on which a given resource resides or has to be created, while a
proxy as a CoAP endpoint which, by implementing both the
server and client sides of CoAP, forward requests to an ori-
gin server and relays back the received responses. The proxy
may also (optionally) perform caching and protocol translation
(cross proxy).

The presence of a proxy at the border of an IoT network can
be very useful for a number of reasons:

1) to protect the constrained network from the outside, i.e.,
for security reasons (DoS attacks);

2) to integrate with the existing web through legacy HTTP
clients;

3) to ensure high availability of resources through caching;
4) to reduce network load of constrained devices;
5) to support data formats that might not be suitable for

constrained applications, e.g., XML.

Fig. 1. Architecture of the IoT Gateway with internal layers and caching/RD
capabilities.

In Fig. 1, a layered view of the IoT Gateway node is
presented.

In addition to standard CoAP proxying behavior, the IoT
Gateway may also act a HTTP-to-CoAP proxy by translating
HTTP requests to CoAP requests (and vice-versa). Just like a
standard CoAP proxying, an HTTP-to-CoAP proxy can inte-
grate two different operational modes: 1) reverse-proxy, when,
by translating incoming HTTP requests to CoAP requests, it
provides access to resources that are created and stored by
CoAP nodes within the IoT network (acting as CoAP servers);
and 2) origin-server, when it acts as both HTTP and CoAP
server, by letting CoAP nodes residing in the IoT network (and
acting as clients) create resources through CoAP POST/PUT
requests, and by making such resources available to other
nodes through HTTP and CoAP. The latter operational mode
is particularly suited for duty-cycled IoT nodes, which may
post resources only during short wake-up intervals. In Fig. 2,
the difference between a reverse-proxy and an origin-server is
shown.

From an architectural point of view, the IoT Gateway is
composed by the following elements.

1) An IP gateway managing IPv4/IPv6 connectivity among
smart objects in heterogeneous networks (i.e., IEEE
802.15.4, IEEE 802.11.x, and IEEE 802.3) for inter-
connecting devices operating in different networks by
providing an IP layer to let nodes communicate seam-
lessly.

2) A CoAP origin server, which can be used by CoAP
clients within the network to post resources which will
be maintained by the server on their behalf.

3) A HTTP-to-CoAP reverse proxy, optionally equipped
with caching capabilities, which can be used for access-
ing services and resources that are available in an internal
constrained network.

The IoT Gateway is, therefore, a network element that coor-
dinates and enables full and seamless interoperability among
highly heterogeneous devices, which: may operate different
protocols at the link and/or application layers; may not be aware
of the true nature of the nodes providing services and resources;
and may be geographically distant.

512 IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 5, OCTOBER 2014

Fig. 2. HTTP-to-CoAP proxy acting as (a) reverse proxy and (b) origin server.

B. Service and Resource Discovery

SD aims at getting the host port of the CoAP servers in
the network, while resource discovery allows to discover the
resources that a CoAP server manages. Because of its role in
managing the life cycle of nodes residing in its network, the IoT
Gateway is naturally aware of the presence of the nodes and the
available services and resources. When the IoT Gateway detects
that a CoAP node has joined its IP network, it can query the
CoAP node asking for the list of provided services (this is done
in CoAP, by sending a GET request to the /.well-known/core
URI). Such information (the RD) is then locally maintained
by the IoT Gateway and successively used to route incoming
requests to the proper resource node. According to this mech-
anism, the IoT Gateway may act as a RD for the CoAP nodes
within the network.

In Section IV, we detail how IoT Gateways can be federated
in a P2P overlay in order to provide a distributed and global
service and RD that can be used to discover services at a global
scale. In Section V, we then provide a Zeroconf solution to
discover resources and services within a local scope with no
prior knowledge or intervention required on any node of the
network; this allows the IoT Gateways to populate and update
their resource and service directories.

IV. P2P-BASED LARGE-SCALE SD ARCHITECTURE

As stated in Section III, IoT Gateways can be federated in a
P2P overlay in order to provide a large-scale SD mechanism.
The use of a P2P overlay can provide several desirable features
as follows.

1) Scalability: P2P systems are typically designed to scale
and increase their capacity as the number of participants
increases.

2) High availability: P2P systems are inherently robust since
they have no single-point of failure and the failure of a
node does not compromise the overall availability of the
services and resources provided.

3) Self-configuration: P2P systems provide mechanisms to
let the overlay reorganize itself automatically when nodes
join and leave, requiring no direct intervention for config-
uration.

These features fit perfectly in IoT scenarios, where billions of
objects are expected to be deployed. Among several possible
approaches to implement P2P overlays, structured P2P over-
lays, such as DHTs, provide some interesting features, such
as efficient storage and lookup procedures, which result in

deterministic behaviors with respect to unstructured overlays,
which rely on flooding techniques for message routing. In the
remainder of this section, we propose a P2P-based approach to
provide a scalable and self-configuring architecture for service
discovery at a global scale.

IoT Gateways are organized as peers of a structured P2P
overlay, which provides an efficient name resolution for CoAP
services. The large-scale SD architecture presented in this work
relies on two P2P overlays: 1) the distributed location service
(DLS) [31] and 2) the distributed geographic table (DGT) [32],
[33]. The DLS provides a name resolution service to retrieve
all the information needed to access a resource (of any kind)
identified by a URI. The DGT builds a distributed geographi-
cal knowledge, based on the location of nodes, which can be
used to retrieve a list of resources matching geographic criteria.
The combination of these two P2P overlay systems allows to
build a distributed architecture for large-scale service discovery
with the typical features of P2P networks (scalability, robust-
ness, and self-configuration), yet enabling the unique feature of
service and resource discovery on a geographical basis. In the
following, we first detail the DLS and DGT; then, we describe
the overall envisioned system architecture.

A. DLS

The DLS is a DHT-based architecture, which provides a
name resolution service based on storage and retrieval of bind-
ings between a URI, identifying some resources (e.g., a web
service), and the information that indicates how such a resource
can be accessed [31]. Basically, the DLS implements a loca-
tion service, which can be used to store and retrieve information
for accessing services and resources. Together with each con-
tact URI, some other information can be stored, such as the
expiration time, an access priority value, and, optionally, a
human-readable text (e.g., a contact description or a name).

The service provided by DLS can be considered similar to
that of the DNS, since it can be used to resolve a name to
retrieve the information needed to access the content related
to that name. However, the DNS has many limitations that the
DLS overcomes, as follows.

1) The DNS applies only to the Fully-Qualified Domain
Name (FQDN) and not to the entire URI.

2) The DNS typically has long propagation times (further
increased by the use of caching), which are not suited
to highly dynamic scenarios, such as those encompassing
node mobility.

CIRANI et al.: SCALABLE AND SELF-CONFIGURING ARCHITECTURE FOR SD IN IoT 513

3) The DNS basically provides the resolution of a name
which results in an IP address, but it does not allow to
store and retrieve additional useful information related
to the resolved URI, such as the description and the
parameters of the hosted service.

Another important aspect that makes the use of the DLS prefer-
able with respect to the DNS is its robustness. In fact, if a DNS
server is unreachable, then resolution cannot be performed. On
the contrary, P2P overlays do not have single-point of failures
that might cause service disruption, resulting in a more robust,
dynamic, and scalable solution.

A DLS can be logically accessed through the two simple
methods: 1) put(key,value) and 2) get(key), where key is a
Resource URI (actually its hash), whereas value is a struc-
tured information that may include location information (e.g.,
a contact URI) together with a display name, expiration time,
priority value, etc. The get(key) method should return the set
of the corresponding values (actually the contact informa-
tion) associated with the targeted resource. The removal of a
resource is performed by updating an existing resource through
a put operation with expiration time set to 0. This mapping
allows to achieve support for 1) mobility: it is sufficient to
put and replace an old resource with an updated one, which
considers the new position of the resource and 2) replica-
tion: it is sufficient to execute several put operations for the
same resource in order to have multiple replicas diffused in
the DHT.

The DLS interface can be easily integrated with existing
networked applications, such as a middleware layer offering
services to applications and working on top of standard trans-
port protocols. Different RPC protocols, such as dSIP [34] and
RELOAD [35], may be used for messaging, regardless of the
actual selected DHT algorithm (e.g., Chord or Kademlia).

B. DGT

The DGT [32], [33] is a structured overlay scheme, built
using directly the geographical location of the nodes. Unlike
DHTs, with a DGT each participant can efficiently retrieve
node or resource information (data or services) located near
any chosen geographic position. In such a system, the respon-
sibility for maintaining information about the position of active
peers is distributed among nodes, so that a change in the set of
participants causes a minimal amount of disruption.

The DGT is different from other P2P-based localization
systems, where geographic information is routed, stored, and
retrieved among nodes organized according to a structured
overlay scheme. The DGT principle consists in building the
overlay taking directly into account the geographic positions
of nodes, allowing to build a network where overlay neighbors
are also geographic neighbors and no additional messages are
needed to obtain the closest neighborhood of a peer. The main
difference between the DGT and the DHT-based P2P overlays
is the fact that the DGT overlay is structured in such a way that
the messages are routed based exclusively on the geographic
locations of nodes, rather than on keys that have been assigned
to nodes. Typically, DHTs arrange hosts at unpredictable and
unrelated points in the overlay, deriving keys through hashing

functions. At the opposite, the DGT ensures that hosts that
are geographically close are guaranteed to be neighbors in the
overlay.

The DGT provides a primitive get(lat, lon, rad), which
returns a list of nodes which fall inside the circular region cen-
tered in (lat,lon) with radius rad. Each node that provides a
service can be looked up. The get primitive is used to local-
ize the list of nodes in a certain geographic region. It might be
possible to extend the get primitive by introducing query filters,
which may be used to return only matching services. The DGT
does not provide a generic put primitive that can be invoked
on the overlay as a whole. However, it is possible to extend the
classical DGT behavior with a generic put primitive, which con-
sists of the detection of a list of peers in a given area (through
the native DGT get primitive) and, subsequently, to invoke a put
method directly on each of the detected peers.

C. P2P-Based Architecture for Large-Scale Service Discovery

The mechanisms presented in Sections IV-A and IV-B are the
key ingredients of a large-scale SD architecture. In Fig. 3, an
illustrative representation of the system architecture is shown.
Several IoT Gateways managing their respective networks
are interconnected through the two P2P overlays. Each IoT
Gateway is at the same time a DLS peer and a DGT peer. The
data structures of the overlays are separated, since they pertain
to different operations of the overall architecture. The DLS and
DGT overlays are loosely coupled. In fact, the IoT Gateway
uses: the DLS to publish/lookup the details of resources and
services; and the DGT to publish its presence or discover exist-
ing IoT Gateways in a given geographic area. This separation
allows the IoT Gateway to access the services provided by each
overlay as a “black-box,” without any risk of direct interference
between the overlays. In fact, the IoT Gateway is responsible to
implement the behavior required by the SD architecture. The
lifecycle of an IoT Gateway is shown in Fig. 4 and can be
described as follows.

1) Upon start up, the IoT Gateway joins the DLS and DGT
overlays.

2) The IoT Gateway publishes its presence in the DGT by
issuing a DGT.put(lat, lon, URIGW) request.

3) When the IoT Gateway detects a new CoAP node in
the network, through any suitable means (e.g., Zeroconf),
it fetches the node’s Local Resource Directory (LRD)
through a CoAP GET request targeting the /.well-
known/core URI. The LRD is filled with JSON-WSP3

documents or similar formats (such as CoRE Link
Format) containing the description of all the resources
that are hosted by the CoAP node and the information
to be used to access them; at this point, the resources
included in the fetched node’s LRD are added to the IoT
Gateway’s LRD.

3Java Script Object Notation Web-Service Protocol (JSON-WSP) is a web-
service protocol that uses JSON for service description, requests, and responses.
It has been designed to cope with the lack of service description specification
with documentation in JSON-RPC, a remote procedure call protocol in JSON
format.

514 IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 5, OCTOBER 2014

Fig. 3. Large-scale SD architecture. IoT Gateway nodes act as peers of two different P2P overlays. The DLS overlay is used for discovering resources and
services as a “white-pages” service providing a name resolution service to be used to retrieve the information needed to access a resource. The DGT is used as a
“yellow-pages” service to learn about the existence of IoT Gateway nodes in a certain geographical neighborhood.

Fig. 4. Messages exchanged when a new node joins the network. First, the IoT
Gateway discovers the resources of a new CoAP server or stores them on behalf
of a CoAP client. Finally, DGT and DLS are updated with information about
the new node.

4) If the IoT Gateway is willing to let the resources be reach-
able through it, it will modify its LRD to include the
references of the URLs to be used to reach the resources
through the IoT Gateway, obtaining a new LRD, denoted
as LRD*; the IoT Gateway could also delete from the
LRD all the references directly related to this resource, in
order to avoid that a resource could be accessed without
the IoT Gateway relaying messages.

5) The IoT Gateway publishes the LRD* in the DLS through
a DLS.put(URInode/.well-known/core,LRD*) request.

6) The IoT Gateway keeps track of the list of nodes that are
in its managed network, by adding the node in a Local
Node Directory (LND).

7) The IoT Gateway publishes the LND pair in the DLS
through a DLS.put(URIGW /.well-known/nodes,LND)
request.

8) If, in addition, the IoT Gateway acts as origin server, it
stores its own resources, which will then be published
as soon as it receives CoAP POST requests from CoAP
clients residing in the inner network.

Steps 3) to 7) are repeated for each CoAP node detected in the
network. By publishing all the LRDs in the DLS, a Distributed
Resource Directory (DRD) is obtained. The DRD provides a
global knowledge of all the available resources. The use of
LNDs provides a census of all the nodes that are within a
certain network. Location information is managed with JSON-
WSP or CoRE Link Format documents, which provide all the
details related to parameters and return values. This is similar
to WSDL documents, in a more compact, yet as descriptive,
format than XML. As soon as a node joins a local network
and discovers the presence of an IoT Gateway (it can be
assumed that either the IoT Gateway address is hard coded or
the node joins the RPL tree finding out the presence of the
IoT Gateway—other mechanisms may also be possible), the
node announces its presence—we point out that this phase is
optional, in the sense that other discovery mechanisms can be
adopted. When the IoT Gateway detects this advertisement, it
issues a GET /.well-known/core to the node, in order to discover
its available resources. The node, in return, replies by sending
a JSON-WSP or CoRE Link Format document describing its
exposed resources, the URI to access them, and their data for-
mat. Finally, the IoT Gateway will parse this response and will
populate the DLS and DGT accordingly. If other IoT Gateways
are present within a certain network, they can act as additional
access points for a resource: this can be achieved by publish-
ing an LRD∗′ containing the URLs related to them. This will
lead to highly available and robust routing in very dynamic
scenarios, where IoT Gateways may join and leave the net-
work. Should one want to provide fault-tolerance, information
replication mechanisms can be also introduced [36].

In the proposed architecture, the DLS can be interpreted as
a “white-pages” service to resolve the name of a service, in
the form of a URI, to get all the information needed to access
it. Similarly, the DGT can be interpreted as a “yellow-pages”

CIRANI et al.: SCALABLE AND SELF-CONFIGURING ARCHITECTURE FOR SD IN IoT 515

Fig. 5. Data retrieval operations: 1) the client C contacts a known IoT Gateway
GW1; 2) GW1 accesses the DGT to retrieve the list of IoT Gateways avail-
able in a given area; 3a) GW1 selects one of these IoT Gateways, namely
GW2; 3b) GW1 discovers the nodes managed by the GW2 through the DLS
or directly by contacting GW2; 4) finally, GW1 queries the node, associated
with the resource of interest, managed by GW2.

service, used to retrieve a list of available services match-
ing geographic location criteria, i.e., in the proximity of a
geographic position. Note that the DGT is just one possible
solution to get matching services, but other mechanisms might
be adopted. Other solutions, for instance, may not be related
to geographic locations, but matching criteria can be charac-
terized differently, e.g., based on taxonomies/semantics—this
is the case if the search is carried out by the type of service
rather than by geographical location. The distinction between
the lookup services provided by DLS and DGT avoids the inclu-
sion, in the URI, of service or resource information that can
dynamically change (such as the location), thus making it pos-
sible to support also mobility of services and resources. The
DGT and the DLS run in parallel, and the IoT Gateways of a
IoT subnetwork act as peers of both the DLS and the DGT. The
resulting architecture is very flexible and scalable, in terms of
nodes that may join and leave the network at any time. In fact, as
explained in Sections IV-A–IV-C, the nature of DLS and DGT
P2P overlay networks allows to add new IoT Gateways with-
out requiring the recomputation of the entire hash table. Vice
versa, only the nodes responsible for maintaining the resources
close to the joining node must update their hash tables in order
to include the resources of the new node.

A client, in need for retrieving data from a resource and with
no information about the URI to contact, must perform the oper-
ations shown in Fig. 5. In particular, the client can perform SD
through the mediation of a known IoT Gateway, which is part
of the DLS and DGT overlays. The procedure can be detailed
as follows (the first five steps are explicitly shown in Fig. 5).

1) The client contacts a known IoT Gateway in order to
access the DLS and DGT overlays for SD.

2) The client uses the DGT to retrieve a list of IoT Gateways
that are in the surroundings of a certain geographical
location through a DGT.get(lat, lon, rad) message.

3a) The IoT Gateway selects one of the IoT Gateways
returned by the DGT and discovers the list of its managed
nodes, through a DLS.get(URIGW1/.well-known/nodes)
request.

3b) The IoT Gateway discovers the resources that are
reachable i) by executing a DLS.get(URInode/.well-
known/core) procedure or ii) by issuing a CoAP GET
request for URIGW2/.well-known/core.

4) The IoT Gateway interacts with the resource by issuing
CoAP or HTTP requests targeting the selected resource
through the appropriate IoT Gateway; the client can then
contact the URI of the resource either directly through
CoAP (if supported by the IoT Gateway) or HTTP (by
delegating to the IoT Gateway the HTTP-CoAP request
translation).

5) Once the command has been transmitted to the CoAP
server, the latter will reply with the requested data.

6) If supported, the response will be through CoAP to the
client; otherwise, the IoT Gateway will be in charge of
response translation.

V. ZEROCONF-BASED LOCAL SD FOR

CONSTRAINED ENVIRONMENTS

SD within a local network can be performed using several
mechanisms. In scenarios, where a huge number of devices
is involved or external human intervention is complicated, it
is desirable that all devices can automatically adapt to the
surrounding environment. The same considerations apply to
devices that do not reside in a particular environment but
are characterized by mobility, such as smartphones. In both
cases, an SD mechanism, which requires no prior knowledge
of the environment, is preferable. In this section, we propose
a novel lightweight Zeroconf-based mechanism for service and
resource discovery within local networks.

A. Architecture

The considered local SD mechanism is based on the
Zeroconf protocol suite. The local SD involves the following
elements.

1) IoT nodes (smart objects) belonging to an IoT network.
2) An IoT Gateway, which manages the IoT network and

acts as RD.
3) Client nodes, which are interested in consuming the

services offered by the IoT nodes.
We assume that the use of IP multicast is supported

within the local network and Dynamic Host Configuration
Protocol (DHCP) [37] is the dynamic configuration for the IP
layer.

B. SD Protocol

There are essentially two relevant scenarios for the applica-
tion of the proposed SD protocol.

1) A new device offering some service is added to the
network and starts participating actively.

2) A client, which is interested in consuming the services
offered by the nodes already present in the network,
discovers the available services.

In the former scenario, the procedure for adding a new ser-
vice to the network can be performed in two different ways,
depending whether: 1) the smart object can be queried for
its services (using the /.well-known/core URI) or 2) it posts
the information related to the services it is offering on the
IoT Gateway, which acts as a RD. The difference between

516 IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 5, OCTOBER 2014

Fig. 6. Service advertisement by CoAP server detected by HTTP-to-CoAP
proxy.

Fig. 7. Service advertisement by HTTP-to-CoAP proxy detected by CoAP
client.

the two scenarios can also be interpreted by characterizing
the smart object as a CoAP server or as a CoAP client,
respectively.

In case the device acts as a CoAP (origin) server, the service
discovery procedure, shown in Fig. 6, is as follows.

1) The IoT node joins the network and announces its pres-
ence by disseminating a DNS-SD message for a new
service type _coap._udp.local.

2) The IoT Gateway, listening for events related to service
type _coap._udp.local., detects that a new node has joined
the network.

3) The IoT Gateway queries the new node for its provided
services by sending a CoAP GET request targeting the
URI /.well-known/core.

4) The IoT node replies with a JSON-WSP or CoRE Link
Format document describing the offered services.

5) The IoT Gateway updates the list of services that it
manages on behalf of the constrained nodes residing in
the network, thus making these services consumable by
clients residing outside of the IoT network (e.g., remote
Internet hosts, which may be unaware of the constrained
nature of the network where the service of interest is
located).

If the device acts as a CoAP client, instead, the service
discovery procedure, shown in Fig. 7, is as follows.

1) The proxy, which is a module of the IoT Gateway,
announces its presence, periodically, by disseminating a

DNS-SD message for a new service type _httpcoap._udp.
local.;

2) The joining smart object, which is listening for events
related to the service type advertised by the IoT Gateway
(_httpcoap._udp.local.), detects that an IoT Gateway is
available in the network.

3) The smart object sends a CoAP GET request to the URI
/.well-known/core to get a description of the services that
the IoT Gateway provides and other information that
might be used to detect the most suitable proxy for the
client.

4) The IoT Gateway replies with a JSON-WSP or CoRE
Link Format document describing the services it provides.

5) The smart object processes the payload and then
sends a CoAP POST/PUT request to the IoT Gateway
to store resources to be made available to external
clients.

In this scenario, the IoT Gateway does not simply for-
ward incoming requests and relay responses, but it acts as a
server both toward: 1) the generator of the resource (CoAP
client) from which it receives CoAP POST requests and
2) external clients, to which it appears as the legitimate ori-
gin server, since the generator of the data is not a CoAP
server.

When a client needs to discover the available services, the
procedure comprises the following steps.

1) The client sends a CoAP or HTTP request to the proxy
targeting the URI /.well-known/core.

2) The proxy replies with a JSON-WSP or CoRE Link
Format document describing all the services managed on
behalf of the nodes.

3) The client then uses the received information to perform
subsequent CoAP or HTTP requests in order to consume
the required services.

The use of IP multicast (i.e., mDNS) offers the main advan-
tage of avoiding to set “a priori” the actual network address
of any present device, thus eliminating the need for any
configuration.

VI. IMPLEMENTATION RESULTS

The solutions presented in the previous sections may apply
to many large IoT scenarios where scalable and reliable service
and resource discovery is required. In particular, we focus on a
smart infrastructure surveillance scenario, where given areas of
interest can be monitored by means of the deployment of wire-
less devices. Each device (smart object) is characterized by the
type of the collected data and by its position. A system user may
then be interested either in directly contacting a given resource
(e.g., a sensor) or having the list of all available resources in a
given area. Such wireless sensors are grouped into low-power
wireless networks with one or more gateways acting as inter-
faces between the resulting constrained wireless network and
the rest of the network (namely, in the considered scenario, the
Internet).

In order to validate the feasibility of the proposed solution
and to evaluate its performance, an extensive experimentation
has been carried out targeting the reference smart infrastructure

CIRANI et al.: SCALABLE AND SELF-CONFIGURING ARCHITECTURE FOR SD IN IoT 517

TABLE I
LOCAL SD METRICS

surveillance scenario. The performance evaluation focuses on
both the local and large-scale SD mechanisms described in
Sections IV and V, respectively.

A. Local SD

The first phase of experimental performance analysis focuses
on the discovery of new CoAP services (associated with con-
strained devices) available in the local network.

The performance evaluation of the Zeroconf-based local
service discovery strategy has been conducted using Zolertia
Z1 Contiki nodes, simulated in the Cooja simulator. The
Contiki software stack running on each node has been con-
figured in order to fit in the Z1’s limited available memory,
in terms of both RAM and ROM-Z1 nodes feature nominal
92 kB ROM (when compiling with 20 bit architecture sup-
port) and an 8 kB RAM. In practice, the compilation with the
Z1 nodes has been performed with a 16 bit target architec-
ture, which lowers the amount of available ROM to roughly
52 kB. The simulated smart objects run Contiki OS, uIPv6,
RPL, NullMAC, and NullRDC. The software stack deployed
on the smart objects includes our lightweight implementation
of the mDNS [11] and DNS-SD [12] protocols, developed in
order to minimize memory footprint and to include all the
needed modules in the smart objects. The implementations
comply with the IETF standards defined in the RFCs and can
be replaced by any other compatible implementation, should
no particular constraint on the code size be present. The local
SD mechanism has been tested on IEEE 802.15.4 networks
formed by Contiki nodes arranged in linear and grid topolo-
gies. The performance indicator is the time needed to perform
a DNS-SD query—from the DNS-SD client perspective—and
to process an incoming DNS-SD query and respond—from the
DNS-SD server perspective—(dimension: [ms]). The impact
of the number of constrained nodes (and, therefore, the num-
ber of needed hops) in the network is analyzed. All the results
have been obtained by performing 100 SD runs on each con-
figuration. The specific performance metrics are detailed in
Table I.

In Fig. 8(a), the considered linear topology, with a maximum
of 20 nodes deployed in Cooja, is shown. In particular, node
1 is the 6LoWPAN Border Router (6LBR), which is the root
of the RPL tree; node 2 is the node acting as DNS-SD server;

Fig. 8. (a) Linear topology considered for multihop Zeroconf-based SD.
(b) Average time (dimension: [ms]) of Zeroconf-based SD on Contiki nodes
with linear topology.

and node 3 is the node acting as DNS-SD client. The distance
between nodes has been set so that the query must follow a
multihop path consisting of as many hops as the number of
nodes in the network. In Fig. 8(b), the corresponding perfor-
mance, in terms of QC/QS times, as functions of the number
of smart objects, is shown. The QS time has a nearly constant
value around 65 ms, since the processing time is independent
of the number of nodes in the network. The QC time is a linear
function of the number of hops (which, in our scenario, coin-
cides with the number of nodes), since the query packet has
to be relayed by each intermediate node to reach the DNS-SD
server node.

More complex bidimensional topologies have also been
tested in order to evaluate grid-like deployments. Different sizes
and arrangements for grids have been considered, as shown in
Fig. 9. In all cases: node 1 is the 6LBR; node 2 is the node acting
as DNS-SD server; and node 3 is the node acting as DNS-SD
client. The topologies in Fig. 9 are denoted as: 1) Grid-A (3
hops); 2) Grid-B (4 hops); 3) Grid-C (6 hops); and 4) Grid-D (5
hops). The corresponding performance of service resolution, in
terms of QC/QS times, is shown in Fig. 10. Just like in the lin-
ear case, the QS time is independent of the network size (around
65 ms are still needed by the DNS-SD server-side processing).
As the number of nodes participating in the network increases,
the QC time increases as well, due to the need for multihop
communications from client to server. It can be observed that,
in the case of Grid-D, even though the number of nodes is
larger than in the case of Grid-C, the QC time is shorter. This
is due to the fact that the distance between the nodes has been
decreased from 40 to 30 m (to minimize collisions due to the
use of NullMAC) and, therefore, the total number of hops from
the client to the server decreases. In general, it can be concluded
that, at a fixed node density, the QC time is a linear function of
the number of hops.

518 IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 5, OCTOBER 2014

Fig. 9. Grid topologies considered for bidimensional deployments of smart objects.

Fig. 10. Average QC/QS times of the Zeroconf-based SD in the grid topologies
shown in Fig. 9 (dimension: ms).

B. Large-Scale SD

The second performance evaluation phase focuses on a P2P
overlay where multiple IoT Gateways join the network in
order to store new services into the DLS overlay and retrieve
references to existing ones. The aim of this evaluation is to test
the validity of the proposed approach with different configura-
tions and, in particular, to measure the average time required by
an IoT Gateway to complete the three main actions in the net-
work (JOIN, PUT, and GET) with different sizes of the P2P
overlay. We focus only on the evaluation of the DLS over-
lay since the published content pertains to IoT services and
resources and, therefore, it represents the component of the pro-
posed SD architecture that is directly related to IoT services and
resources. The DGT allows to achieve a structured geographical
network that can be used to efficiently discover available nodes
based on location criteria in a content-agnostic way, which is
what the DGT has been designed for and thoroughly evaluated,
both in simulative environments and real-world deployments
[38], [39].

The performance evaluation has been carried out considering
several configurations, with different numbers of IoT Gateways
(which are also the peers of the overlay). Each IoT Gateway
acts as boundary node of a wireless network with CoAP-aware
sensor nodes. The DLS overlay uses a Kademlia DHT and the
dSIP protocol for P2P signalling [34], [40]. Both are imple-
mented in Java. The P2P overlay contains up to 1000 nodes
deployed over an evaluation platform composed of four cluster

hosts, where each computing host is an 8-CPU Intel Xeon
E5504 at 2.00 GHz, 16 GB RAM running the Ubuntu 12.04
operating system. The number of nodes in the P2P network
has been split evenly among all cluster hosts (up to 250 peers
per cluster host), which were connected using a traditional
switched ethernet LAN. The HTTP-to-CoAP proxy function-
ality relies on two different implementations: 1) one based
on the mjCoAP library [41], an open-source Java-based RFC-
compliant implementation of the CoAP protocol and 2) the
other based on the Californium platform [42]. Both HTTP-to-
CoAP proxies are written in Java and provide their own local
SD mechanisms. The use of two different types of HTTP-
to-CoAP proxy shows clearly how the overlay can be easily
developed and integrated with currently available technolo-
gies. The sensor nodes are either Arduino boards or Java-based
emulated CoAP nodes (just for emulating large network sce-
narios). Each performance result is obtained by averaging over
40 executions of PUT and GET procedures for each size of the
overlay.

As anticipated, the following performance metrics are of
interest: 1) elapsed time for a JOIN operation (dimension: ms);
2) number of rounds for PUT operations (adimensional); and
3) number of rounds for GET operations (adimensional). The
selection of the number of rounds for PUT and GET operations,
rather than their times, is expedient to present performance
results that are independent of the actual deployment environ-
ment. For the JOIN operation, the average total time required
to completion is shown in order to provide a practical measure-
ment of the complexity of this operation. However, the very
nature of all operations relies on a common iterative procedure
(as explained in [28]), thus making it possible to intuitively
derive the behavior of all operations in terms of time and
rounds.

The performance results are shown in Fig. 11. As expected,
the complexity, in terms of (a) JOIN time and (b) and (c) num-
bers of rounds for PUT/GET operations, is a logarithmically
increasing function of the number of peers. In Fig. 11, the
experimental data are directly compared with the following
logarithmic fitting curves [43]:

Join time � 16.5 + 61.29 · log n
of Rounds PUT � −5.75 + 3.44 · log n
of Rounds GET � −0.40 + 0.15 · log n.

CIRANI et al.: SCALABLE AND SELF-CONFIGURING ARCHITECTURE FOR SD IN IoT 519

Fig. 11. Experimental results collected to evaluate the performance of the DLS overlay, showing: (a) the average elapsed time (dimension: [ms]) for JOIN
operations; (b) the average number of rounds (adimensional) for PUT operations; and (c) the average number of rounds (adimensional) for GET operations on the
DLS toward the number of active IoT Gateways in the P2P network. Plotted data have also been used to construct fitting curves (in red); the formula of the fitting
curve is reported in the top-right corner.

This clearly proves the scalability brought by the use of a P2P
approach, confirming the formal analysis and results discussed
in [28].

VII. CONCLUSION

In this paper, we have introduced a novel architecture for
self-configurable, scalable, and reliable large-scale service dis-
covery. The proposed approach provides efficient mechanisms
for both local and global SD. First, we have described the IoT
Gateway and the functionalities that this element must imple-
ment to perform resource and SD. Then, we have focused on
large-scale distributed resource discovery exploiting a proper
P2P overlays, namely DLS and DGT, which implement, respec-
tively, “white-pages” and “yellow-pages” services. Finally, we
have shown a solution for automated local SD that allows to
discover resources available in constrained WSNs and to pub-
lish them into the P2P overlay with no need for any prior
configuration (Zeroconf). An extensive experimental perfor-
mance evaluation of the proposed local and large-scale SD
mechanisms has been performed. For the local SD, experimen-
tation has been conducted on Contiki-based nodes operating in
constrained (IEEE 802.15.4) networks with RPL in the Cooja
simulator. The large-scale SD mechanism has been deployed
and tested on P2P overlays of different sizes, spanning from
a few to 1000 peers, in order to evaluate the performance
in terms of scalability and self-configuration. The obtained
results show that the time required for service resolution in the
Zeroconf-based approach for local SD is linearly dependent on
the number of hops in the path between the client and server
node. Considering large-scale SD, the adoption of a P2P over-
lay provides scalability in terms of time required to perform
the basic publish/lookup operations. In conclusion, the easy and
transparent integration of two different types of overlays shows
the feasibility and reliability of a large-scale architecture for
efficient and self-configurable service and resource discovery
in IoT networks.

ACKNOWLEDGMENT

The authors would like to thank M. Antonini, University of
Parma, for his valuable contributions and support.

REFERENCES

[1] Z. Shelby, K. Hartke, and C. Bormann. (Jun. 2013). Constrained
Application Protocol (CoAP). RFC 7252 (Proposed Standard), Internet
Engineering Task Force [Online]. Available: http://tools.ietf.org/html/
rfc7252

[2] R. Fielding et al., (Feb. 2013). Hypertext Transfer Protocol—HTTP/1.1.
Internet Engineering Task Force RFC 2616 [Online]. Available: http://
tools.ietf.org/html/rfc2616

[3] T. Berners-Lee, R. Fielding, and L. Masinter. (Jan. 2005). Uniform
Resource Identifier (URI): Generic Syntax. Internet Engineering Task
Force, RFC 3986 [Online]. Available: http://tools.ietf.org/html/rfc3986

[4] Z. Shelby, C. Bormannand, and S. Krco. (Dec. 2013). CoRE Resource
Directory, Internet Engineering Task Force, Internet-Draft draft-ietf-
Core-Resource-Directory-01 (Proposed Standard) [Online]. Available:
http://tools.ietf.org/id/draft-ietf-core-resource-directory-01.txt

[5] R. T. Fielding, “Architectural styles and the design of network-based soft-
ware architectures,” Ph.D. dessertation, Dept. Inform. Comput. Sci., Univ.
California, Oakland, CA, USA, 2000 [Online]. Available: http://www.ics.
uci.edu/fielding/pubs/dissertation/top.htm

[6] Z. Shelby. (2012, Aug.). Constrained RESTful Environments (CoRE) Link
Format. RFC 6690 (Proposed Standard), Internet Engineering Task Force
[Online]. Available: http://www.ietf.org/rfc/rfc6690.txt

[7] UPnP Forums. (1999) [Online]. Available: http://www.upnp.org/
[8] E. Guttman, C. Perkins, and J. Veizades. (Jun. 1999). Service Location

Protocol, Version 2. Internet Engineering Task Force, RFC 2608 [Online].
Available: http://tools.ietf.org/html/rfc2608

[9] E. Guttman. (Jan. 2002). Vendor Extensions for Service Location
Protocol, Version 2. Internet Engineering Task Force, RFC 3224 [Online].
Available: http://tools.ietf.org/html/rfc3224

[10] Zeroconf Website. (1999) [Online]. Available: http://www.zeroconf.org/
[11] S. Cheshire and M. Krochmal. (Feb. 2013). Multicast DNS. Internet

Engineering Task Force, RFC 6762 [Online]. Available: http://tools.ietf.
org/html/rfc6762

[12] S. Cheshire and M. Krochmal. (Feb. 2013). DNS-Based Service
Discovery. Internet Engineering Task Force, RFC 6763 [Online].
Available: http://tools.ietf.org/html/rfc6763

[13] Piax Website (2004). [Online]. Available: http://www.piax.org/en
[14] Y. Kaneko, K. Harumoto, S. Fukumura, S. Shimojo, and S. Nishio, “A

location-based peer-to-peer network for context-aware services in a ubiq-
uitous environment,” in Proc. Sym. Appl. Internet Workshops, Jan. 2005,
pp. 208–211.

[15] Y. Busnel, M. Bertier, and A.-M. Kermarrec, “Solist or how to
look for a needle in a haystack? A lightweight multi-overlay struc-
ture for wireless sensor networks,” in Proc. IEEE Int. Conf. Netw.
Commun. Wireless Mobile Comput. (WiMob’08), Avignon, France, Oct.
2008, pp. 25–31.

[16] G. Gutierrez, B. Mejias, P. Van Roy, D. Velasco, and J. Torres, “WSN
and P2P: A self-managing marriage,” in Proc. 2nd IEEE Int. Conf.
Self-Adaptive Self-Organ. Syst. Workshops (SASOW’08), Oct. 2008,
pp. 198–201.

[17] J. Leguay, M. Lopez-Ramos, K. Jean-Marie, and V. Conan, “An efficient
service oriented architecture for heterogeneous and dynamic wireless sen-
sor networks,” in Proc. 33rd IEEE Conf. Local Comput. Netw., (LCN’08),
2008, pp. 740–747.

520 IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 5, OCTOBER 2014

[18] A. Kovacevic, J. Ansari, and P. Mahonen, “NanoSD: A flexible service
discovery protocol for dynamic and heterogeneous wireless sensor net-
works,” in Proc. 6th Int. Conf. Mobile Ad-Hoc Sensor Netw. (MSN’10),
2010, pp. 14–19.

[19] S. Mayer and D. Guinard, “An extensible discovery service for smart
things,” in Proc. 2nd Int. Workshop Web of Things (WoT’11), 2011,
pp. 7:1–7:6.

[20] T. A. Butt, I. Phillips, L. Guan, and G. Oikonomou, “TRENDY: An adap-
tive and context-aware service discovery protocol for 6LoWPANs,” in
Proc. 3rd Int. Workshop Web of Things (WOT’12), 2012, pp. 2:1–2:6.

[21] A. Jara et al., “Mobile digcovery: A global service discovery for the
Internet of Things,” in Proc. 27th Int. Conf. Adv. Inf. Netw. Appl.
Workshops (WAINA’13), 2013, pp. 1325–1330.

[22] F. Paganelli and D. Parlanti, “A DHT-based discovery service for
the Internet of Things,” J. Comp. Netw. Commun., vol. 2012, 2012,
doi:10.1155/2012/107041.

[23] N. Schnemann, K. Fischbach, and D. Schoder, “P2P architecture for
ubiquitous supply chain systems,” in ECIS, S. Newell, E. A. Whitley,
N. Pouloudi, J. Wareham, and L. Mathiassen, Eds., 2009, pp. 2255–2266.

[24] S. Shrestha, D. S. Kim, S. Lee, and J. S. Park, “A peer-to-peer RFID
resolution framework for supply chain network,” in Proc. 2nd Int. Conf.
Future Netw. (ICFN’10), 2010, pp. 318–322.

[25] P. Manzanares-Lopez, J. P. Muoz-Gea, J. Malgosa-Sanahuja, and
J. C. Sanchez-Aarnoutse, “An efficient distributed discovery service for
{EPCglobal} network in nested package scenarios,” J. Netw. Comput.
Appl., vol. 34, no. 3, pp. 925–937, 2011.

[26] A. Rahman and E. Dijk. (2014, Sep.). Group Communication for
CoAP. Internet Engineering Task Force, Internet-Draft Draft-Ietf-
Core-Groupcomm-24 [Online]. Available: http://tools.ietf.org/id/draft-
ietf-core-groupcomm-24.txt

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, pp. 149–160, Aug.
2001 [Online]. Available: http://doi.acm.org/10.1145/964723.383071

[28] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” in Proc. 1st Int. Workshop
Peer-to-Peer Syst., (IPTPS’01), 2002, pp. 53–65 [Online]. Available:
http://dl.acm.org/citation.cfm?id=646334.687801

[29] N. Yulin, S. Huayou, L. Weiping, and C. Zhong, “PDUS: P2P-based dis-
tributed UDDI service discovery approach,” in Int. Conf. Serv. Sci. (ICSS),
2010, pp. 3–8.

[30] S. Kaffille, K. Loesing, and G. Wirtz, “Distributed service discovery
with guarantees in peer-to-peer networks using distributed hashtables,”
in Proc. Int. Conf. Parallel Distrib. Process. Tech. Appl. (PDPTA), 2005,
pp. 578–584.

[31] S. Cirani and L. Veltri, “Implementation of a framework for a DHT-
based distributed location service,” in Proc. 16th Int. Conf. Software,
Telecommun. Comput. Netw., (SoftCOM’08), Sep. 2008, pp. 279–283.

[32] M. Picone, M. Amoretti, and F. Zanichelli, “GeoKad: A P2P distributed
localization protocol,” in Proc. 8th IEEE Int. Conf. Pervasive Comput.
Commun. Workshops (PERCOM), 2010, pp. 800–803.

[33] M. Picone, M. Amoretti, and F. Zanichelli, “Proactive neighbor local-
ization based on distributed geographic table,” Int. J. Pervasive Comput.
Commun., vol. 7, pp. 240–263, 2011.

[34] D. Bryan, B. Lowekamp, and C. Jennings. (Feb. 2007). dSIP: A P2P
Approach to SIP Registration and Resource Location. Internet Engineer-
ing Task Force, Internet-Draft draft-bryan-p2psip-dsip-00 [Online].
Available: http://tools.ietf.org/id/draft-bryan-p2psip-dsip-00.txt

[35] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne.
(2013, Feb.). REsource LOcation And Discovery (RELOAD) Base
Protocol. Internet Engineering Task Force, Internet-Draft Draft-ietf-
p2psip-Base-26 [Online]. Available: http://tools.ietf.org/html/draft-ietf-
p2psip-base-26

[36] P. Gonizzi, G. Ferrari, V. Gay, and J. Leguay, “Data dissemination
scheme for distributed storage for IoT observation systems at large scale,”
Inf. Fusion, vol. 22, pp. 16–25, 2015 [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1566253513000444

[37] R. Droms. (1997, Mar.). Dynamic Host Configuration Protocol. Internet
Engineering Task Force, RFC 2131 [Online]. Available: http://tools.ietf.
org/html/rfc2131.txt

[38] M. Picone, M. Amoretti, and F. Zanichelli, “Evaluating the robustness of
the DGT approach for smartphone-based vehicular networks,” in Proc.
IEEE 36th Conf. Local Comput. Netw. (LCN), Oct. 2011, pp. 820–826.

[39] M. Picone, M. Amoretti, and F. Zanichelli, “A decentralized smartphone
based traffic information system,” in Proc. 2012 IEEE Intell. Veh. Symp.
Jun. 2012, pp. 523–528.

[40] S. Cirani and L. Veltri, “A Kademlia-based DHT for resource lookup in
P2PSIP,” Obsolete Internet Draft, Oct. 2007.

[41] S. Cirani, M. Picone, and L. Veltri, “mjCoAP: An open-source
lightweight Java CoAP library for Internet of Things applications,” in
Workshop Interoperability and Open-Source Solutions Internet Things,
Conjunction (SoftCOM’14): Proc. 22nd Int. Conf. Software, Telecommun.
Comput. Netw., Split, Croatia, Sep. 2014, 16 pp.

[42] M. Kovatsch, M. Lanter, and Z. Shelby, “Californium: Scalable cloud
services for the Internet of Things with coap,” in Proc. 4th Int. Conf.
Internet of Things (IoT’14), Cambridge, MA, USA, Oct. 2014, pp. 1–6.

[43] E. W. Weisstein. (2014 Sep., 30). Least Squares Fitting–Logarithmic
[Online]. Available: http://mathworld.wolfram.com/LeastSquaresFitting
Logarithmic.html

Simone Cirani received the Dr. Ing. (Laurea) degree
in computer science (cum laude) and Ph.D. degree
in information technologies from the University of
Parma, Parma, Italy, in 2007 and 2011, respectively.

He is a Postdoctoral Research Associate with the
Department of Information Engineering, University
of Parma. His research research interests include
Internet of Things, peer-to-peer networks, net-
work security, pervasive computing, and mobile
application development.

Luca Davoli received the B.Sc. and M.Sc. degrees in
computer science engineering from the University of
Parma, Parma, Italy, in 2011 and 2013, respectively,
and is currently working toward the Ph.D. degree in
information engineering at the University of Parma.

His research interests include peer-to-peer net-
works, security and protocols for the Internet of
Things, and pervasive computing.

Gianluigi Ferrari is currently an Associate Professor
of Telecommunications with the University of Parma,
Parma, Italy. He was a Visiting Researcher with
the University of Southern California (USC), Los
Angeles, CA, USA, from 2000 to 2001, Carnegie
Mellon University (CMU), Pittsburgh, PA, USA,
from 2002 to 2004, King Mongkut’s Institute
of Technology Ladkrabang (KMITL), Bangkok,
Thailand, in 2007, and Universitè Libre de Bruxelles
(ULB), Brussels, Belgium, in 2010. Since 2006,
he has been the Coordinator of the Wireless Ad-

Hoc and Sensor Networks (WASN) Laboratory, Department of Information
Engineering. As of today, he has been published extensively in the areas of
wireless ad hoc and sensor networking, adaptive digital signal processing, and
communication theory. He currently serves on the Editorial Boards of several
international journals.

Prof. Ferrari was the recipient of the Paper/Technical Awards at IWWAN06,
EMERGING10, BSN 2011, ITST-2011, SENSORNETS 2012, EvoCOMNET
2013, and BSN 2014.

Rémy Léone received the Master’s degree in
network from the Université Pierre et Marie at
Telecom Paris Tech (INFRES) Laboratory and Thales
Communications and Security, Gennvilliers, France.

His research interests include wireless sensors
networks.

CIRANI et al.: SCALABLE AND SELF-CONFIGURING ARCHITECTURE FOR SD IN IoT 521

Paolo Medagliani received the Master’s degree and
Ph.D. degree in information technologies from the
University of Parma, Parma, Italy, in 2006 and 2010,
respectively.

He is an Advanced Studies Engineer with the
Networking Group, Thales Communications and
Security, Gennevilliers, France. He has authored sev-
eral international conference papers, journal papers,
and patents. His research interests include adaptation
of wireless sensor networks for energy-aware systems
and, more in general, networking and medium access

problematic in scenarios with constrained nodes, performance analysis and
design of wireless sensor networks, and ad hoc networks.

Marco Picone received the Laurea (cum laude)
degree in computer engineering and Ph.D. degree
in information technologies from the University of
Parma, Parma, Italy, in 2008 and 2012, respectively.

He is a Postdoctoral Research Associate with the
University of Parma. In 2011, he was a Research
Visitor with the Computer Laboratory, University of
Cambridge, Cambridge, U.K. His research interests
include mobile and pervasive computing, location
based services, distributed systems, wireless sensor
networks, and the Internet of Things.

Luca Veltri received the Laurea degree in telecom-
munication engineering and Ph.D. degree in commu-
nication and computer science from the University of
“Rome La Sapienza,” Rome, Italy, in 1994 and 1999,
respectively.

Since 2002, he has been an Assistant Professor
with the University of Parma, Parma, Italy, where he
currently teaches classes on telecommunication net-
works and network security. His research interests
include P2P systems, future internet, and network
security.

