
1224 IEEE SENSORS JOURNAL, VOL. 15, NO. 2, FEBRUARY 2015

IoT-OAS: An OAuth-Based Authorization Service
Architecture for Secure Services in IoT Scenarios

Simone Cirani, Marco Picone, Pietro Gonizzi, Luca Veltri, and Gianluigi Ferrari, Senior Member, IEEE

Abstract— Open authorization (OAuth) is an open protocol,
which allows secure authorization in a simple and standardized
way from third-party applications accessing online services, based
on the representational state transfer (REST) web architecture.
OAuth has been designed to provide an authorization layer,
typically on top of a secure transport layer such as HTTPS.
The Internet of Things (IoTs) refers to the interconnection
of billions of resource-constrained devices, denoted as smart
objects, in an Internet-like structure. Smart objects have lim-
ited processing/memory capabilities and operate in challenging
environments, such as low-power and lossy networks. IP has been
foreseen as the standard communication protocol for smart object
interoperability. The Internet engineering task force constrained
RESTful environments working group has defined the con-
strained application protocol (CoAP) as a generic web protocol
for RESTful-constrained environments, targeting machine-to-
machine applications, which maps to HTTP for integration with
the existing web. In this paper, we propose an architecture target-
ing HTTP/CoAP services to provide an authorization framework,
which can be integrated by invoking an external oauth-based
authorization service (OAS). The overall architecture is denoted
as IoT-OAS. We also present an overview of significant IoT appli-
cation scenarios. The IoT-OAS architecture is meant to be
flexible, highly configurable, and easy to integrate with existing
services. Among the advantages achieved by delegating the
authorization functionality, IoT scenarios benefit by: 1) lower
processing load with respect to solutions, where access control
is implemented on the smart object; 2) fine-grained (remote)
customization of access policies; and 3) scalability, without the
need to operate directly on the device.

Index Terms— Internet of Things, security, authorization,
communication protocols.

I. INTRODUCTION

THE evolution of online services, such as those enabled by
social networks, has had a relevant impact on the amount

of data and personal information disseminated on the Internet.
Furthermore, it has determined the birth of applications that
rely on the disseminated information in order to offer new
services, such as aggregators. The information owned by
online services is made available to third-party applications in

Manuscript received July 21, 2014; accepted September 22, 2014. Date
of publication October 3, 2014; date of current version December 3, 2014.
The work of S. Cirani, P. Gonizzi, L. Veltri, and G. Ferrari was supported
by the European Community’s Seventh Framework Program through the
Project entitled Internetconnected Objects under Grant 288879, in part by
the CALIPSO Project-Connect All IP-Based Smart Objects. The work of
M. Picone was supported by Guglielmo S.r.L, Reggio Emilia, Italy. The
associate editor coordinating the review of this paper and approving it for
publication was Prof. Kiseon Kim.

The authors are with the Department of Information Engineering, Uni-
versity of Parma, Parma 43124, Italy (e-mail: simone.cirani@unipr.it;
marco.picone@unipr.it; pietro.gonizzi@studenti.unipr.it; luca.veltri@unipr.it;
gianluigi.ferrari@unipr.it).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSEN.2014.2361406

the form of public Application Programming Interfaces (APIs),
typically using HTTP [1] as communication protocol and
relying on the REpresentational State Transfer (REST)
architectural style. The possibility that someone else, besides
the entity which generates the information and the service
that is hosting it, can access this information has brought up
concerns about the privacy of personal information, since the
trust is no longer a pairwise relationship but possibly involves
other parties, which may be unknown at the time of service
subscription.

Open Authorization (OAuth) is an open protocol to allow
secure authorization from third-party applications in a simple
and standardized way [2]. The OAuth protocol provides an
authorization layer for HTTP-based service APIs, typically
on top of a secure transport layer, such as HTTP-over-TLS
(i.e., HTTPS) [3]. OAuth defines three main roles in the above
scenario:

• the User (U) is the entity which generates some sort of
information;

• the Service Provider (SP) hosts the information generated
by the users and makes it available through APIs;

• the Service Consumer (SC), also referred to as “client
application,” accesses the information stored by the SP
for its own utilization.

In order to comply with the security and privacy require-
ments, U must issue an explicit agreement that some client
application can access information on its/his/her behalf. This is
achieved by granting the client an access token, containing U’s
and SC’s identities, which must be exhibited in every request
as an authorization proof. The OAuth 2.0 protocol is the
evolution of the original OAuth protocol and aims at improving
the client development simplicity by defining scenarios for
authorizing web, mobile, and desktop applications [4]. While
connecting to existing online services is a simple task for client
application developers, implementing an OAuth-based autho-
rization mechanism on the SP’s side is a more complicated,
time-consuming, and, potentially, computationally intensive
task. Moreover, it involves the registration of both users and
client applications, and the permissions that Us grant to SC
applications and integrating with authentication services.

The Internet of Things (IoT) refers to billions of intercon-
nected devices, denoted as “Smart Objects” or “Smart Things.”
Smart Objects are typically equipped with sensors or actuators,
a tiny microprocessor, a communication interface, and a power
source. Smart Objects operate in challenging environments,
such as lossy and low-power networks, have limited computa-
tional power, and are usually battery-powered, thus requiring a
significant attention on keeping the energy consumption low.
International organizations, such as the Internet Engineering

1530-437X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CIRANI et al.: IoT-OAS: OAS ARCHITECTURE FOR SECURE SERVICES IN IoT SCENARIOS 1225

Task Force (IETF), the IPSO Alliance [5], and several research
projects, such as the FP7 EU project CALIPSO (Connect All
IP-based Smart Objects!) [6], promote the use of the Internet
Protocol (IP) as the standard for interoperability between
Smart Objects. The protocol stack run by Smart Objects tries
to match classical Internet hosts in order to make it feasible to
create the so-called “extended Internet,” i.e., the aggregation
of the Internet with the IoT. The IETF CoRE Working Group
has defined the Constrained Application Protocol (CoAP) [7],
a generic web protocol for RESTful constrained environments,
targeted to Machine-to-Machine (M2M) applications, which
maps to HTTP for integration with the existing web.

Security in IoT scenarios is a crucial aspect that applies at
different levels, ranging from technological to privacy and trust
issues, especially in scenarios involving Smart Toys (used by
children) or crowd/social behavior monitoring. This is related
to the fact that Smart Objects might deal with personal or
sensible data, which, if intercepted by unauthorized parties,
may create ethical and privacy problems. While the use of
the OAuth protocol has little impact, in terms of process-
ing and scalability, on conventional Internet-based services,
its adoption in IoT has to deal with the limitations and
challenges of constrained devices. The limited computational
power of Smart Objects may not be sufficient to perform the
cryptographic primitives required for message authentication,
integrity checks, and digital signatures, which may have a
negative impact on energy consumption. Moreover, if the
access permissions for the services provided by the Smart
Object reside on the Smart Object itself, it could be extremely
hard, if not impossible, to dynamically update them (e.g., in
smart parking systems where Smart Objects may be embedded
directly in the asphalt, such as Fastprk1 by Worldsensing [8])
once they have been deployed.

In this paper, we present a novel architecture targeted to IoT
scenarios for an external authorization service based on OAuth,
denoted as IoT-OAS. The delegation of the authorization func-
tionalities to an external service, which may be invoked by
any subscribed host or thing, affects:

1) the time required to build new OAuth-protected online
services, thus letting developers focus on service logic
rather than on security and authorization issues;

2) the simplicity of the Smart Object, which does not need
to implement any authorization logic but must only
invoke securely the authorization service in order to
decide whether to serve an incoming request or not;

3) the possibility to dynamically and remotely configure the
access control policies that the SP is willing to enforce,
especially in those scenarios where it is hardly possible
to intervene directly on the Smart Object.

Experimental results are presented highlighting the existing
trade-off between communication and processing costs.

The rest of this paper is organized as follows. In Section II,
related works are presented. In Section III, the IoT-OAS
architecture is presented. In Section IV, a few IoT-OAS
application scenarios are presented. In Section V, an extensive
experimental performance evaluation of the proposed solution

1http://www.fastprk.com/

is carried out. In Section VI, we discuss about open issues
related to the proposed architecture and IoT scenarios. Finally,
in Section VII we draw our conclusions.

II. RELATED WORK

In the rapidly evolving IoT scenario, security is an extremely
timely issue. The heterogeneous and dynamic nature of the
IoT brings up several questions related to security and privacy,
which must be addressed properly by taking into account the
specific characteristics of Smart Objects and the environments
they operate in. Classical security algorithms and protocols,
used by traditional Internet hosts, cannot simply be adopted
by Smart Objects, due to their processing and communication
constraints. An extensive overview of state-of-the-art security
mechanisms in the IoT (including symmetric/asymmetric cryp-
tographic algorithms, hashing functions, security protocols
at network/transport/application layers), aiming at providing
features such as confidentiality, integrity, and authentication,
is provided in [9]. An architecture for solving the problem
of securing IoT cyberentities (which include Smart Objects,
traditional hosts, and mobile devices), denoted as “U2IoT,”
has been proposed in [10], with the goal of addressing the
issues of expanding domains, dynamic activity cycles, and
heterogeneous interactions. U2IoT takes into account security
in interactions that occur in three different phases: preactive,
active, and postactive. In particular, the active phase provides
authentication and access control functionalities. Authoriza-
tion is therefore being considered a major issue, since it is
becoming increasingly evident that access to resources in a
global-scale network, such as the IoT, must be controlled
and restricted in order to avoid severe security breaches in
deployed applications.

Several works have also addressed very specific issues
in IoT. A lightweight multicast authentication scheme for
small-scale IoT applications is proposed in [11]. In [12],
the authors take into account user mobility (i.e., roaming)
and propose CPAL, an authentication mechanism designed
to provide a “linking function” that can be used to enable
authorized parties to link user access information, while pre-
serving user anonymity and privacy. The secure integration
of Wireless Sensor Networks (WSNs) into IoT is discusses
in [13]. The authors propose a security scheme, which allows
secure communication with Internet hosts by providing end-
to-end confidentiality, integrity, and authentication, based on
a Public-Key Infrastructure (PKI). The proposed scheme also
introduces a two-step (offline/online) signcryption mechanism,
in order to minimize processing time.

Several authentication mechanisms have also been defined
for other issues, such as network access, which are also
relevant for IoT scenarios. The Protocol for Carrying Authen-
tication for Network Access (PANA) [14] is an IETF stan-
dard defining a network-layer transport for network access
authentication methods, which are typically provided by the
Extensible Authentication Protocol (EAP) [15]. In particular,
PANA carries EAP, which can carry various authentication
methods. OpenPANA [16] is an open-source implementation
of PANA.

1226 IEEE SENSORS JOURNAL, VOL. 15, NO. 2, FEBRUARY 2015

The problem of service authorization has been extensively
treated in literature. Several works have focused on how to
implement different access control strategies. Discretionary
Access Control (DAC) restricts the access to objects based on
the identity of subjects and/or groups to which they belong.
The controls are discretionary in the sense that a subject with
certain access permissions can transfer that permission on to
any other subject [17]. Role-Based Access Control (RBAC)
relies on a policy that restricts access to resources to those
entities which have been assigned a specific role [18]–[20]:
RBAC requires that the roles are defined and assigned to
users, and access permissions are set for resources. Attribute-
Based Access Control (ABAC) restricts resource access to
those entities which feature one or more specific attributes
(e.g., age, geographic location, etc.) [21].

RBAC and ABAC are the most widespread approaches to
restricting system access to authorized users. RBAC maps
permissions to roles that a user has been assigned. On the
other hand, ABAC maps permissions to attributes of the
user. Typically, authorization mechanisms strongly depend on
an authentication step that must have been previously taken,
in order to identify users so that either their roles or their
attributes can be verified and matched against the policies set
for resource access.

In [22], the authors present a mechanism for fine-grained
sub-delegation of access permissions for consumers of web
applications, denoted as “DAuth.” Applying access control
mechanisms in constrained scenarios, such as wireless sensor
networks, is a challenging task. A complex, context-aware
access control system designed for a medical sensor networks
scenario, which presents critical privacy and confidentiality
issues, is described in [23].

The IETF ACE WG has also proposed “Delegated CoAP
Authentication and Authorization Framework” (DCAF) [24].
The DCAF architecture introduces authorization servers,
which are used to perform authentication and authorization, in
order to unburden Smart Objects from storing a large amount
of information by delegating such task to an external entity.
While this solution is very similar to the one presented in this
work, it focuses mainly on constrained environments, while
the proposed one is intended to be generic and transparently
integrated into IoT and Internet scenarios.

Although much work has been done with the goal of
defining and integrating authorization mechanisms in several
scenarios, the current paper, unlike others, focuses on the
definition of a generic authorization service which can be
integrated into both Internet and IoT scenarios. In particular,
the proposed mechanism explicitly takes into account the
hybrid nature of the extended Internet that will be deployed
in the next years. Moreover, the proposed architecture aims at
minimizing the effort required by service developers to secure
their services by providing a standard, configurable, and highly
interoperable authorization framework.

III. IoT-OAS ARCHITECTURE

The OAuth-based Authorization Service Architecture
(IoT-OAS) can be invoked by any subscribed host or Smart

TABLE I

USED MAIN ACRONYMS

Fig. 1. Standard OAuth roles and operation flow.

Object. It can be ideally thought of as a remotely triggered
switch that filters incoming requests and decides whether to
serve them or not. The design goal of the IoT-OAS architecture
is to relieve Smart Objects from the burden of handling a large
amount of authorization-related information and processing
all incoming requests, even if unauthorized. By outsourcing
these functionalities, Smart Objects can keep their application
logic as simple as possible, thus meeting the requirements for
keeping the memory footprint as low as possible, which is
extremely important for constrained devices. From a broader
perspective, entire IoT large-scale deployments can greatly
benefit from the presence of IoT-OAS in terms of configurabil-
ity: a single constrained node (or a group of constrained nodes
as a whole) can have their access policies updated remotely
and dynamically, without requiring any direct intervention,
which is especially convenient for Smart Objects placed in
hardly-reachable and/or unattended locations. OAuth allows
third-party applications to get access to user-related informa-
tion hosted on an online service. All issued requests must
certify that the SC application has been granted permission
by the user to access its personal information on its behalf,
namely by adding an “access token,” which relates the user’s
identity and the client application. For ease of presentation,
the used acronyms are summarized in Table I.

Besides the three roles introduced in Section I (U, SP,
and SC), OAuth adds an additional role: the Authentication
Service (AS), which is invoked by the SP to verify the identity
of a user in order to grant access tokens. The standard OAuth
operation flow is shown in Fig.1. The procedure through which
a SC can get a valid access token is the following:

1) U is willing to use the SC, either from a webpage,
a mobile app, or a desktop application;

CIRANI et al.: IoT-OAS: OAS ARCHITECTURE FOR SECURE SERVICES IN IoT SCENARIOS 1227

2) SC needs to access U’s personal information hosted on
SP; SC asks the SP a RT carrying SC’s identity, which
will be later exchanged for an AT ;

3) SP verifies SC’s identity and returns a RT ;
4) SC redirects U to the SP’s authentication service with

the RT ;
5) U contacts the SP’s AS presenting the RT and is asked to

authenticate in order to prove its consent to grant access
permissions to the SC;

6) the RT is exchanged for an AT, which relates U and SC;
7) the SC receives the AT through a redirection to a

callback URL (i.e., authentication callback);
8) the SC can issue requests to SP including the AT, for

services that require U’s permission (protected APIs).

The design goal of the IoT-OAS architecture proposed
in this work is to enable SPs, either based on HTTP or
CoAP, to easily integrate an authorization layer without requir-
ing any implementation overhead, other than invoking an
external service. Delegating the authorization logic to an
external service requires a strong trust relationship between
the SP and the IoT-OAS. Fig. 2 shows the operation flows
for a) AT grant procedure and b) SC-to-SP interaction in the
IoT-OAS architecture. A detailed description of these operation
flows in the proposed IoT-OAS architecture is presented in the
remainder of this section.

A. Granting Access Tokens

The operation flow to grant an AT to a SC is shown in
Fig. 2(a). The procedure resulting in the grant of an AT to a
SC is similar to that of the standard OAuth operation flow, yet
it has the following relevant differences:

1) as in the standard operation flow, the procedure is
initiated by U;

2) the SC regularly contacts a SP to receive a RT ;
3) the SP, which does not implement any OAuth logic,

contacts the IoT-OAS asking to issue a RT for the SC
by performing a generate_request_token RPC request;

4) the IoT-OAS verifies the identity of the SC and issues a
RT, which is returned to the SP;

5) the SP handles the RT back to the SC;
6) the SC redirects U to the AS with the received RT ;
7) U contacts the SP’s AS presenting the RT and authen-

ticates in order to prove its consent to grant access
permissions to the SC;

8) the AS notifies the SP that the authentication is success-
ful and presents the RT with U’s identity;

9) the SP asks the IoT-OAS to exchange the RT with an AT
for U by issuing a generate_access_token RPC request;

10) the IoT-OAS generates the AT and returns it to the SP;
11) the SP handles the AT to the SC with an authentication

callback.

The use of an external IoT-OAS is totally transparent to the
SC, which has no knowledge of how the SP is implementing
the OAuth protocol. This leads to full backward compatibility
with standard OAuth client applications. On the SP’s side,
all the OAuth logic is delegated to the IoT-OAS, with the
only exception of the AS. However, it is not mandatory that

the AS resides within the SP’s realm, as it might interface
with third-party authentication services, such as OpenID [25].
The only information the SP must hold is the reference to
users’ identities in order to make it possible to setup access
permission policies on a per-user basis.

B. Authorizing Requests

The interaction between SP and IoT-OAS when serving
incoming requests is shown in Fig. 2(b). Since the presence
of the IoT-OAS is totally transparent to the SC, the com-
munication between the SC and the SP is a regular OAuth
communication. The difference is, again, on SP’s side, which
needs to contact the IoT-OAS to verify that the incoming
requests received from the SC are authorized in order to decide
whether to serve them or not.

The operation flow is the following:
1) the SC requests U’s information to the SP using the AT

received after U’s authentication (as in standard OAuth
consumer-to-provider communication);

2) the SP, which does not implement any OAuth logic,
refers to the IoT-OAS to verify if the incoming request
is authorized (in order to do so, the SP issues a verify
RPC request);

3) the IoT-OAS verifies the SC’s request and informs the SP
about SC’s authorization for the request by performing
a lookup in the permission store;

4) the SP serves the SC’s request according to the
IoT-OAS’s response.

C. SP-to-IoT-OAS Communication: Protocol Details

The SP interacts with the IoT-OAS with a simple communi-
cation protocol. The protocol comprises three Remote Proce-
dure Calls (RPCs), which are detailed below. It is important to
remark that delegating the authorization decision to an external
service requires an extremely high trust level between the SP
and the IoT-OAS. Moreover, all communications between them
must be secured and mutually authenticated, so that the SP
security level is at least as high as if the authorization service
were implemented internally. To ensure that an appropriate
security level is met, communications between the SP and the
IoT-OAS must occur with a secure transport such as HTTP-
over-TLS (HTTPS), CoAP-over-DTLS (CoAPs) [26], [27], or
HTTP/CoAP over a secure host-to-host channel setup with
IPSec [27]. Mutual authentication ensures that i) the IoT-OAS
is verified and ii) the requests come from a verified SP,
whose identity is, therefore, implicit. The three RPCs of the
SP-to-IoT-OAS communication protocol are the following:

1) generate_request_token(): this RPC is called by the SP
to request the IoT-OAS to generate a request token for
the given SC, to be later exchanged for an AT ;

2) generate_access_token(request_token, user_id): this
RPC is called by the RPC to request the IoT-OAS to
exchange the given RT for a new AT related to the
given user;

3) verify(request, access_token): this RPC is called by
the SP to request the IoT-OAS to verify if the given
SC request is authorized with the provided AT by
performing a lookup into the permission store.

1228 IEEE SENSORS JOURNAL, VOL. 15, NO. 2, FEBRUARY 2015

Fig. 2. IoT-OAS main procedures: (a) AT grant procedure and (b) SP integration with IoT-OAS for request authorization.

D. IoT-OAS Configuration

The IoT-OAS provides high customization to SPs by offering
per-user and per-service access control policies. The SPs
can remotely configure and manage the permissions that
SCs are granted, which can be created, updated, revoked,
and/or duplicated dynamically at any time. The IoT-OAS thus
offers a dedicated SP access control configuration, denoted as
“permission store.” The permission store is a collection of the
relations between SCs, users, and SP services and can ideally
be seen as a lookup table.

The configuration of the permission store can occur through
web interfaces or API calls provided by the IoT-OAS. The
possibility to dynamically manage the permissions, rather than
having them co-located with the SP, is an extremely valuable
feature, especially if SPs are Smart Objects with the need
to be deployed in hardly accessible locations and may be
automatically and/or remotely reconfigured.

IV. APPLICATION SCENARIOS

In this section, we present four significant IoT application
scenarios to properly illustrate the functionalities of the pro-
posed IoT-OAS service architecture. In the following scenarios,
we consider an external client (based on HTTP or CoAP
according to the context) that is interested to access a remote
service provided by a Network Broker (NB), which is a border
network element that exposes services on behalf of constrained
nodes residing in the internal network, or directly by a generic
Smart Object S directly available in the network behind a net-
work Gateway. To clarify the following description we assume
that the OAuth credentials owned by the involved external
client have been obtained through a prior configuration phase
based on the IoT-OAS service described in Section III and that
service discovery is performed through an application-specific
procedure, which is not directly related with the approach
presented in this work.

A. Network Broker Communication

In the first scenario, illustrated in Fig. 3(a), the client C
(acting as a SC) discovers a ServiceA provided by the
network broker NB. In order to serve external requests,

NB can retrieve information from different Smart Objects in
its network. In this case, in order to simplify the context,
we assume that NB needs information only from the Smart
Object S2. The client, through a secure channel based on
HTTPS or CoAPs, sends a request R for ServiceA including
its OAuth credentials, denoted as OAuth(C). The client’s
OAuth information is used by the service provider NB to
properly validate the request and to verify the identity of C
and that C has the right privileges to access the requested
service. Since NB could be implemented using an embedded
device or, generally, using a device with limited computa-
tional and storage capabilities (which, with high probability,
does/should not implement a complex logic such as OAuth)
delegates the verification of the incoming request to the
IoT-OAS. Once NB receives R from C, it sends a verification
request to IoT-OAS (always through a secure channel based on
HTTPS or CoAPs, according to its implementation or capa-
bilities) with the original incoming request and its credentials.
The IoT-OAS, after verifying the validity of the submitted
request (according to NB’s configuration) and C’s identity,
replies communicating if R is authorized. If the feedback is
positive and C is allowed to access requested service, NB
internally contacts the Smart Object S2 to retrieve the required
information and sends back the response to C. If the response
received from IoT-OAS is negative, C is not granted access
and the NB responds immediately to C without any kind of
interaction with the Smart Object.

B. Gateway-Based Communication

In the second scenario, illustrated in Fig. 3(b), an external
client C, based on HTTPS or CoAPs communications, is
interested in accessing a service directly provided by the
Smart Object S2 which does not manage HTTP or CoAP
(due to computational or implementation constraints) and is
behind a Gateway G. In particular, G has the role to translate
the incoming requests from the external networks to avail-
able Smart Objects inside its own network. In this scenario,
C sends a request R (including the client’s OAuth credentials)
to G for ServiceB provided by S2. R is translated by G and
forwarded to S2 that, in order to validate the new request and
the requestor’s identity, sends through G a verification request

CIRANI et al.: IoT-OAS: OAS ARCHITECTURE FOR SECURE SERVICES IN IoT SCENARIOS 1229

Fig. 3. Application Scenarios: (a) Client-to-Network Broker communication; (b) Gateway-enabled communication; (c) End-to-End CoAP Communication
between the external client and the Smart Object; (d) Hybrid Gateway-based communication.

to the IoT-OAS using a secure communication protocol such as
HTTPS or CoAPs. The verification message and the response
(positive or negative) generated by S2 are properly managed
and translated by G to allow the communication among
IoT-OAS, the Smart Object, and the client.

C. End-to-End CoAP Communication

Fig. 3(c) shows a different scenario where a Smart Object S2
(i.e., reachable at an IPv6 address) in a sensor network
provides directly a remote CoAP service ServiceB . Since
all involved entities can use the same protocol, in this case
the network gateway acts only as a router without the need
to translate incoming and outgoing messages between the
external world and the sensor network. The CoAP client CC
sends securely and directly to the Smart Object a request R
containing its OAuth credentials and the reference for ServiceB

provided by S2. Since the Smart Object is usually a sensor or
an embedded device with limited computational and storage
capabilities (which, as previously described, does not imple-
ment a complex logic like OAuth), it delegates the verification
of the incoming request to the OAuth Service. S2 sends a
verification request to IoT-OAS over CoAPs to check R. The
IoT-OAS validates the request based on CC’s credentials and
the type of requested service; it then informs the Smart Object
S2 about whether R can be served or not. S2, according to the
response of IoT-OAS, replies to the requesting client with the
service outcome or, if CC is not allowed to access ServiceB ,
with an error message.

D. Hybrid Gateway-Based Communication

The last scenario, shown in Fig. 3(d), is characterized by a
hybrid approach where the external client uses an application

protocol (such as HTTP) different from that used by Smart
Objects (CoAP). Similarly to the case in Subsection IV-B,
the gateway manages the communication between the external
world and its network: in this case, it just translates incoming
requests from HTTP to CoAP for S2. Once a new request (with
OAuth credentials and service reference) arrives to the Smart
Object, it securely uses IoT-OAS to verify the validity of R,
through CoAPs. The response (positive or negative, according
to the IoT-OAS feedback) is translated by the gateway from
CoAP to HTTP and forwarded to the client through a secure
channel.

V. EXPERIMENTAL RESULTS

In order to demonstrate the feasibility and performance of
the proposed IoT-oriented authorization mechanism, we have
conducted experimental tests to evaluate the energy consump-
tion on Smart Objects. In fact, the security of the authorization
process is guaranteed by the use of OAuth. We remark
that the architecture scenarios in Fig. 3(a) and Fig. 3(b)
are not critical from an energy consumption viewpoint, as
they rely on communications between a gateway, which is a
non-constrained node, and the external authorization service.
For this reason, we have limited our experimental investigation
to the scenarios in Fig. 3(c) and Fig. 3(d), which require that
the Smart Object communicates with the authorization service:
in this case, energy consumption is of concern.

A. Experimental Setup

Within the EU project CALIPSO [6], the IoT-OAS service
has been implemented on a regular web server, based on open
source technologies, equipped with HTTP/CoAP proxy capa-
bilities in order to be easily integrated in all the application

1230 IEEE SENSORS JOURNAL, VOL. 15, NO. 2, FEBRUARY 2015

TABLE II

EXPERIMENTAL SCENARIOS

scenarios shown in Section IV. The SP-to-IoT-OAS commu-
nication has been implemented on a variety of devices, either
regular hosts or Contiki OS-based constrained devices [28].
The choice of the Contiki OS has allowed to investigate
the feasibility of the delegation approach to authorization in
both simulated environments (using the Cooja simulator) and
real testbeds, taking also into account the presence of duty-
cycle. Moreover, the Contiki OS provides IPSec and DTLS
implementations over 6LoWPAN [29], [30] and CoAP [31].

The conducted tests aim at evaluating the energy consump-
tion of Contiki-based Smart Objects. The simulations have
been performed using the Cooja simulator, in order to gather
data for the activity of the CPU and radio interface. The used
experimental platform is based on Zolertia Z1 nodes, with
nominal 92 kB ROM (when compiling with 20-bit architecture
support) and an 8 kB RAM. In practice, the compilation
with the Z1 nodes has been performed with a 16-bit target
architecture, which lowers the amount of available ROM to
roughly 52 kB.

The experimental setup consists of a CoAP client node
sending a request to a CoAP server. The CoAP server must
then authorize the request and decide whether to serve it or not.
This configuration is compatible with the application scenarios
shown in Fig. 3(c) (denoted as End-to-End CoAP Communica-
tion) and Fig. 3(d) (denoted as Hybrid Gateway-based Com-
munication). The tests involved four different scenarios, shown
in Table II, classified depending on the type of authorization
strategy adopted by the CoAP server (columns) and security
level adopted at the network-layer (rows). As for security at the
network layer, IPSec has been configured to work with Encap-
sulated Security Payload (ESP) only. ESP has been selected
since it is necessary to encrypt the payload of the packets,
in order to protect the access token, rather than authenticat-
ing the endpoints of communication through Authentication
Header (AH). Regarding the implementation of the OAuth
protocol, the verification procedure has been performed using
the HMAC-SHA1 signature scheme [32]. Although OAuth
provides also other signature schemes (PLAINTEXT and
RSA-SHA1), HMAC-SHA1 has been selected as it is does
not require a secure transport and a PKI for the management
of public keys. As for the use of SHA-1, we point out
that, in principle, different hash functions, such as SHA-2
and SHA-3 (also known as KECCAK [33]), might be used
instead. However, this would be a violation of the OAuth
specification, which would require SPs and SCs to be aware
of these different signature schemes.

Fig. 4. Message Flow in the case OAuth is implemented in the CoAP server
(top) and in case the CoAP server relies to the IoT-OAS server (bottom).

The message flow, which depends solely on the delegation
to IoT-OAS, is shown in Fig. 4 considering two cases: OAuth
is implemented in the CoAP server (top); the CoAP server
relies on the IoT-OAS server (bottom).

B. Energy Consumption Evaluation

The energy consumption of the CoAP server has been
evaluated using Powertrace [34], a tool for network-level
power profiling for low-power wireless networks. Powertrace
estimates the energy consumption of each device component,
such as the radio chip and the microcontroller. It computes
the amount of time a component is turned on (active mode)
and off (sleep mode). In order to determine the energy
consumption, we refer to the current consumption of each
component indicated in the Z1 datasheet. In particular, the
MSP430f2617 microcontroller consumes 0.515 mA in active
mode and 0.5 μA in low-power mode (lpm), respectively.
Similarly, the CC2420 radio transceiver consumes 17.4 mA
in TX mode and 18.8 mA in RX mode. In order to obtain
the total consumed energy for the Smart Object, the following
conversion formula has been used:

E =
∑

j∈M
i j · v · �t j (1)

where M is the set of all operation modes of the Smart Object
(active, lpm, TX, and RX); v is the nominal voltage of the
Smart Object; and �t j is the time the Smart Object was in
the j -th operation mode j .

In Fig. 5, the aggregate energy consumption (dimension
[mJ]) for different hardware components in the four scenarios
in Table II is shown. The energy consumption is broken
down into figures related to CPU, radio transmission, and
lpm activity. The obtained results provide interesting insights
on the performance of the proposed delegation approach.
In particular, it can be observed that if IoT-OAS is being
used on top of IP, the amount of energy consumption related
to processing is lower than if the OAuth logic is imple-
mented directly on the Smart Object. However, the overall
consumption is higher when relying on IoT-OAS, due to the
contribution of radio transmission. The reason for this behavior
is that the large size of application-level packets requires
fragmentation and, thus, multiplies the number of transmitted

CIRANI et al.: IoT-OAS: OAS ARCHITECTURE FOR SECURE SERVICES IN IoT SCENARIOS 1231

Fig. 5. Aggregate energy consumption (dimension [mJ]) for the four
experimental scenarios.

Fig. 6. Memory footprint (dimension [bytes]), with compiler optimization
enabled, for different software modules in Contiki for TelosB (48 kB available)
and Zolertia Z1 nodes (∼52 kB available with 16-bit target compilation).

packets over IEEE 802.15.4 networks. If IoT-OAS is used,
the number of transmitted packets doubles since the original
packet must be relayed to the delegated service in order to
perform the authorization checking procedure. When using
IPSec, there is no gain, in terms of processing load, with
respect to the local-OAuth approach. This happens because
the number of decryption and encryption procedures also
doubles and, since they rely on heavyweight asymmetric cryp-
tographic primitives, also the processing load increases as well.
However, the OAuth protocol specification states that, if using
the HMAC-SHA1 signature scheme, a secure underlying trans-
port is not mandatory.

C. Practical Considerations

Even though the energy consumption results presented in
Subsection V-B may seem to discourage the adoption of a
delegation approach for authorization grant, there are other
considerations that strongly motivate the use of IoT-OAS.

First of all, some considerations on memory footprint should
be made. In order for the OAuth software module to fit
inside the ROM of a Smart Object, we had to turn off many
features of the Contiki OS: i) RPL could not be used (all
communication acts were single-hop); ii) Contiki MAC was
replaced by NULL MAC; and iii) no radio duty cycling was
active. In Fig. 6, the contributions of all the software modules
to the available ROM are shown. The shown numbers are

Fig. 7. Available ROM memory (dimension [bytes]) on a Zolertia Z1
(16-bit target compilation) when hosting a user database under different
configurations of Contiki OS software modules.

best-case figures (e.g., no resources have been allocated for
CoAP), but the Smart Objects are not operative in this case
(any incoming request could not be served since no CoAP
resource is hosted). Even in this best case, from a memory
occupation viewpoint, from the results in Fig. 6 one can see
that the amount of available ROM is not sufficient to host also
the OAuth logic: therefore, some features must be excluded
from the Smart Object to implement OAuth locally.

Moreover, in order to provide authorization, the Smart
Object should also include a database of those clients that
are authorized to perform requests for the resources managed
by the constrained CoAP server, together with their access
tokens. Of course, this is infeasible because of the memory
shortage. On the other hand, an external authorization service
might have a database large enough to fit all the information
needed to manage any number of third-party clients. This is
shown in Fig. 7, where one can see that the most lightweight
configuration of software on a Zolertia Z1 node can at most
fit a database of less than 500 users (assuming an average of
roughly 20 bytes per user). From Fig. 7, it can also be observed
that just integrating RPL decreases the maximum number of
users stored in the database to 8.

Another important point that should be highlighted is that
the delegation of the authorization procedures allows the own-
ers of the Smart Objects to reconfigure, even with very fine-
grained access policies, the authorization grants to external
consumers without the need to re-program the Smart Objects,
which is crucial when the Smart Objects are deployed in
hardly reachable locations and their reconfiguration can be
very complicated. As an external service can perform highly
dynamic configuration, it could be very easy to grant or
remove access permissions at any time with little, if any,
need of human intervention, which can be a difficult and
time-consuming operation. A mechanism that allows operators
to change access policies remotely and possibly acting on
multiple nodes at the same time can, therefore, be far more
convenient by cutting down management costs and minimizing
the time required for the re-configuration of Smart Objects.

One final remark, related to energy consumption, is the
fact that the analysis in Subsection V-B is performed using
the HMAC-SHA1 signature scheme. The OAuth protocol

1232 IEEE SENSORS JOURNAL, VOL. 15, NO. 2, FEBRUARY 2015

specification considers also the use of the RSA-SHA1 signa-
ture scheme, which requires much higher processing load as it
relies on asymmetric cryptographic primitives and introduces
also the problem of public key management. The amount of
processing load (and, thus energy consumption) considered in
Fig. 5 is then underestimated.

In conclusion, the delegation approach can significantly
improve and simplify the design and deployment of Smart
Objects, allowing to focus on the fundamental functionalities
that a constrained node should implement, rather than deal-
ing with other aspects that could be easily outsourced with
minimum impact on the development of the application. The
use of IoT-OAS does not necessarily forbid or discourage an
in-node implementation of authorization functionalities, which
might be suited for smart objects with sufficient resources
and capabilities. IoT-OAS can be applied effectively in several
scenarios, with different network configurations and Smart
Object capabilities. For instance, being aware of energy con-
sumption issues, IoT-OAS can be used by network elements
that do not present the same constraints of smart objects (e.g.,
LoWPAN border routers, LBRs, which can be connected to
a fixed energy supply), as shown in Fig. 3(a) and Fig. 3(b).
Such elements can apply access policies and filter incoming
requests, in order to “shield” the constrained network, while
allowing the Smart Objects to keep their implementation.

VI. DISCUSSION: ADVANTAGES,
LIMITATIONS, AND OUTLOOK

In this work, we have presented a novel general architecture
for service authorization to be used in Internet, IoT, and
hybrid scenarios. According to the architectural nature of this
work and the experimental results presented in Section V, the
following aspects need to be further discussed.

A. Security Issues

The use of Internet protocols and the very nature of Smart
Objects raise security issues in the proposed IoT-OAS architec-
ture. The interested reader is referred to [35] for an overview
of security threats in IoT.

First, delegation to a third party service requires a strong
trust on the third party. The trust relationship between a
Smart Object and the IoT-OAS is actually a trust relationship
between the owner of the Smart Object and the IoT-OAS. The
establishment of such trust relationship falls beyond the scope
of this paper, which describes the service architecture to which
the Smart Objects subscribe. A strongly secure communication
channel, such as a VPN tunnel, could be a suitable solution
to provide secure and authenticated communications with the
authorization service.

The use of standard Internet security protocols can have
a negative impact on the performance of Smart Objects, as
the communication overhead and computational cost might
dramatically affect the energy consumption. In order to tackle
these issues, the following actions may be taken:

• define constrained versions and implementations of the
security protocols, in order to make the handshaking
phase lighter and to minimize packet fragmentation;

• define a constrained version of the OAuth protocol, in a
similar fashion to what is being carried out in the IETF
CoRE Working Group with the definition of the CoAP
protocol (with respect to HTTP);

• define new cryptographic suites for the security protocols
by integrating lightweight cryptographic algorithms (such
as TEA [36], SEA [37], and PRESENT [38]) and light-
weight hash functions (such as DM-PRESENT [39] and
SHA-3 [33]), which may be more suitable for constrained
devices.

Other security aspects might be related to the following
possible attacks that smart objects might undergo.

• Denial-of-Service (DoS) might occur if Smart Objects
receive a large number of requests to serve. In this
case, the use of the IoT-OAS would decrease the abil-
ity of the Smart Object to resist against this type of
attacks. A solution could be to use the gateway to
protect the Smart Object, possibly by offering caching
capabilities.

• Man-in-the-Middle (MITM) attacks are possible if using
a HTTP/CoAP proxy — which, by its nature, is a man-
in-the-middle — thus destroying any form of end-to-end
security. If the proxy is not trusted, it could access all
communications among the endpoints and could possibly
get access to the authorization information, thus gaining
permission to spoof the requestor’s identity.

• Physical threats are related to the impossibility to super-
vision constantly Smart Objects once they have been
deployed in public/remote areas.

The considerations above are not strictly related to the
IoT-OAS architecture, but are typically related to all
IoT scenarios and are currently being investigated. However,
even though they fall outside the scope of this paper, it is
important to cite them as open issues. It is also important
to remark that the IoT-OAS architecture is not a solution for
security aspects in IoT, but, rather, is meant to provide an
authorization layer which is easy to integrate and manage for
Internet and IoT services.

B. Computational and Storage Overhead

The OAuth protocol has been designed to handle com-
putation and storage overhead while providing a standard
and simple authorization mechanism for resource access by
third-party applications. The same considerations can be
applied to our approach, as there is no computation and storage
on the node, but all the information resides on the central
authorization service. Typical examples of the scalability of
OAuth-based services are online social networks, such as
Twitter and Facebook, which deal with hundreds of millions of
users, billions of requests, and several thousands of third-party
applications which access the hosted resources. The above
considerations are confirmed by the performance evaluation of
the IoT-OAS architecture in Section V: i) the memory footprint
of all software modules that should be run on the Smart Object
leaves no space for the storage of user identities and access
policies (as shown in Fig.7); ii) from a processing perspective,
the Smart Object does benefit from a delegation approach,

CIRANI et al.: IoT-OAS: OAS ARCHITECTURE FOR SECURE SERVICES IN IoT SCENARIOS 1233

as there is no computation to be performed besides sending a
request to the IoT-OAS.

VII. CONCLUSION

In this paper, we have proposed a novel architecture to pro-
vide HTTP and CoAP service providers with an authorization
layer to be able to disseminate their services without the need
of implementing the OAuth logic, but, rather, by invoking
an external OAuth-based authorization service, denoted as
“IoT-OAS.” The designed approach has been applied to sig-
nificant IoT scenarios with multiple Smart Objects (or, more
generally, constrained devices) characterized by limited com-
putational power, operating in lossy and low-power networks,
and usually battery-powered thus requiring extreme attention
on energy consumption.

A performance evaluation has been performed by conduct-
ing simulations with Cooja targeting Contiki-based Zolertia
Z1 nodes. The experimentation has shown that, from a purely
energy consumption perspective, the delegation approach can
increase the amount of energy consumed, due to the frag-
mentation of application-layer messages performed in order
to fit in IEEE 802.15.4 packets. However, other issues, such
as memory footprint and dynamic configuration capabilities,
show that implementing the OAuth logic locally is infeasible
with currently available Smart Objects, making the delegation
approach provided by IoT-OAS preferable. Moreover, dele-
gating the authorization logic to an external service leads
to several additional benefits, such as: i) reducing the time
required by service developers to implement OAuth-protected
online services; ii) supporting legacy OAuth client applications
seamlessly; iii) limiting the device complexity only to service
logic, while still providing access control policies for its
services. An extremely appealing advantage of externalizing
the authorization logic is the possibility to dynamically and
remotely configure fine-grained access control policies on a
per-service and per-client basis, without the need of direct
intervention on the deployed devices.

Security considerations have been also discussed, taking
into account well-known IoT-related issues. As a future
research direction, within the work of the FP7 EU project
CALIPSO, the proposed architecture will be implemented
and tested thoroughly in both simulation environments and
real testbeds, in order to evaluate advanced performance
metrics in constrained environments and in the presence of
duty-cycle.

ACKNOWLEDGMENT

The work reflects only the authors views; the European
Community is not liable for any use that may be made of
the information contained herein.

REFERENCES

[1] R. Fielding et al., Hypertext Transfer Protocol—HTTP/1.1,
RFC 2616, Internet Engineering Task Force, Jun. 1999. [Online].
Available: http://www.ietf.org/rfc/rfc2616.txt

[2] E. Hammer-Lahav, The OAuth 1.0 Protocol, RFC 5849,
Internet Engineering Task Force, Apr. 2010. [Online]. Available:
http://www.ietf.org/rfc/rfc5849.txt

[3] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.2, RFC 5246, Internet Engineering Task Force, Aug. 2008.
[Online]. Available: http://www.ietf.org/rfc/rfc5246.txt

[4] D. Hardt, The OAuth 2.0 Authorization Framework,
RFC 6749, Internet Engineering Task Force, Oct. 2012. [Online].
Available: http://www.ietf.org/rfc/rfc6749.txt

[5] IPSO Alliance. [Online]. Available: http://www.ipso-alliance.org/,
accessed Oct. 15, 2014.

[6] Connect All IP-Based Smart Objects (CALIPSO)—FP7 EU Project.
[Online]. Available: http://www.ict-calipso.eu/, accessed Oct. 15, 2014.

[7] Z. Shelby, K. Hartke, and C. Bormann, The Constrained Applica-
tion Protocol (CoAP), RFC 7252, Internet Engineering Task Force,
Jun. 2014. [Online]. Available: http://www.ietf.org/rfc/rfc7252.txt

[8] Worldsensing, Barcelona, Spain. [Online]. Available: http://www.
worldsensing.com/

[9] S. Cirani, G. Ferrari, and L. Veltri, “Enforcing security mecha-
nisms in the IP-based internet of things: An algorithmic overview,”
Algorithms, vol. 6, no. 2, pp. 197–226, 2013. [Online]. Available:
http://www.mdpi.com/1999-4893/6/2/197

[10] H. Ning, H. Liu, and L. T. Yang, “Cyberentity security in the internet
of things,” Computer, vol. 46, no. 4, pp. 46–53, Apr. 2013.

[11] X. Yao, X. Han, X. Du, and X. Zhou, “A lightweight multicast authen-
tication mechanism for small scale IoT applications,” IEEE Sensors J.,
vol. 13, no. 10, pp. 3693–3701, Oct. 2013.

[12] C. Lai, H. Li, X. Liang, R. Lu, K. Zhang, and X. Shen, “CPAL:
A conditional privacy-preserving authentication with access linkability
for roaming service,” IEEE Internet Things J., vol. 1, no. 1, pp. 46–57,
Feb. 2014.

[13] F. Li and P. Xiong, “Practical secure communication for integrating
wireless sensor networks into the internet of things,” IEEE Sensors J.,
vol. 13, no. 10, pp. 3677–3684, Oct. 2013.

[14] D. Forsberg, Y. Ohba, B. Patil, H. Tschofenig, and A. Yegin,
Protocol for Carrying Authentication for Network Access (PANA),
RFC 5191, Internet Engineering Task Force, May 2008. [Online].
Available: http://www.ietf.org/rfc/rfc5191.txt

[15] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz,
Extensible Authentication Protocol (EAP), RFC 3748, Internet
Engineering Task Force, Jun. 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3748.txt

[16] P. Moreno-Sanchez, R. Marin-Lopez, and F. Vidal-Meca, “An open
source implementation of the protocol for carrying authentication for
network access: OpenPANA,” IEEE Netw., vol. 28, no. 2, pp. 49–55,
Mar. 2014.

[17] United States Department of Defense, “Department of Defense
Trusted Computer System Evaluation Criteria,” U.S. Dept. Defense,
Tech. Rep. DoD 5200.28-STD, Dec. 1985. [Online]. Available:
http://csrc.nist.gov/publications/history/dod85.pdf

[18] D. Ferraiolo and R. Kuhn, “Role-based access controls,” in Proc.
15th NIST-NCSC Nat. Comput. Security Conf., Baltimore, MD, USA,
Oct. 1992, pp. 554–563.

[19] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli, “Proposed NIST standard for role-based access con-
trol,” ACM Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274, Aug. 2001.
[Online]. Available: http://doi.acm.org/10.1145/501978.501980

[20] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” IEEE Comput., vol. 29, no. 2, pp. 38–47,
Feb. 1996.

[21] E. Yuan and J. Tong, “Attributed based access control (ABAC) for web
services,” in Proc. IEEE Int. Conf. Web Services (ICWS), vol. 856,
Jul. 2005, p. 2.

[22] J. Schiffman, X. Zhang, and S. Gibbs, “DAuth: Fine-grained autho-
rization delegation for distributed web application consumers,” in Proc.
IEEE Int. Symp. Policies Distrib. Syst. Netw. (POLICY), Jul. 2010,
pp. 95–102.

[23] O. Garcia-Morchon and K. Wehrle, “Modular context-aware access
control for medical sensor networks,” in Proc. 15th ACM Symp. Access
Control Models Technol. (SACMAT), New York, NY, USA, 2010,
pp. 129–138. [Online]. Available: http://doi.acm.org/10.1145/1809842.
1809864

[24] S. Gerdes, O. Bergmann, and C. Bormann, “Delegated CoAP authen-
tication and authorization framework (DCAF),” IETF Internet Draft,
Tech. Rep. draft-gerdes-ace-dcaf-authorize-00, Jul. 2014. [Online].
Available: http://tools.ietf.org/html/draft-gerdes-ace-dcaf-authorize-00

[25] “OpenID authentication 2.0—Final,” OpenID Foundation, Tech. Rep.,
Dec. 2007. [Online]. Available: http://openid.net/specs/openid-
authentication-2_0.html

1234 IEEE SENSORS JOURNAL, VOL. 15, NO. 2, FEBRUARY 2015

[26] E. Rescorla and N. Modadugu, Datagram Transport Layer Security
Version 1.2, RFC 6347 (Proposed Standard), Internet Engineering Task
Force, Jan. 2012. [Online]. Available: http://www.ietf.org/rfc/rfc6347.txt

[27] S. Kent and R. Atkinson, Security Architecture for the Internet Proto-
col, RFC 2401 (Proposed Standard), Internet Engineering Task Force,
Nov. 1998. [Online]. Available: http://www.ietf.org/rfc/rfc2401.txt

[28] The Contiki Operating System. [Online]. Available: http://www.contiki-
os.org, accessed Oct. 15, 2014.

[29] S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt, and U. Roedig,
“Securing communication in 6LoWPAN with compressed IPsec,” in
Proc. Int. Conf. Distrib. Comput. Sensor Syst. (DCOSS), Barcelona,
Spain, Jun. 2011, pp. 1–8.

[30] S. Raza, D. Trabalza, and T. Voigt, “6LoWPAN compressed DTLS
for CoAP,” in Proc. 8th IEEE Int. Conf. Distrib. Comput. Sensor
Syst. (DCOSS), Hangzhou, China, May 2012, pp. 287–289.

[31] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A low-power CoAP for
Contiki,” in Proc. Workshop Internet Things Technol. Architect. (IoTech),
Valencia, Spain, Oct. 2011, pp. 855–860.

[32] H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-
Hashing for Message Authentication, RFC 2104 (Informational),
Internet Engineering Task Force, Feb. 1997. [Online]. Available:
http://www.ietf.org/rfc/rfc2104.txt

[33] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “The Keccak
SHA-3 submission,” in Submission to NIST (Round 3). National Insti-
tute of Standards and Technology (NIST), 2011. [Online]. Available:
http://keccak.noekeon.org/Keccak-submission-3.pdf

[34] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes, “Powertrace: Network-
level power profiling for low-power wireless networks,” Swedish Insti-
tute. Comput. Sci., Kista, Sweden, Tech. Rep. T2011:05, Mar. 2011.
[Online]. Available: http://soda.swedish-ict.se/4112/1/T2011_05.pdf

[35] O. Garcia-Morchon, S. Keoh, S. Kumar, R. Hummen, and
R. Struik, “Security considerations in the IP-based internet of things,”
IETF Internet Draft, Tech. Rep., Mar. 2012. [Online]. Available:
http://tools.ietf.org/id/draft-garcia-core-security-04

[36] D. Wheeler and R. Needham, “TEA, a tiny encryption algorithm,”
in Fast Software Encryption (Lecture Notes in Computer Sci-
ence), vol. 1008, B. Preneel, Ed. Berlin, Germany: Springer-Verlag,
1995, pp. 363–366. [Online]. Available: http://dx.doi.org/10.1007/3-540-
60590-8_29

[37] F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater, “SEA:
A scalable encryption algorithm for small embedded applications,”
in Smart Card Research and Advanced Applications (Lecture Notes
in Computer Science), vol. 3928, J. Domingo-Ferrer, J. Posegga,
and D. Schreckling, Eds. Berlin, Germany: Springer-Verlag, 2006,
pp. 222–236. [Online]. Available: http://dx.doi.org/10.1007/11733447_16

[38] A. Bogdanov et al., “PRESENT: An ultra-lightweight block cipher,”
in Cryptographic Hardware and Embedded Systems—CHES (Lecture
Notes in Computer Science), vol. 4727, P. Paillier and I. Verbauwhede,
Eds. Berlin, Germany: Springer-Verlag, 2007, pp. 450–466. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-74735-2_31

[39] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw, and
Y. Seurin, “Hash functions and RFID tags: Mind the gap,” in Proc.
10th Int. Workshop Cryptograph. Hardw. Embedded Syst. (CHES), 2008,
pp. 283–299. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-
85053-3_18

Simone Cirani is currently a Post-Doctoral
Research Associate with the Department of Informa-
tion Engineering, University of Parma, Parma, Italy,
where he received the Dr.Ing. (Laurea) (cum laude)
degree in computer science, and the Ph.D. degree
in information technologies from the Department of
Information Engineering, in 2007 and 2011, respec-
tively. His research interests are Internet of Things,
peer-to-peer networks, network security, pervasive
computing, and mobile application development.

Marco Picone is currently a Post-Doctoral Research
Associate with the University of Parma, Parma, Italy,
where he received the Laurea (cum laude) degree
in computer engineering and the Ph.D. degree in
information technologies in 2008 and 2012, respec-
tively. In 2011, he was a Research Visitor with
the Computer Laboratory, University of Cambridge,
Cambridge, U.K. His research activity focuses on
mobile and pervasive computing, location-based ser-
vices, distributed systems, and Internet of Things.

Pietro Gonizzi received the master’s diploma in
telecommunications engineering from the University
of Parma, Parma, Italy, in 2011, with a thesis enti-
tled “Low-Complexity Redundant Distributed Data
Storage in Wireless Sensor Networks: Design and
Experimental Validation.” He is currently pursuing
the Ph.D. degree at the Wireless Ad-Hoc Sensor Net-
work Laboratory, University of Parma. His research
interests are efficient routing and low-power MAC
techniques in wireless sensor networks and Internet
of Things.

Luca Veltri received the Laurea degree in telecom-
munication engineering, and the Ph.D. degree in
communication and computer science from the Uni-
versity of Rome La Sapienza, Rome, Italy, in 1994
and 1999, respectively. Since 2002, he has been an
Assistant Professor with the University of Parma,
Parma, Italy, where he currently teaches classes on
telecommunication networks and network security.
His main research fields are peer-to-peer systems,
future Internet, and network security.

Gianluigi Ferrari (SM’12) is currently an Asso-
ciate Professor of Telecommunications with the
University of Parma, Parma, Italy, where he coor-
dinates the Wireless Ad-Hoc and Sensor Net-
works Laboratory of the Department of Infor-
mation Engineering. As of today, he has pub-
lished extensively in the areas of wireless ad
hoc and sensor networking, adaptive digital sig-
nal processing, and communication theory. He
was a recipient of Paper/Technical Awards at
IWWAN’06, EMERGING’10, BSN’11, ITST’11,

SENSORNETS’12, Evo-COMNET’13, and BSN’14. He currently serves on
the Editorial Boards of several international journals.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

