
sensors

Article

Forecasting Air Temperature on Edge Devices with
Embedded AI †

Gaia Codeluppi , Luca Davoli and Gianluigi Ferrari *

����������
�������

Citation: Codeluppi, G.; Davoli, L.;

Ferrari, G. Forecasting Air

Temperature on Edge Devices with

Embedded AI. Sensors 2021, 21, 3973.

https://doi.org/10.3390/s21123973

Academic Editors: Davide Brunelli

and Annachiara Berardinelli

Received: 12 April 2021

Accepted: 7 June 2021

Published: 9 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Internet of Things (IoT) Lab, Department of Engineering and Architecture, University of Parma,
Parco Area delle Scienze, 181/A, 43124 Parma, Italy; gaia.codeluppi@unipr.it (G.C.); luca.davoli@unipr.it (L.D.)
* Correspondence: gianluigi.ferrari@unipr.it; Tel.: +39-0521-906513
† This paper is an extended version of our paper published in AI at the Edge: A Smart Gateway for Greenhouse

Air Temperature Forecasting. In Proceedings of the 2020 IEEE International Workshop on Metrology for
Agriculture and Forestry (MetroAgriFor), 38122 Trento, Italy, 4–6 November 2020.

Abstract: With the advent of the Smart Agriculture, the joint utilization of Internet of Things (IoT)
and Machine Learning (ML) holds the promise to significantly improve agricultural production
and sustainability. In this paper, the design of a Neural Network (NN)-based prediction model of a
greenhouse’s internal air temperature, to be deployed and run on an edge device with constrained
capabilities, is investigated. The model relies on a time series-oriented approach, taking as input
variables the past and present values of the air temperature to forecast the future ones. In detail, we
evaluate three different NN architecture types—namely, Long Short-Term Memory (LSTM) networks,
Recurrent NNs (RNNs) and Artificial NNs (ANNs)—with various values of the sliding window
associated with input data. Experimental results show that the three best-performing models have a
Root Mean Squared Error (RMSE) value in the range 0.289÷ 0.402 °C, a Mean Absolute Percentage
Error (MAPE) in the range of 0.87÷ 1.04%, and a coefficient of determination (R2) not smaller than
0.997. The overall best performing model, based on an ANN, has a good prediction performance
together with low computational and architectural complexities (evaluated on the basis of the
NetScore metric), making its deployment on an edge device feasible.

Keywords: internet of things; smart farming; EdgeAI; neural networks; greenhouse management;
wireless sensor network; WSN; RNN; LSTM; ANN

1. Introduction

The introduction of Information and Communication Technologies (ICTs) in the agri-
cultural sector, aiming to improve productivity and sustainability, is currently a well-
established practice. Indeed, the integration of heterogeneous technologies such as, just
to name a few, Internet of Things (IoT) and Machine Learning (ML), allows us to simplify
and enhance the management of the so-called Smart Farms [1]. Due to this trend of techno-
logical transformation, usually denoted as Smart Agriculture (SA) or Smart Farming (SF),
in recent years, greenhouses’ productive processes have been optimized, for example in
terms of increasing automatization.

To this end, greenhouses play a crucial role in worldwide agricultural productions.
Indeed, through the creation of optimal growing conditions for indoor cultivation [2],
vegetables, fruits, herbs and other kinds of edible products can be farmed anytime and
everywhere, regardless of their seasonality or the (eventually adverse) weather conditions
of their growing area. Therefore, the adoption of greenhouses offers various advantages,
such as the extension of the cultivation periods of seasonal crops, the local production
of non-endemic food, and reduced resource consumption, in terms of water, land and
pesticides [3].

One of the most relevant (and challenging) aspects of greenhouse management is the
development and maintenance of suitable growing habitats for the inside plants. This

Sensors 2021, 21, 3973. https://doi.org/10.3390/s21123973 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2857-1617
https://orcid.org/0000-0002-4396-8885
https://orcid.org/0000-0001-6688-0934
https://doi.org/10.3390/s21123973
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21123973
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21123973?type=check_update&version=1

Sensors 2021, 21, 3973 2 of 29

internal habitat, also referred to as “inner climate” or “micro-climate,” corresponds to the
complex set of environmental variables internal to the greenhouse (e.g., soil moisture, air
humidity and temperature, and solar radiation) affecting the inner products’ growth and
depends on several interrelated elements [4]. In detail, there are (i) internal factors, such
as, for example, the greenhouse’ size and the cooling, warming or ventilation systems
installed internally (thus referring to the greenhouse’s actuators), and (ii) external factors (or
“variables”), such as weather meteorological conditions (e.g., wind speed, solar radiation,
temperature, and humidity) [5].

Nowadays, monitoring and controlling a greenhouse’s micro-climate has been simpli-
fied and automatized thanks to the integration of heterogeneous technologies, which can
be grouped into three categories.

• First, (sensor) data related to relevant environmental variables internal to the green-
house, which have to be maintained within suitable ranges (e.g., air humidity and
temperature), are collected through devices equipped with sensors (denoted as IoT
sensing nodes, or sensor nodes, SNs), generally organized as Wireless Sensor Net-
works (WSNs). Moreover, internal greenhouse data gathered by SNs are usually
sent to less constrained nodes, denoted as gateways (GWs) and connected to the
Internet. GWs forward SNs’ data to processing and storing infrastructures located
in the Cloud [6]. Then, data can be retrieved and visualized (through appropriate
User Interfaces, UIs), as well as kept as input data for further processing. Hence,
monitoring of relevant variables inside the greenhouse is relevant for both end-users
(farmers) and for researchers [7–11].

• Secondly, additional control devices (i.e., actuator nodes), installed inside the green-
house in order to regulate its internal climate [12,13], can be integrated within the
aforementioned collection system. As an example, if a dangerous air humidity index
is detected by SNs, a ventilation system would automatically be activated in order to
lower the air humidity.

• Thirdly, complex models and/or forecasting algorithms are developed with the goal
of predicting the future values of the monitored environmental variables, for exam-
ple allowing us to preemptively schedule some operations (e.g., the activation of a
warming system) to avoid these internal variables reaching undesired conditions (i.e.,
too low temperatures). To this end, the greenhouse’s internal variables have been
satisfactorily forecast through Deep Learning (DL) algorithms, e.g., based on Neural
Networks (NNs) [14–16], and selecting data collected from different sources as input
(namely, internal and external variables of a greenhouse, possibly measured by SNs).

For the sake of completeness, NN-based prediction algorithms can also be employed
to infer missing sensor data, such as those not properly gathered inside the greenhouse
due to a temporary lack of network connectivity, as well as to maintenance operations.

Since the adoption of NN-based algorithms generally provides significant benefits,
they are more and more often integrated with IoT technologies in the context of SA.
Moreover, although in recent years, these algorithms are mainly intended to be executed
in the Cloud, a new promising IoT trend, denoted as EdgeAI and related to the transfer
of intelligence (e.g., AI algorithms) from the Cloud down to the Edge (e.g., on IoT edge
devices), is emerging [17]. Indeed, the execution of AI algorithms on IoT edge devices,
which are located near the data sources (namely, SNs), provides relevant advantages, such
as the reduction of the amount of data to be forwarded by IoT edge devices to the Cloud,
thus reducing the network load, lowering the response latency, and, finally, supporting
scalability. As a drawback, algorithms executed on-the-Edge have to be designed taking
into account the limitations imposed by constrained IoT devices, with memory footprint,
computational, and energy resources significantly lower than those offered by Cloud
platforms. Thus, while modeling EdgeAI algorithms, there is the need to look for a
balanced trade-off between reaching the best prediction performance and implementing a
prediction model computationally “lightweight enough” to be executed by a constrained
device (e.g., the required memory occupation has to be compatible with the one available

Sensors 2021, 21, 3973 3 of 29

on the device). In order to quantify the trade-off involved in achieving the two contrasting
goals, in [18] the authors propose the NetScore metric, which is intended as a quantitative
relative assessment of the prediction performance with computational and architectural
complexities of a Deep NN (DNN).

In order to improve the management of greenhouses and to control their internal
variables, in [19]—being the paper “AI at the Edge: a Smart Gateway for Greenhouse Air
Temperature Forecasting” presented in the IEEE International Workshop on Metrology for
Agriculture and Forestry (MetroAgriFor)—the authors have presented a novel approach
based on the joint adoption of NNs, Edge Computing, and IoT technologies. In detail,
the authors have “enriched” an IoT device, denoted as Smart GW and acting as a GW
for a WSN installed in a greenhouse, in order to: (i) monitor its inner air temperature
through an “edge intelligent” approach; (ii) locally forecast future inner air temperature’s
values; and (iii) regulate, according to the obtained results, the greenhouse air temperature
(through internal actuators). From an algorithmic point of view, the authors have designed
a lightweight device-friendly forecasting model, based on a fully-connected Artificial NN
(ANN), able to predict the air temperature inside a greenhouse, also on the basis of the
outside weather conditions.

In order to extend the solution proposed in [19], in the current paper, the authors
evaluate an alternative approach to build an air temperature forecasting model to be ex-
ecuted on the Smart GW presented in [19] (with similar purposes). In particular, rather
than relying on meteorological weather conditions (collected outside the greenhouse), the
aim is now on the exploitation of air temperature values collected inside the greenhouse to
forecast the air temperature evolution. Moreover, the authors evaluate the performance
(in terms of prediction precision and lightweightness) of the model developed following a
novel approach, denoted as time series-oriented, with respect to the model proposed in [19].
Then, the authors investigate how the model’s parameters—namely, the number of input
variables (i.e., air temperature values), their sampling interval, and the NN architecture—
influence the model’s prediction performance. In detail, the following three types of NN
architectures (which, according to the literature, outperform all other types of NNs for
time series-based forecasting) have been evaluated: ANN, Recurrent NNs (RNNs), and
Long Short-Term Memory (LSTM) networks. Finally, a comparison between the developed
models and relevant approaches proposed in the literature for the same task (namely, air
temperature forecasting inside greenhouses) is performed, in terms of prediction perfor-
mance considering three metrics widely adopted in regression problems: (i) Root Mean
Squared Error (RMSE); (ii) Mean Absolute Percentage Error (MAPE); and (iii) coefficient
of determination (R2). Unlike the typical approach followed in the literature, the authors
also focus on the performance analysis in relative terms with respect to computational
and architectural complexities. More precisely, this goal is achieved by relying on the
use of the NetScore metric (in order to evaluate the complexity of the NN-based models
to be run on constrained devices)—to the best of the authors’ knowledge, this has never
been considered before. This is fundamental in order to identify the proper model for IoT
edge devices, but seldom discussed in the literature in the context of greenhouses’ internal
variables forecasting.

The rest of the paper is organized as follows. Section 2 gives an overview of NNs
and an evaluation metrics adopted in this paper. In Section 3, a review on literature works
is presented, while in Section 4 the adopted methodology is described. In Section 5, the
experimental results obtained with the proposed models are outlined and discussed. Finally,
in Section 6 some conclusions are drawn. To conclude, the methodological steps followed
in this manuscript to perform target analysis and select the proper EdgeAI algorithm (to
be deployed on the Smart GW) are summarized in Figure 1, with reference to the paper’s
internal structure.

Sensors 2021, 21, 3973 4 of 29Version June 3, 2021 submitted to Sensors 4 of 28

Sensor data collection
(Section 4.1)

Set of air
temperature values

Data cleaning
(Section 4.1)

Data are arranged
in a time series

(Section 4.2)

Air temperature time
series with

Tsamp = 10 min

Time series downsampling
(Section 4.2)

Six time series with
Tsamp ∈ {10, 20, 30,
40, 50, 60, 120} min

Design
parameters definition

(Section 4.3)
(SW, Tsamp)

(SW, Tsamp)
values selection

(Section 4.3)

SW ∈ {1, 2, . . . , 10},
Tsamp ∈ {10, 20, 30,
40, 50, 60, 120} min

Data sets creation
(Section 4.4)

Data sets split
(Section 4.4)

70 data sets

70 training sets,
70 test sets

70 ANN-based models,
70 RNN-based models,
70 LSTM-based models

Definition of architecture of
NN-based models

(Section 4.5)

Training of (210)
NN-based models

(Section 4.5)

[19] model re-training
with novel data

(Section 4.6)

RMSE, MAPE,
and R2 computing

(Section 5.3)

RMSE, MAPE, and R2

computing (of 210 models)
(Section 5.1)

Prediction
performances discussion
over 17 selected models

(Section 5.2)

Selection of 3 better
performing models

(Section 5.3)

NetScore computing
(Section 5.3)

3 selected models
and [19] comparison

(Section 5.3)

3 selected models and
literature

papers comparison
(Section 5.3)

Conclusions
(Section 6)

Figure 1. Methodological steps (white rectangles) and corresponding outcomes (violet rectangles with rounded corners) of this paper,
with reference to its internal structure.

Figure 1. Methodological steps (white rectangles) and corresponding outcomes (violet rectangles
with rounded corners) of this paper, with reference to its internal structure.

Sensors 2021, 21, 3973 5 of 29

2. Background
2.1. Overview on Neural Networks

In general terms, NNs can be seen as the “backbone” required to build ML-oriented
algorithms that start from a set of data (or data set) and fit them into a parametric
model [20–22], in order to solve different tasks, such as prediction [23]. More precisely,
the parameters of these models are learnt from a group of samples—composing a training
set—in a (preliminary) training phase, while their effectiveness is assessed on a samples
test set in a (consecutive) test phase, adopting one or more evaluation metrics (as will be
discussed in Section 2.2).

Due to their ability to (i) discover complex relations among data, (ii) be robust against
data uncertainty, and (iii) predict output variables’ values almost in real-time, NNs are ap-
pealing in many application areas, including greenhouse’s inner variables’ forecasting. As
a drawback, in order to obtain an accurate forecasting model, NNs normally require a suffi-
ciently large number of available data (sometimes not easy to be gathered) representative
of the model to build.

Despite several types of NN-based architecture proposed in the literature (differing
in terms of building elements, interconnections, and learning algorithms), a simple type
is given by the Multi-Layer Perceptron (MLP) NN [24], in the following simply denoted
as ANN. In detail, the model is built on top of multiple and interconnected processing
units, denoted as neurons (or simply network nodes), organized in layers. Then, its internal
organization allows input data to be processed from the first stages of the network to
the final ones, thus allowing information to flow across the network, producing output
variables. Moreover, models in which the data stream inside the network is linearly
processed from the first layer (denoted as input layer) through one or more internal layers
(denoted as hidden layers), till the final layer (denoted as output layer), are labeled as
feed-forward. Furthermore, in the case that each node of a network layer is connected with
every node of the previous layer, the network is denoted as fully-connected. Although
an exhaustive discussion of the training process of a NN (from a mathematical point of
view) is out of the scope of this paper, in the following the authors provide some high-level
considerations, especially regarding the structure of a fully-connected feed-forward ANN.

Each neuron of the network (except for the input layer) receives information from
all neurons in the previous layer (or from a subset, if the ANN is not fully-connected). In
Figure 2, a simplified mathematical model describing the j-th neuron of an intermediate
layer is shown. The messages arriving from the ` connected neurons from the previous
layer, denoted as {xi}`i=1, are combined within the j-th neuron through proper parametric
functions, the most popular one being based on a weighted sum, with weights {wji}`i=1,
of the input messages. In detail, each j-th neuron’s input xi is multiplied by a weight wji
whose value is learnt during the ANN training phase (thus not a-priori fixed) and, then,
added to the other weighed inputs messages. Then, a bias term bj is added to the sum.
Finally, before being forwarded to the next ANN’s layer, the output of a neuron is processed
by a non-linear activation function, denoted as f (·): a relevant example is the Rectified
Linear Unit (ReLU) function f (x) = max(0, x) [21]. The overall output of the j-th neuron,
denoted as yj, can then be expressed as follows:

yj = f

(
`

∑
i=1

wji xi + bj

)
. (1)

Sensors 2021, 21, 3973 6 of 29

xi
⊗ Σ f

Activation
function

yj

Output

x1
⊗
wj1

x`
⊗
wj`

wji

Bias
bj

j-th neuron

Inputs (`)

Figure 2. Simplified mathematical model of the processing of the j-th neuron inside a MLP ANN.

The training process of a NN is usually pursued through several rounds in which,
according to a cost function quantifying the similarity between the NN’s outputs and
its desired values, the weights (in other words, the model’s parameters) are updated to
improve the performance or, more precisely, to reduce a cost function. To this end, there
exist several algorithms implementing the learning process, among which one of the most
popular ones is Back Propagation (BP) with gradient descent [23].

In the context of variable prediction in a greenhouse, beside ANNs, RNN and LSTM
networks have been successfully applied to forecast air temperature (as detailed in
Section 3). Indeed, due to their ability in discovering a connection between temporally-
close data, RNNs and LSTM networks are in general valid alternatives for solving time
series-based forecasting problems. From a high-level perspective, this is mainly due to the
fact that, for each stage in the training phase, a simple RNN can remember its internal state
(namely, the output values of each of its neurons, as outlined in Figure 3) and exploit this
state to compute the next state in the following round of training. Therefore, this internal
organization allows us to analyze data in a recurring fashion, performing loops on data
and resulting in a sort of short-term memory.

Figure 3. Comparison between the internal organization of a RNN, owing a sort of internal memory,
and an ANN.

In order to overcome some limitations of RNNs, such as a vanishing gradient with
long time series, which makes it difficult to learn long-term dependencies from data
using RNN [25], valid alternatives are LSTM networks [26] (or simply LSTMs). From a
conceptual point of view, LSTMs are built around a gated cell in which weights, learned
during the training phase, define which information is more relevant to remember, thus

Sensors 2021, 21, 3973 7 of 29

allowing us to decide which value needs to be stored inside the (memory of the) cell and
which one needs to be discarded. This allows us to select which information provided
by the previous network’s training round should be kept and which should not, better
highlighting long-term relations among data.

2.2. Evaluation Metrics

The quality of a forecasting model, evaluated in terms of prediction performance in
a comparative way with respect to multiple models devoted to the same task, is usually
quantified selecting one or more proper metrics. In regression problems, such as the fore-
casting of future air temperature values inside a greenhouse, widely considered evaluation
metrics are RMSE, MAPE, and R2 [21], defined as follows:

RMSE =

√
∑n

j=1 (dj − pj)2

n
(2)

MAPE =
1
n

n

∑
j=1

∣∣∣∣∣dj − pj

dj

∣∣∣∣∣× 100 (3)

R2 =

 ∑n
j=1(dj − d)(pj − p)√

∑n
j=1(dj − d)∑n

j=1(pj − p)

2

(4)

where n is the number of predicted (and corresponding actual) samples; {dj} and {pj} are
the actual and forecast values of the j-th sample of the phenomenon under observation
(e.g., the temperature), respectively; and d , (∑n

j=1 dj)/n and p , (∑n
j=1 pj)/n are the

average values of the actual and forecast samples, computed as arithmetic averages over
all the n actual and forecast samples, respectively.

The RMSE, defined according to Equation (2), represents the standard deviation of
the difference between the actual values (to be predicted) and the values predicted by the
model (or residuals). The closer to zero the RMSE is, the better the algorithm performs.

The MAPE, defined as in Equation (3), is a percentage quantifying a relative distance
between predicted and actual values. As for the RMSE, the closer to zero the MAPE
distance, the better the performance.

Finally, R2, defined according to Equation (4), is a normalized (between 0 and 1)
statistical metric quantifying the adaptability of a regression model. The closer to one R2 is,
the more accurate the prediction model is.

A recently proposed metric, relevant for the evaluation of a NN N to be run on an
edge device, is the NetScore metric [18], denoted as Ω and expressed as follows:

Ω(N) = 20 log
(

a(N)α

p(N)β ×m(N)γ

)
(5)

where a(N) is the accuracy of the model (i.e., the correct prediction rate in a classification
task); p(N) is the number of parameters of a NN, also denoted as architectural complexity;
m(N) is the number of Multiply–ACcumulate (MAC) operations performed during NN
inference, also denoted as computational complexity; and α, β, γ are coefficients which
allow to control the relative weights (for the purpose of NetScore evaluation) of accuracy,
architectural complexity, and computational complexity of the model N , respectively.

As can be seen from Equation (5), the NetScore metric assigns to an NN a score that is
logarithmically proportional to a ratio between prediction accuracy and complexity. This
means, for example, that models with high accuracy and a small number of parameters
have a high NetScore value; on the contrary, models with moderate accuracy but high
complexity have a small NetScore value. Furthermore, models with different accuracy,
number of parameters, and MAC operations may have comparable values in terms of the
NetScore metric.

Sensors 2021, 21, 3973 8 of 29

Finally, the relative impact of the components of the logarithmic ratio of the NetScore
(namely, accuracy, architectural and computational complexities) are regulated by the
exponential coefficients α, β, and γ, which, in turn, allow us to adjust the weight of each
factor according to its practical relevance for the application at hand. As an example, higher
(than default) values can be assigned to β and γ whenever the NN model needs to be
extremely simple in terms of computational and architectural complexities. On the other
hand, if the model’s accuracy is the most relevant algorithmic feature, then α can be set
to a high value. In general, for the majority of the applications, it is possible to set α, β,
and γ equal to 2, 0.5 and 0.5, respectively [18]). This means that, from a general point of
view, the relevance of the model’s accuracy is usually higher than the (architectural and
computational) complexity of the model itself.

3. Related Work

In Table 1, relevant literature references are summarized, which are commented in
more detail below. As outlined in Section 1, the joint adoption of IoT and ML in the area of
SA allows to simplify the maintenance of a greenhouse micro-climate, thus automatizing
the control of its inner variables. Usually, this challenging and complex goal is pursued
through three main steps. First, a WSN is deployed inside the greenhouse in order to
collect and monitor a subset of relevant environmental parameters (namely, the greenhouse
internal variables) [7,9,11]. Second, one or more control systems, based on devices that can
control the greenhouse’s actuators, are introduced in order to automatically maintain a
proper internal climate [12,13]. Third, the internal variables’ future trends are forecast with
prediction techniques, based on ML algorithms, such as NNs [3,14–16,27,28].

In the context of greenhouse air temperature forecasting, NNs, due to their ability in
learning patterns from data related to non-linear systems without an a priori knowledge
of the system model [28], have become an extremely popular alternative to more consoli-
dated techniques—e.g., physical methods based on mathematical theory and black-box
approaches based on modern computational technology (e.g., Particle Swarm Optimization,
PSO) [4].

As shown in Table 1, several algorithms to forecast the air temperature with NN-
based models have been proposed. Although aiming at the same purpose, models in
Table 1 differ in terms of adopted input variables, NN architecture, and data sources.
Indeed, input parameters can include variables related to the surrounding environment
external to the greenhouse, as well as environmental variables internal to the greenhouse,
or a combination of them. Usually, the first group of variables cannot be controlled but
influence the internal climate of the greenhouse: this is the case, for example, of external
temperature, solar radiation, humidity, and wind speed [3,14,15,27]. In most cases, the
second group of variables can instead be influenced by activating (or deactivating) some
actuators installed inside the greenhouse: this is the case, for example, of internal air
temperature and humidity, soil moisture, and CO2 [14,16,28]. As outlined in Table 1, the
main types of NN architectures discussed in the literature, and achieving satisfactory
prediction performance, are ANN, RNN, LSTM and Radial Basis Function (RBF) networks.

Considering the principles on the basis of their designs, it is possible to concep-
tually separate literature models into the following categories: (i) time series-oriented
approaches, (ii) “pure” ML approaches, and (iii) hybrid approaches. In detail, the first
type of approaches solves the task of predicting future air temperature values as a time
series forecasting problem, leveraging the following features characterizing time series
data, i.e., data which are periodically sampled and have a time reference (as sensor data):
trends, seasonality, and correlation between samples which are close in time. The time
series peculiarity of having, in most cases, temporally-close data linked by a relation, can
be successfully discovered by NN models, such as RNNs [27] and LSTM networks [28],
and exploited in order to achieve prediction performance better than other types of NN
architectures. The use of data coming from other data sources, without taking into account
the relation existing between temporally-close data of the same time series, can also be

Sensors 2021, 21, 3973 9 of 29

valuable in order to forecast air temperature. These sources can include data related to
external or internal variables to the greenhouse, correlated to the air temperature values
to be predicted. With this approach, the use of RBF networks [15,16] and ANNs [29] have
been very successful in air temperature forecasting. To conclude, the two approaches can
be integrated leading to a hybrid approach, selecting the NN architecture which best suits
the prediction problem at hand [3].

The authors now comment briefly on the limitations of existing literature and on
the steps forward proposed in the current paper. In [3], an air temperature forecasting
model based on an ANN, predicting air temperature with a RMSE of 2.5÷ 3.0 °C, has been
presented. Better results, in terms of RMSE, have been achieved with the same type of
NN architecture (namely, ANN) in [14,19], reaching a RMSE equal to 0.839 °C and 1.50 °C,
respectively. These results can be eventually justified by the fact that the last two models
have been trained with a wider data set (in other words, a data set with a number of
samples 4 or 64 times greater with respect to the one available in [3]). In [27], a RNN-based
model has been built using a data set of comparable size to [3] but achieving a better RMSE
(equal to 0.865 °C) than [19,27], but lower than [14]. Moreover, RBF networks have been
adopted in [16] to build a model which outperforms all the above-mentioned papers in
terms of RMSE. Unlike these literature works, in which the forecasting model designs
take into account only one type of NN architecture, in [15,28], more than one type of NN
architecture have been compared in order to perform a more comprehensive analysis.
The prediction performance of the models presented in [15,28] is comparable with that
in [14,27], better than that in [3,19], but lower than that in [16].

The above-cited works (also outlined in Table 1) do not provide any detail concerning
the computational and architectural complexities of their proposed models. Instead, such
complexities are key factors while designing IoT applications in which NN-based algo-
rithms are deployed on embedded devices (usually located on the network’s edge). Indeed,
since most literature works—showing remarkable results in the air temperatures forecast-
ing (e.g., with a RMSE value lower than 1 °C)—are intended to be executed in the Cloud
and not on IoT (edge) devices, no discussion concerning the proposed model’s complexity
is provided, as this aspect is not a limitation. However, since the diffusion of EdgeAI (due
to its significant advantages) is rapidly growing, taking into account the complexity, while
deploying new algorithms for IoT applications (running on edge devices), is extremely
relevant. In the above-cited works, this aspect has not been exhaustively discussed in the
context of forecasting air temperature within greenhouses. Filling this literature gap is one
of the aims of the current paper.

Sensors 2021, 21, 3973 10 of 29

Table 1. Representative literature papers in the context of air temperature forecasting inside greenhouses through the usage of NNs.

Ref.
NN Model Performances (on Test Set) Data Set Details

Input Variables Architectural
Type

Training
Algorithm RMSE (◦C) MAPE (%) R2 Size

(Samples No)
Collection

Interval
Sampling
Interval

[3]

External temperature and
solar radiation, wind speed,

heater temperature,
datetime reference

ANN BP, CGA 2.5–3.0 N/A N/A 1368 ≈2 months 1 h

[14]

Internal solar radiation, air
temperature and humidity, and

soil moisture, CO2,
atmospheric pressure,

datetime reference

ANN BP 0.839 N/A 0.977 ≈87,408 19 months 10 min

[15] External solar radiation and
temperature, wind speed ANN, RBF BP 0.20± 0.02,

0.13± 0.01
0.93± 0.10,
0.59± 0.07

0.76± 0.05,
0.89± 0.03 N/A N/A N/A

[16]

External solar radiation, heater
temperature, internal air

temperature and humidity,
wind speed, history of

actuators, shadow screen

RBF BP, LM 0.0019 N/A N/A 1728 12 days 10 min

[19]

External apparent temperature,
dew point, air humidity, air
temperature and UV index,

datetime reference

ANN BP 1.50 4.91 0.965 5346 10 months 1 h

[28]

External temperature, solar
radiation and humidity, wind
speed and direction, history

of actuators

ANN,
RNN-LSTM,

NARX
BP

0.89–0.94,
0.45–0.71,
0.52–1.32

N/A 0.94, 0.96–0.97,
0.86–0.96 ≈470,000 1 year 5, 10, 15, 20, 25,

30 min

[27]
Internal air and soil

temperature, internal solar
radiation, humidity and CO2

RNN BP 0.865 1.7 0.925 1152 8 days 10 min

Sensors 2021, 21, 3973 11 of 29

To conclude, in a previous work [19], the authors have discussed the design of an
edge device-friendly air temperature forecasting model following the pure ML approach
(the second approach previously introduced). More precisely, in order to forecast future
values of air temperature inside a greenhouse in a demonstrator of the H2020 project AFar-
Cloud [30], the authors have selected the external weather conditions as input variables for
the model. Moreover, the authors have implemented an algorithm which, due to its low
computational and architectural complexities, can be easily run by an edge device (i.e., the
Smart GW) and can predict future air temperatures with performance results comparable
to the literature. As anticipated at the end of Section 1, another goal of this paper is to
experimentally investigate a novel time series-based approach in a comparative way with
respect to [19] and existing literature approaches, including a comprehensive analysis
of the prediction performance in relative terms with respect to the (computational and
architectural) complexity of the developed model. In particular, the authors will show that
their model, even with limited complexity, incurs minimal (or no) performance degradation
with respect to Cloud-oriented approaches.

4. Methodology

As outlined in Section 1, the aim of this paper is three-fold. First, the authors want to
evaluate an alternative approach to solve the ML-oriented task presented in [19], namely
the deployment of an “edge device-friendly” air temperature forecasting model (intended
to be run on a Smart GW). Instead of the weather conditions external to the greenhouse,
the NN-based model deployed with the novel approach (i.e., time series-oriented, as
discussed in Section 3) takes as input variables only air temperature values collected
inside the greenhouse. Three architectural types of NN are considered: ANN, RNN, and
LSTM. The authors analyze the impact, on the prediction performance of the selected three
architectures, of two design parameters: (i) the number of model’s input variables (or,
in other terms, the size of the data sliding window used by the model), denoted as SW,
and (ii) their sampling period, denoted as Tsamp (dimension: [min]). Second, the model
presented in [19] has been re-trained with data collected from August 2019 to the end of
November 2020, to make the data set coherent with that available for the new approach
(in [19], the data set was composed by data collected from August 2019 to the end of
May 2020). Third, the experimental performances of the proposed models have been
compared with those outlined in Table 1.

From a methodological point of view, the following steps are undertaken.

1. Relevant air temperature data, measured with sensors inside a greenhouse associated
with an Italian demonstrator of the H2020 project AFarCloud [30], are collected and
processed to remove outliers and spurious data (Section 4.1).

2. The greenhouse indoor temperature sensor data collected with a sampling period
Tsamp = 10 min are arranged in a time series. Furthermore, from this original time
series, six additional time series are derived downsampling the first time series with
longer sampling periods (Section 4.2).

3. The number of input variables of the model SW and the sampling period Tsamp are
defined as the two design parameters. Moreover, Tsamp is reintegrated as the predic-
tion time horizon; in fact, the predicted temperature value is the one corresponding
to the next temperature value after the most recent one of the sliding window: this
samples is, by construction, Tsamp ahead. Furthermore, a proper set of values related
to these parameters is selected for testing purposes (Section 4.3).

4. Starting from the collected sensor data and according to the number of parameters’
values to be tested, multiple data sets are created. Furthermore, each data set is split
into training and test subsets (Section 4.4).

Sensors 2021, 21, 3973 12 of 29

5. Three NN architectures, based on an ANN, a RNN, and a LSTM, are introduced and
trained with the data sets resulting from the previous steps (Section 4.5).

6. The NN model presented in [19] is re-trained with a significantly larger data set—
including data from 6 more months (Section 4.6).

7. All models are evaluated on the test subsets and their performances are compared in
terms of RMSE, MAPE, R2, and NetScore (Section 5).

8. Finally, the best three models (among a total of 210) on the considered engineered
data sets (step 4) are performance-wise compared with relevant literature approaches
(Section 5).

4.1. Data Collection and Cleaning

Sensor data related to air temperatures have been gathered inside the greenhouse
of an Italian farm, denoted as Podere Campàz [31], through the LoRaFarM platform, a
Farm-as-a-Service (FaaS) architecture proposed in [8]. In detail, air temperature values have
been measured with a sampling interval of 10 min, for a time period of 16 months—from
the beginning of August 2019 to the end of November 2020. The distribution of collected
data, over the 16-month time period, is shown in Figure 4: in each month, the authors
indicate the average (over the month) number of data collected daily.

Analyzing the data distribution shown in Figure 4, it can be seen that data have been
irregularly collected across the months of the collection period. This is due to various
reasons: for example, during December 2019, March 2020, and September 2020, the data
irregularity was caused by a temporary Internet connectivity loss, which prevented col-
lected data from being forwarded, through the LoRaFarM platform, to a storage repository
placed in the Cloud.

Figure 4. Sensor data collected during a 16-month time period: in each month, the average daily
number of collected samples (obtained as the ratio between the number of gathered samples per
month normalized and the number of days of the month) is shown.

On the other hand, the samples’ distribution over actual collection daily hours has
an almost perfect uniform trend, meaning that the number of data collected during dif-
ferent hours of the day in the 16-month time period is approximately the same at each
hour. Indeed, the overall amount of “raw” data gathered during this stage correspond to
Nsamp = 40,033 samples, with the number of samples collected per hours varying from
a minimum of 1649 samples to a maximum of 1694 samples, with an average value of
1668 samples and a standard deviation of approximately 11 samples.

Sensors 2021, 21, 3973 13 of 29

4.2. Engineering Time Series from Sensor Data

As mentioned in Section 4, sensor data were collected with a (real) sampling period
Tsamp = T0 = 10 min. The corresponding time series, describing the measured air tem-
perature inside the greenhouse during the considered period of 16 months, is denoted as
{z(T0)

k }Ntot
k=1, where k corresponds to the time instant kT0—denoting T0 (with k = 1) as the

instant of collection of the first sample and NtotT0 (with k = Ntot) as the instant of collection
of the last sample—or, with a more compact notation, simply {z(T0)

k }. More precisely,

denoting the temperature in the greenhouse as z(t), the time series’ sample z(T0)
k = z(kT0)

corresponds to the air temperature measured at time instant t = kT0. As an additional
clarification, in this paper a deterministic temperature signal z(t) has been considered,
as it refers to the specific real data collected from sensors. In order to generalize this ap-
proach, the air temperature should be modeled as a stochastic process Z(t). However, this
goes beyond the scope of this paper. In Figure 5, an illustrative representation of the first
18 samples of the time series {z(T0)

k } (black dots), denoted as {zk} for simplicity, is shown.

0 2T0 4T0 6T0 8T0 10T0 12T0 14T0 16T0 18T0
27.5

28

28.5

29

29.5

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z18

Time (t)

A
ir

te
m

pe
ra

tu
re

(°
C

)

z(2hT0)

z(kT0)

Figure 5. Illustrative representation of the first 18 samples {z(T0)
k = z(kT0)}18

k=1 (black dots) and of

the first 9 samples {z(2T0)
h = z(2hT0)}9

h=1 (black dots over violet squares), obtained downsampling

{z(T0)
k } with a factor equal to 2.

The authors remark that, because of the methodology selected to gather sensor data
inside the greenhouse, some samples of the time series {z(T0)

k }may not be available—i.e.,
the LoRaFarM platform may suffer from temporary lack of Internet connectivity and,
thus, lose some sensor data. Hence, this means that there exist Nlost instants of time
(k̂1T0, . . . , k̂Nlost T0) at which the values of air temperature {z(T0)

k̂i
}Nlost

i=1 are not available—for

example, one can set z(T0)

k̂i
= NaN. Moreover, for this reason, the overall number of samples

in the time series, denoted as Nsamp, is smaller than the total number of samples Ntot
ideally collected in the considered 16 month time interval with a sampling period equal to
T0 = 10 min and no data loss—more precisely, Ntot = Nsamp + Nlost.

Focusing on downsampling, it is useful to reduce the number of samples in a time
series in the context of time series’ forecasting and analysis, indicating with λ the down-
sampling factor, the downsampled time series can be expressed as follows:

{z(λT0)
h = z(λhT0)}h = {z(T0)

λh }λh h = 1, 2, . . . (6)

To this end, in Figure 5 the downsampled version (with λ = 2) of the original time
series is shown, with the corresponding samples identified by circles with squares.

In order to evaluate how the sampling period Tsamp influences the prediction perfor-
mance of the model, 6 additional time series are built downsampling the original time
series {z(T0)

k }with Tsamp equal to 2T0 = 20 min, 3T0 = 30 min, 4T0 = 40 min, 5T0 = 50 min,
6T0 = 60 min, and 12T0 = 120 min, i.e., by setting the downsampling factor λ to 2, 3, 4,
5, 6, and 12, respectively. The corresponding time series are denoted as {z(2T0)

k }, {z(3T0)
k },

{z(4T0)
k }, {z(5T0)

k }, {z(6T0)
k }, {z(12T0)

k }, respectively.

Sensors 2021, 21, 3973 14 of 29

All the created time series have been used to build a total of 70 different data sets
(i.e., 10 data sets for every time series, with a different number of input variables each), as
detailed in Section 4.4. Considering these time series allows to determine the best sampling
period for the phenomenon of interest (inner air temperature).

4.3. Sliding Window-Based Prediction

As described in Section 4, the prediction approach is based on the use of a sliding
window. More precisely, the authors consider SW consecutive samples of the target time
series, with sampling interval Tsamp, to predict the value of the next sample. With reference
to Figure 6, at epoch k:

ẑ
(Tsamp)

k+1 = ẑ
(Tsamp)

k+1

(
z
(Tsamp)

k−SW+1, . . . , z
(Tsamp)

k

)
, (7)

where ẑ
(Tsamp)

k+1 corresponds to the predicted value of the (true) sample z
(Tsamp)

k+1 and, at the
right side, the dependency from the previous samples is highlighted.

time
//

zk−SW+1 zk−2 zk−1 zk zk+1

Tsamp

SW observations ẑk+1

Figure 6. Sliding window-based prediction at epoch k: the SW observations {zk−i+1}SW
i=1 are used to

predict the value zk+1, denoted as ẑk+1—the superscript (Tsamp) is omitted for simplicity.

Since the parameters SW and Tsamp influence the prediction performance of the model,
they need to be optimized. For this reason, different combinations of SW and Tsamp are
considered, comparing the corresponding prediction performance. In detail, 10 values
of SW (namely, from 1 to 10 samples) and, as described in Section 4.2, 7 values for Tsamp
(namely, 10, 20, 30, 40, 50, 60 and 120 min) are considered.

For the sake of clarity, it is noteworthy to remark that, since SW corresponds to the
input size of a model (the parameter ` in Figure 2 for a neuron of the input layer), at
the input of the model there is a SW-dimensional vector of SW features corresponding
to air temperature values sampled with a fixed period Tsamp and, thus, coming from the

time series {z(Tsamp)

k } built in the previous stage. As an example, a model built selecting
SW = 4 and Tsamp = 10 min is fed with input vectors having 4 features corresponding to 4
consecutive air temperature samples collected every Tsamp = 10 min.

4.4. Data Pre-Processing and Data Sets Creation

Since the authors want to evaluate the prediction performance of the model adopting
different combinations of {SW, Tsamp} pairs, multiple data sets to train and test the al-
gorithm can be engineered. More precisely, 70 data sets have been created, each one
associated with a specific {SW, Tsamp} pair, where SW ∈ {1, 2, . . . , 10} and Tsamp ∈
{10, 20, 30, 40, 50, 60, 120}min. In detail, using a compact notation, the authors denote as

D
(Tsamp)
SW the data set obtained with the corresponding values of Tsamp and SW. Each entry

of the data set is a vector d(k) of true temperature values defined as follows:

d(k) ,
(

z
(Tsamp)

k−SW+1, . . . , z
(Tsamp)

k , z
(Tsamp)

k+1

)
. (8)

In a compact notation, one can write:

d(k) = (x(k), y(k)) (9)

Sensors 2021, 21, 3973 15 of 29

where
x(k) , (x1(k), . . . , xSW(k)) (10)

with
xi(k) = z

(Tsamp)

k−i+1 i = 1, . . . , SW (11)

is the vector of the input variable of the model and y(k) = z
(Tsamp)

k+1 is the true temperature
value which has to be estimated by the output of the NN based on x(k). In Figure 7, the

generic entry d(k) of D
(Tsamp)
SW , for k > SW, is shown.

time
//

zk−SW+1 zk−2 zk−1 zk zk+1 zk+2

Tsamp

x S
W
−

2(
k)

x S
W
−

1(
k)

x 1
(k
)

x S
W
(k
)

. . .

y(
k)

SW samples
(input to the NN)

1 sample
(estimated by the

NN’s output)

(x(k) y(k)),d(k) =

Figure 7. The k-th sample d(k) in the data set D
(Tsamp)
SW is composed of SW values of air temperatures

(composing the SW-dimensional vector x(k) of input variables) and of an output variable y(k)
(corresponding to the air temperature at epoch k + 1, which has to be forecast starting from x(k)).

As a side note, entries with one or more NaN values—corresponding to missing air
temperature values for specific instants of time in the original time series, as explained in
Section 4.2—have been discarded and not included in the data sets. Then, each data set is
split (randomly) into a training subset and a test subset with a ratio 3 : 1.

More details on the created data sets, in terms of number of samples in the set (divided
among training subset and test subset) and values of SW and Tsamp, can be found in
Table 2.

Sensors 2021, 21, 3973 16 of 29

Table 2. Details concerning the engineered data sets, in terms of number of samples, SW and Tsamp.

Data Set Tsamp
[min]

SW
[Samples]

Size
[Samples]

Training Subset
Size [Samples]

Test Subset Size
[Samples] Data Set Tsamp

[min]
SW

[Samples]
Size

[Samples]
Training Subset
Size [Samples]

Test Subset Size
[Samples]

D
(10)
1

10 1 36,330 27, 248 9082 D
(10)
10

10 10 32,696 24,522 8174

D
(10)
2 10 2 35,828 26,871 8957 D

(10)
3 10 3 35,363 26,523 8840

D
(10)
4

10 4 34,923 26,193 8730 D
(10)
5 10 5 34,512 25,884 8628

D
(10)
6 10 6 34,118 25,589 8529 D

(10)
7 10 7 33,734 25,301 8433

D
(10)
8 10 8 33,366 25,025 8341 D

(10)
9 10 9 33,020 24,765 8255

D
(120)
1

120 1 2985 2239 746 D
(120)
10

120 10 2457 1843 614

D
(120)
2 120 2 2912 2184 728 D

(120)
3 120 3 2843 2133 710

D
(120)
4

120 4 2781 2086 695 D
(120)
5 120 5 2723 2043 680

D
(120)
6 120 6 2666 2000 666 D

(120)
7 120 7 2611 1959 652

D
(120)
8 120 8 2558 1919 639 D

(120)
9 120 9 2507 1881 626

D
(20)
1

20 1 18,102 13,577 4525 D
(20)
10

20 10 16,006 12,005 4001

D
(20)
2 20 2 17,812 13,359 4453 D

(20)
3 20 3 17,539 13,155 4384

D
(20)
4

20 4 17,286 12,965 4321 D
(20)
5 20 5 17,050 12,788 4262

D
(20)
6 20 6 16,822 12,617 4205 D

(20)
7 20 7 16,605 12,454 4151

D
(20)
8 20 8 16,399 12,300 4099 D

(20)
9 20 9 16,196 12,147 4049

D
(30)
1

30 1 12,067 9051 3016 D
(30)
10

30 10 10,618 7964 2654

D
(30)
2 30 2 11,862 8897 2965 D

(30)
3 30 3 11,678 8759 2919

D
(30)
4

30 4 11,504 8628 2876 D
(30)
5 30 5 11,341 8506 2835

D
(30)
6 30 6 11184 8388 2796 D

(30)
7 30 7 11,030 8273 2757

D
(30)
8 30 8 10,885 8164 2721 D

(30)
9 30 9 10,749 8062 2687

D
(40)
1

40 1 9008 6756 2252 D
(40)
10

40 10 7690 5768 1922

D
(40)
2 40 2 8829 6622 2207 D

(40)
3 40 3 8656 6492 2164

D
(40)
4

40 4 8495 6372 2123 D
(40)
5 40 5 8341 6256 2085

D
(40)
6 40 6 8196 6147 2049 D

(40)
7 40 7 8062 6047 2015

D
(40)
8 40 8 7931 5949 1982 D

(40)
9 40 9 7806 5855 1951

D
(50)
1

50 1 7220 5415 1805 D
(50)
10

50 10 6185 4639 1546

D
(50)
2 50 2 7079 5310 1769 D

(50)
3 50 3 6944 5208 1736

D
(50)
4

50 4 6816 5112 1704 D
(50)
5 50 5 6695 5022 1673

D
(50)
6 50 6 6584 4938 1646 D

(50)
7 50 7 6479 4860 1619

D
(50)
8 50 8 6376 4782 1594 D

(50)
9 50 9 6280 4710 1570

D
(60)
1

60 1 6006 4505 1501 D
(60)
10

60 10 5146 3860 1286

D
(60)
2 60 2 5886 4415 1471 D

(60)
3 60 3 5772 4329 1443

D
(60)
4

60 4 5668 4251 1417 D
(60)
5 60 5 5570 4178 1392

D
(60)
6 60 6 5478 4109 1369 D

(60)
7 60 7 5389 4042 1347

D
(60)
8 60 8 5306 3980 1326 D

(60)
9 60 9 5224 3918 1306

4.5. Models Training

The NN models evaluated in this paper, based on LSTMs, RNNs, and ANNs, are
shown in Figure 8a, Figure 8b and Figure 8c, respectively. As can be observed, these models
share a similar structure, in terms of number of layers and neurons per layer, with the
exception of the first hidden layer, which is not feed-forward and is composed of LSTM
or RNN cells for the LSTM-based and the RNN-based models, respectively, while it is
feed-forward for the ANN-based model. Moreover, as can be expected, the number of
neurons in the input layer may vary from 1 to 10, according to the adopted values of SW.

Each model has been trained on the 70 data sets engineered in the previous stages (more
precisely, on training subsets obtained from these data sets) using the BP algorithm [23] and
considering the RMSE as loss function. From a practical point of view, Python v3.8.6 and
the Keras framework v2.4.3 [32] have been used. Moreover, with regard to the other NN’s
learning parameters, the following values have been set: learning rate = 0.002, batch size =
20, and number of epochs = 20. In order to perform the fairest possible comparison among
these NN models, the values of these parameters have been kept fixed for the three models.
In all cases, the number of hidden layers and the number of neurons of the hidden layers
are kept fixed as well in all NN models: they are set to 3 and to 32/8/3, respectively.

Sensors 2021, 21, 3973 17 of 29

(a) (b)

(c)

Figure 8. NN models evaluated in this paper: (a) LSTM-based; (b) RNN-based; (c) ANN-based.

4.6. “Old Model” Re-Training

In order to fairly compare the novel models proposed in this paper with the model
presented in [19], the latter (referred in the following as “old model”) has been re-trained
with additional new data, namely, meteorological data and sensor data (related to air
temperatures) gathered between the beginning of August 2019 and the end of November
2020. As a side note, the additional data (collected in 6 more months with regard to the
time interval considered in [19]) allow to increase the data set size of the already deployed
model from 5346 to 7919.

5. Experimental Results
5.1. Sliding Window and Sampling Interval

In order to evaluate the influence, in terms of prediction performance, of the values
of SW and Tsamp on the three proposed models (with reference to Figure 8), the RMSE, the
MAPE, and R2 have been calculated for each of the 210 models obtained in the training
phase (i.e., 3 models for each of the 70 engineered data sets). The values of the three metrics,
considering the various models, are shown, with a three-dimensional representation, in
Figure 9.

It is noteworthy to remark that the values of RMSE, MAPE, and R2 presented in
Figure 9 (as well as those shown in the remainder of the paper) refer to the evaluation of
the different models on the test sets (namely, set of data which have not been employed
during the models’ training phase). Therefore, the corresponding performance analysis
refers directly to the test sets.

Sensors 2021, 21, 3973 18 of 29

Considering the results in Figure 9, the following trends, generally valid for all the
evaluated NNs, can be highlighted. First, regardless of the value of SW, small values of
Tsamp are associated with low values of RMSE (namely, a RMSE < 1 °C for Tsamp = 10
or 20 or 30 min, as shown in Figure 9a,d,g). On the other hand, high values of RMSE
and, thus, degraded prediction performance, are obtained for higher values of Tsamp (e.g.,
Tsamp = 120 min). Second, the MAPE metric shows the same trend in all cases (as shown in
Figure 9b,e,h). Third, R2 is higher the smaller Tsamp is (i.e., Tsamp = 10 min), but decreases
for increasing values of Tsamp. Moreover, increasing SW leads to an increase of R2 (as
shown in Figure 9c,f,i).

The first trend is also confirmed by the bi-dimensional charts shown in Figure 10,
in which the prediction performance of the three NN-based models, in terms of RMSE,
is shown as a function of either SW (with Tsamp as a parameter) or Tsamp (with SW as a
parameter). In other words, the plots in Figure 10 are obtained by projecting the three-
dimensional plots in Figure 9 onto the two vertical planes.

Furthermore, the minimum, maximum, and average values of the three selected
evaluation metrics, over the 210 considered models, are listed in Table 3, in detail with
the corresponding design parameters (namely, SW and Tsamp) referring to minimum and
maximum values. As can be seen from Figure 9 and Table 3, some of the considered models
reach a satisfactory prediction performance on test sets while, on the other hand, some
others are less accurate. An example of less accurate model is the ANN-based model trained
with (Tsamp, SW) = (120, 3) which, on the test set, is characterized by RMSE = 4.561 °C,
MAPE = 16.35%, and R2 = 0.699.

Less accurate models—namely, those with RMSE > 1 °C, MAPE > 3%, and R2 < 0.980
on at least one test set—will not be considered in the following analysis, although their
experimental results have been included in Figure 9. In fact, since one of the goals of this
paper is to discuss the influence of the dimension of the sliding window and the value of the
sampling interval on the model prediction performance exhaustively, even less-performing
models have been considered in Figure 9 and discussed in the previous paragraphs.

Table 3. Minimum (min), maximum (max), and average (avg) values of RMSE, MAPE, and R2 obtained over the
210 trained models.

NN Arch. Type
RMSE [◦C] MAPE [%] R2

Value Tsamp SW Value Tsamp SW Value Tsamp SW

ANN

Min 0.402 10 5 1.03 10 4 0.699 120 3

Max 4.561 120 3 16.35 120 3 0.998 10 4, 5

Avg 1.52 N/A N/A 4.29 N/A N/A 0.96 N/A N/A

RNN

Min 0.290 10 5 0.87 10 5 0.776 120 3

Max 3.933 120 3 14.14 120 3 0.999 10 5

Avg 1.45 N/A N/A 4.10 N/A N/A 0.96 N/A N/A

LSTM

Min 0.294 10 5 0.89 10 5 0.766 120 3

Max 4.024 120 3 14.08 120 3 0.999 10 5

Avg 1.46 N/A N/A 4.17 N/A N/A 0.96 N/A N/A

Sensors 2021, 21, 3973 19 of 29

LSTM-based models

(a) (b) (c)

ANN-based models

(d) (e) (f)

RNN-based models

(g) (h) (i)

Figure 9. Experimental results with the three proposed NN-based models, namely, LSTM (a,b,c), ANN (d,e,f), and RNN
(g,h,i), for different values of SW and Tsamp, in terms of RMSE (a,d,g), MAPE (b,e,h) and R2 (c,f,i).

Sensors 2021, 21, 3973 20 of 29

(a) LSTM-based models.

(b) ANN-based models.

(c) RNN-based models.

Figure 10. Experimental results, in terms of RMSE, on the three proposed NN-based models, namely, (a) LSTM, (b) ANN,
and (c) RNN, for different values of SW and Tsamp.

Sensors 2021, 21, 3973 21 of 29

5.2. NN Architecture

In order to fairly compare the prediction performance of the proposed NN archi-
tectures (namely, LSTM, RNN, and ANN) over a subset of the 70 data sets generated in
the previous phases, 17 models, trained on the same 17 data sets, have been selected for

each type of NN architecture. In detail, all the data sets D
(Tsamp)
SW in correspondence to

which the LSTM, RNN, and ANN models trained with Tsamp ∈ {10, 20, 30, . . . , 120} and
SW ∈ {1, 2, . . . , 10} have RMSE ≤ 1 °C, MAPE ≤ 3%, and R2 ≥ 0.980 on test sets, have
been selected. The resulting prediction performance is summarized in Table 4.

Table 4. Prediction performances of the three proposed models on a reduced selection of SW
and Tsamp (those which are better performing).

Data

Set
Tsamp SW

RMSE [◦C] MAPE [%] R2

LSTM RNN ANN LSTM RNN ANN LSTM RNN ANN

D
(10)
2 10 2 0.470 0.769 0.608 1.42 2.80 1.91 0.997 0.992 0.995

D
(10)
3 10 3 0.830 0.696 0.923 2.51 2.14 2.98 0.991 0.994 0.989

D
(10)
4 10 4 0.370 0.501 0.407 1.19 1.52 1.03 0.998 0.997 0.998

D
(10)
5 10 5 0.294 0.289 0.402 0.89 0.87 1.04 0.999 0.999 0.998

D
(10)
6 10 6 0.371 0.464 0.449 1.16 1.53 1.18 0.998 0.997 0.997

D
(10)
7 10 7 0.577 0.598 0.997 1.78 1.94 2.95 0.996 0.996 0.987

D
(10)
9 10 9 0.542 0.685 0.717 1.69 2.08 2.23 0.996 0.994 0.993

D
(20)
5 20 5 0.434 0.438 0.674 0.90 0.93 1.68 0.998 0.998 0.994

D
(20)
6 20 6 0.447 0.439 0.655 0.93 0.91 1.63 0.997 0.998 0.995

D
(20)
7 20 7 0.458 0.461 0.509 1.13 1.16 1.17 0.997 0.997 0.997

D
(20)
8 20 8 0.453 0.466 0.805 0.98 1.07 2.06 0.997 0.997 0.992

D
(20)
9 20 9 0.684 0.674 0.606 2.00 1.77 1.64 0.994 0.994 0.995

D
(20)
10 20 10 0.897 0.907 0.820 2.80 2.94 2.08 0.990 0.990 0.992

D
(30)
3 30 3 0.974 0.894 0.765 2.97 2.66 1.61 0.987 0.989 0.992

D
(30)
5 30 5 0.640 0.693 0.961 1.72 1.89 2.90 0.995 0.994 0.988

D
(30)
7 30 7 0.778 0.799 0.782 1.73 1.97 1.68 0.993 0.992 0.992

D
(30)
8 30 8 0.657 0.682 0.883 1.39 1.38 1.99 0.995 0.994 0.990

The experimental results (expressed in terms of RMSE, MAPE, and R2) obtained with
the three proposed NN-based models for the selected values of SW and Tsamp, are shown
in Figure 11.

As can be seen in Figure 11a,b, for fixed values of SW and Tsamp, there is not a NN
architecture which has the best performance (in terms of RMSE and MAPE) in all cases.
For example, the LSTM model has the best performance in terms of RMSE with Tsamp = 10
and SW = 4, while for Tsamp = 10 and SW = 5 the RNN model is the most accurate.

Sensors 2021, 21, 3973 22 of 29

(a)

(b)

(c)

Figure 11. Experimental results on the three proposed NN-based models, namely, LSTM, ANN, and RNN, for a few relevant
combination of SW and Tsamp, expressed in terms of (a) RMSE, (b) MAPE, and (c) R2.

In general, better results (in terms of the adopted metrics) are given by the following
pairs of values of (Tsamp, SW): (10, 4), (10, 5), (10, 6), (20, 5), (20, 6), (20, 7), and (20, 8). For
these values, RNN and LSTM models have RMSE ≤ 0.5 °C, MAPE < 1.6%, and R2 ≥ 0.997.

Sensors 2021, 21, 3973 23 of 29

To conclude, the overall model with the best performance (with regard to the con-
sidered metrics) is the RNN model with (Tsamp, SW) = (10, 5), which guarantees a
RMSE = 0.289 °C, a MAPE = 0.87%, and a R2 = 0.999. It should be remarked that very
similar results have been achieved with the LSTM model with the same values of Tsamp
and SW (namely, RMSE = 0.294 °C, MAPE = 0.98%, and R2 = 0.999).

5.3. Performance Analysis and Literature Comparison

The experimental results of the model presented in [19] (obtained with the data set
available in [19]), together with the results of the same model re-trained with a data set
containing additional samples (as described in Section 4.5) and with the three models
(ANN, RNN, and LSTM) built with the data set D(10)

5 , are shown in Table 5. As can be
seen from Table 5 that the prediction performance of the re-trained model degrades with
respect to that in [19]. One possible reason behind this behavior could be that, although
re-training involves additional samples (and, therefore, should be, in principle, more
accurate), it may happen that the supplementary data are more unbalanced (e.g., in terms
of number of collected samples per month, as shown in Figure 4), thus reducing the final
accuracy. Moreover, if the model presented in [19] are compared, in terms of prediction
performance, with the three models with lowest RMSE obtained with the data set D(10)

5

(namely: LSTM(10)
5 , RNN(10)

5 , and ANN(10)
5), one can conclude that the RMSEs of the latter

are slightly lower. Indeed, the RMSE of the model in [19] is higher than the last three
collected in Table 5 by at least 1 °C, the MAPE is higher by approximately 3%, and the R2 is
lower by approximately 0.24.

Table 5. Prediction performance and complexity of a subset of evaluated models, in terms of RMSE, MAPE, R2, accuracy
(namely, number of samples predicted with RMSE lower than 1 °C), MAC operations, number of parameters, and NetScore
of the models.

Model RMSE [◦C] MAPE [%] R2 Accuracy [%] MAC
Operations

Parameters
Number NetScore

Model in [19] 1.50 4.91 0.965 48.87 1018 1018 17.05

Re-trained [19] 2.28 6.54 0.931 34.91 1018 1018 3.60

LSTM(10)
5 0.294 0.89 0.999 99.18 22,192 4625 −0.59

RNN(10)
5 0.289 0.87 0.999 99.28 5712 1361 25.25

ANN(10)
5 0.402 1.04 0.998 97.28 464 464 60.31

In Table 5, the architectural and computational complexities of the considered models
are evaluated. More precisely, the architectural and computational complexities can be
expressed, respectively, in terms of number of parameters to be used by the model and
MAC operations (see Section 2). Analyzing the results in Table 5, the LSTM-based model
(namely, LSTM(10)

5) is the most architecturally and computationally complex (with respect

to the other NNs). The RNN-based model (namely, RNN(10)
5) ranks second and is then

followed by the model presented in [19] and its re-trained version. The ANN(10)
5 model is

the “lightest” model, with only 464 parameters and 464 MAC operations. In other words,
ANN(10)

5 is the one with lowest architectural and computational complexities.
Finally, the NetScore metric (introduced in Section 2) has been calculated for the

5 models detailed in Table 5, with the goal to identify which model reaches the best trade-
off between prediction performance and complexity. With reference to Equation (5), one of
the parameters required to calculate the NetScore (for a target NN modelN) is the model’s
accuracy a(N). This accuracy is an evaluation metric generally adopted in classification
tasks, which can be defined, over a target data set, as the percentage of samples correctly
attributed to their classes by a predictor. Since the air temperature forecasting is practically
a regression task and, for this reason, the canonical definition of the accuracy cannot be

Sensors 2021, 21, 3973 24 of 29

applied for the evaluation of the models, the authors re-define the concept of accuracy—
and, thus, the meaning of a(N) in Equation (5)—in order to calculate the NetScore metric
for the models. In detail, the authors define a threshold parameter T and an indicator
function I which may assume, for each sample d(k) = (x(k), y(k)) in the test subset of the
model to be evaluated, a binary value as follows:

I(d(k)) = I(y(k), ŷ(k)) = U (T − |y(k)− ŷ(k)|) =

{
1 if |y(k)− ŷ(k)| < T
0 otherwise

(12)

where: U (·) is the unit step function; | · | is the modulo operator; d(k) is the k-th entry in
the test subset; x(k) is the vector of the input samples of the test subset entry d(k); y(k) and
ŷ(k) are the actual (in the entry d(k)) and the forecast by the NN (with input x(k)) values
of air temperature for the k-th test subset entry, respectively; and T is a threshold value.

Therefore, the accuracy a(N) for the model N over all the samples in the test subset
is defined as follows:

a(N) =
100
Ntst

Ntst

∑
r=1
I(y(k), ŷ(k)), (13)

where Ntst is the number of samples in the test subset; y(k) and ŷ(k) are the actual and the
forecast values (of air temperature) for the k-th test subset entry, respectively.

The value of T is set to 1 °C: from a conceptual point of view, this means that a
future air temperature value ŷ(k) forecast by the model is considered as correct (e.g.,
I(y(k), ŷ(k)) = 1) if the absolute value of the difference between actual and forecast air
temperature values (|y(k)− ŷ(k)|) is lower than 1 °C. The exponential coefficients of the
NetScore metric are set to their default values, namely α = 2 and β = γ = 0.5. The
corresponding NetScore values are listed in Table 5.

As can be seen from the results in Table 5, the highest NetScore is reached by the
ANN(10)

5 model, followed by the RNN(10)
5 model, and then by the model the authors

presented in [19]. On the other hand, the re-trained version of [19] and the LSTM(10)
5

model return the lowest NetScore, thus highlighting that the trade-off between prediction
performance and complexity achieved by these models is rather unbalanced. Indeed,
the prediction performance of the re-trained version of [19] is lower than that of the
LSTM(10)

5 model (e.g., with RMSE equal to 2.28 °C and 0.294 °C, respectively). On the other
hand, computational and architectural complexities of the re-trained version of [19] are
significantly lower than those of the LSTM(10)

5 model, with a ratio between the number of

MAC operations of the re-trained model from [19] and LSTM(10)
5 approximately equal to

1:22. Overall, the ANN(10)
5 is the model to be preferred for execution on edge devices.

With regard to the reference works listed in Table 1, it can be noted that the prediction
performance of the three best models proposed in this paper (namely, LSTM(10)

5 , RNN(10)
5 ,

and RNN(10)
5) are comparable with those provided in these works. In particular:

• the proposed NN-based models have a RMSE in the range 0.289÷ 0.402 °C, lower
than that in [3,14,27,28] and slightly higher than that in [15,16];

• the considered NN-based models have a MAPE in the range 0.87÷ 1.04%, thus lower
than that in [15,27];

• the value of R2 of the considered NN-based models is higher than those of all the
references listed in Table 1.

Finally, as detailed in Section 2, the literature works listed in Table 1 do not provide
details on the complexity of their deployed models: this prevents a direct comparison, from
a complexity-performance trade-off perspective, between them and the NN-based models
proposed in this paper.

Sensors 2021, 21, 3973 25 of 29

5.4. Possible Application Scenario and Reference Architecture

From an implementation point of view, the NN model selected in Section 5.3 (namely,
ANN(10)

5) can be deployed on a real IoT edge device, denoted as Smart GW, such as a
Raspberry Pi (RPi) [33], which represents a popular Single Board Computer (SBC) in
EdgeAI applications [34,35]. Targeting a Smart Farming scenario, the Smart GW can be
placed inside a greenhouse, which hosts also a WSN deployed to monitor the internal
air temperature, and acts as a data collector for the WSN’s SNs, as shown in Figure 12.
More precisely, SNs in the greenhouse forward-sensed air temperature data to the Smart
GW thanks to a wireless connection existing (or introduced specifically for this purpose)
in the greenhouse, e.g., a Wi-Fi network. Then, the information arriving from the SNs is
temporarily stored by the GW in its internal memory and, if necessary, also forwarded to
the Cloud (if an Internet access point is available around the greenhouse).

Figure 12. Possible reference architecture and application scenario for the developed forecast-
ing model.

In a demonstration greenhouse in the AFarCloud project [30], the Smart GW is also
connected with the cooling/warming system installed inside the greenhouse and can
control it to regulate the internal air temperature and humidity levels. If needed, as well as
when the proper number of consecutive air temperature values have been collected from
SNs—in turn, to be used as inputs for the forecasting model (e.g., 5 values for ANN(10)

5)—
the Smart GW runs the forecasting algorithm, obtaining a future predicted air temperature
value. According to the forecast value, the Smart GW decides if the cooling/warming
system needs to be activated, deactivated, or maintained in its current operational state. As
an example, if the predicted air temperature value is higher than a certain threshold which
cannot be exceeded inside the greenhouse, the GW can send a command to the internal
cooling system requiring an opening actuation, thus avoiding the internal air temperature
from reaching the unwanted (and dangerous) forecast value.

To conclude, the adoption of EdgeAI solutions has an extremely positive impact on
greenhouse management, which, as previously mentioned, needs to tightly control the
internal microclimate. Indeed, being able to predict the trend of internal environmen-
tal variables (e.g., air temperature), such an IoT/EdgeAI system allows to preemptively
schedule actions and, thus, to more effectively pilot greenhouse’s actuators to maintain
(within the greenhouse) the best-growing conditions for the internal cultivation. More-
over, executing AI algorithms and taking decisions at the edge, rather than in the Cloud,
makes greenhouse management more robust (against connectivity problems) and reduces
latency. As a last comment, the proposed IoT-oriented EdgeAI NN-based forecasting
can be effectively integrated into the LoRaFarM platform [8] simply as a new additional
software module.

Sensors 2021, 21, 3973 26 of 29

6. Conclusions

In this paper, the authors have presented an NN-based approach, based on time series,
expedient to design a forecasting algorithm to be embedded into a Smart GW, in turn acting
as a data collector for SNs measuring air temperature inside a greenhouse. In comparison
to the approach in [19], based on an ANN-based prediction model to predict temperature
values considering weather conditions external to the greenhouse as input sources, in
this paper the authors have considered indoor air temperature values, collected inside the
greenhouse, as NN models’ input variables. In detail, three types of NN architectures—
namely, LSTM, RNN, and ANN—have been investigated to determine the one with the
best performance and the lowest complexity (from both computational and architectural
viewpoints). This is fundamental to run a NN model on an edge device with constrained
capabilities—namely, the Smart GW presented and discussed in [19].

According to the obtained experimental results, it can be concluded that the three pro-
posed models (namely, LSTM, RNN, and ANN) reach a prediction performance comparable
to that of literature works improve over that of the model proposed in [19]. In particular,
the three best performing algorithms, obtained with a sampling interval Tsamp = 10 min
and using SW = 5 input variables, reach a RMSE in the range of 0.289 ÷ 0.402 °C, a
MAPE in the range of 0.87÷ 1.04%, and a R2 ≥ 0.997. Moreover, the results show that the
ANN-based model has lower computational complexity, in terms of the number of MAC
operations and parameters to store, than the one proposed in [19]. Overall, ANN(10)

5 is the
NN model guaranteeing the best performance-complexity trade-off. In general, the design
and implementation of NN-based accurate prediction algorithms, yet with a computational
complexity compatible with the processing resources of IoT edge devices, is an interesting
and promising research topic, not extensively discussed in recent literature. This is even
more true for the greenhouse’s internal variables forecasting, which this paper has tried to
address in the more comprehensive possible way.

As a final remark, future research directions may involve the performance evaluation
of the proposed NN-based algorithms on different types of IoT edge devices, based on
relevant metrics for the algorithms’ online execution. To this end, illustrative interesting
performance metrics are the following: (i) the time required by the device to run the
algorithm in a real scenario; (ii) the (flash) memory space the device needs to store the
model, as well as the RAM memory required to run it; and (iii) the IoT edge device’s power
consumption when running the NN-based algorithms to forecast a future air temperature
value. Another possible direction includes the application of the same methodology
followed in this paper (in order to build an air temperature forecasting model) to develop
algorithms able to predict other types of inner variables (rather than air temperature)
which, in turn, are relevant for greenhouse cultivation and, thus, have to be monitored and
controlled (e.g., air humidity).

Author Contributions: conceptualization, G.C., L.D. and G.F.; methodology, G.C., L.D. and G.F.;
software, G.C., L.D. and G.F.; validation, G.C., L.D. and G.F.; formal analysis, G.C., L.D. and G.F.;
investigation, G.C., L.D. and G.F.; resources, G.C., L.D. and G.F.; data curation, G.C., L.D. and G.F.;
writing—original draft preparation, G.C., L.D. and G.F.; writing—review and editing, G.C., L.D. and
G.F.; visualization, G.C., L.D. and G.F.; supervision, G.C., L.D. and G.F.; project administration, G.C.,
L.D. and G.F.; funding acquisition, G.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has received funding from the European Union’s Horizon 2020 research and
innovation program ECSEL Joint Undertaking (JU) under Grant Agreement No. 783221, AFarCloud
project—“Aggregate Farming in the Cloud” and Grant Agreement No. 876038, InSecTT project—
“Intelligent Secure Trustable Things.” The work of L.D. is partially funded by the University of
Parma, under “Iniziative di Sostegno alla Ricerca di Ateneo” program, “Multi-interface IoT sYstems
for Multi-layer Information Processing” (MIoTYMIP) project. The work of G.C. is funded by the
Regione Emilia Romagna, under “Sistemi IoT per la raccolta e l’elaborazione dei dati efficienti in
agricoltura di precisione e sostenibile (AgrIoT)” Ph.D. scholarship. The JU received support from the
European Union’s Horizon 2020 research and innovation programme and the nations involved in

Sensors 2021, 21, 3973 27 of 29

the mentioned projects. The work reflects only the authors’ views; the European Commission is not
responsible for any use that may be made of the information it contains.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AFarCloud Aggregate Farming in the Cloud

AI Artificial Intelligence

ANN Artificial Neural Network

BP Back Propagation

CGA Conjugate Gradient Algorithm

DL Deep Learning

DNN Deep Neural Network

FaaS Farm-as-a-Service

GW Gateway

ICT Information and Communication Technology

IoT Internet of Things

LM Levenberg-Marquardt

LSTM Long Short-Term Memory

MAC Multiply–ACcumulate

MAPE Mean Absolute Percentage Error

ML Machine Learning

MLP Multi-Layer Perceptron

NARX Nonlinear AutoRegressive with eXternal input

NN Neural Network

PSO Particle Swarm Optimization

R2 Coefficient of determination

RBF Radial Basis Function

ReLU Rectified Linear Unit

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SA Smart Agriculture

SBC Single Board Computer

SF Smart Farming

SN Sensor Node

UI User Interface

WSN Wireless Sensor Network

Sensors 2021, 21, 3973 28 of 29

References
1. Codeluppi, G.; Cilfone, A.; Davoli, L.; Ferrari, G. VegIoT Garden: A modular IoT Management Platform for Urban Vegetable

Gardens. In Proceedings of the IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici,
Italy, 24–26 October 2019; pp. 121–126. [CrossRef]

2. Kumar, A.; Tiwari, G.N.; Kumar, S.; Pandey, M. Role of Greenhouse Technology in Agricultural Engineering. Int. J. Agric. Res.
2010, 5, 779–787. [CrossRef]

3. Francik, S.; Kurpaska, S. The Use of Artificial Neural Networks for Forecasting of Air Temperature inside a Heated Foil Tunnel.
Sensors 2020, 20, 652. [CrossRef] [PubMed]

4. Escamilla-García, A.; Soto-Zarazúa, G.M.; Toledano-Ayala, M.; Rivas-Araiza, E.; Gastélum-Barrios, A. Applications of Artificial
Neural Networks in Greenhouse Technology and Overview for Smart Agriculture Development. Appl. Sci. 2020, 10, 3835.
[CrossRef]

5. Bot, G. Physical Modeling of Greenhouse Climate. IFAC Proc. Vol. 1991, 24, 7–12. [CrossRef]
6. Belli, L.; Cirani, S.; Davoli, L.; Melegari, L.; Mónton, M.; Picone, M. An Open-Source Cloud Architecture for Big Stream IoT

Applications. In Interoperability and Open-Source Solutions for the Internet of Things: International Workshop, FP7 OpenIoT Project, Held
in Conjunction with SoftCOM 2014, Split, Croatia, 18 September 2014, Invited Papers; Podnar Žarko, I., Pripužić, K., Serrano, M., Eds.;
Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 73–88. [CrossRef]

7. Kochhar, A.; Kumar, N. Wireless sensor networks for greenhouses: An end-to-end review. Comput. Electron. Agric. 2019,
163, 104877. [CrossRef]

8. Codeluppi, G.; Cilfone, A.; Davoli, L.; Ferrari, G. LoRaFarM: A LoRaWAN-Based Smart Farming Modular IoT Architecture.
Sensors 2020, 20, 2028. [CrossRef] [PubMed]

9. Abbasi, M.; Yaghmaee, M.H.; Rahnama, F. Internet of Things in agriculture: A survey. In Proceedings of the 3rd International
Conference on Internet of Things and Applications (IoT), Isfahan, Iran, 17–18 April 2019; pp. 1–12. [CrossRef]

10. Davoli, L.; Belli, L.; Cilfone, A.; Ferrari, G. Integration of Wi-Fi mobile nodes in a Web of Things Testbed. ICT Express 2016,
2, 95–99. [CrossRef]

11. Tafa, Z.; Ramadani, F.; Cakolli, B. The Design of a ZigBee-Based Greenhouse Monitoring System. In Proceedings of the 7th
Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 10–14 June 2018; pp. 1–4. [CrossRef]

12. Wiboonjaroen, M.T.W.; Sooknuan, T. The Implementation of PI Controller for Evaporative Cooling System in Controlled
Environment Greenhouse. In Proceedings of the 17th International Conference on Control, Automation and Systems (ICCAS),
Jeju, Korea, 18–21 October 2017; pp. 852–855. [CrossRef]

13. Zou, Z.; Bie, Y.; Zhou, M. Design of an Intelligent Control System for Greenhouse. In Proceedings of the 2nd IEEE Advanced
Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 25–27 May
2018; pp. 1–1635. [CrossRef]

14. Moon, T.; Hong, S.; Young Choi, H.; Ho Jung, D.; Hong Chang, S.; Eek Son, J. Interpolation of Greenhouse Environment Data
using Multilayer Perceptron. Comput. Electron. Agric. 2019, 166, 105023. [CrossRef]

15. Taki, M.; Abdanan Mehdizadeh, S.; Rohani, A.; Rahnama, M.; Rahmati-Joneidabad, M. Applied machine learning in greenhouse
simulation; New application and analysis. Inf. Process. Agric. 2018, 5, 253–268. [CrossRef]

16. Yue, Y.; Quan, J.; Zhao, H.; Wang, H. The Prediction of Greenhouse Temperature and Humidity Based on LM-RBF Network. In
Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August
2018; pp. 1537–1541. [CrossRef]

17. Lee, Y.; Tsung, P.; Wu, M. Techology Trend of Edge AI. In Proceedings of the International Symposium on VLSI Design,
Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 16–19 April 2018; pp. 1–2. [CrossRef]

18. Wong, A. NetScore: Towards Universal Metrics for Large-Scale Performance Analysis of Deep Neural Networks for Practical
On-Device Edge Usage. In Image Analysis and Recognition; Karray, F., Campilho, A., Yu, A., Eds.; Springer International Publishing:
Cham, Switzerland, 2019; pp. 15–26. [CrossRef]

19. Codeluppi, G.; Cilfone, A.; Davoli, L.; Ferrari, G. AI at the Edge: A Smart Gateway for Greenhouse Air Temperature Forecasting.
In Proceedings of the IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy,
4–6 November 2020; pp. 348–353. [CrossRef]

20. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network
applications: A survey. Heliyon 2018, 4, e00938. [CrossRef] [PubMed]

21. Cifuentes, J.; Marulanda, G.; Bello, A.; Reneses, J. Air Temperature Forecasting Using Machine Learning Techniques: A Review.
Energies 2020, 13, 4215. [CrossRef]

22. Kavlakoglu, E. AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What’s the Difference? Available online:
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks (accessed on 2 March 2021).

23. Ferrero Bermejo, J.; Gómez Fernández, J.F.; Olivencia Polo, F.; Crespo Márquez, A. A Review of the Use of Artificial Neural
Network Models for Energy and Reliability Prediction. A Study of the Solar PV, Hydraulic and Wind Energy Sources. Appl. Sci
2019, 8, 1844. [CrossRef]

24. Gardner, M.; Dorling, S. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric
sciences. Atmos. Environ. 1998, 32, 2627–2636. [CrossRef]

http://doi.org/10.1109/MetroAgriFor.2019.8909228
http://dx.doi.org/10.3923/ijar.2006.364.372
http://dx.doi.org/10.3390/s20030652
http://www.ncbi.nlm.nih.gov/pubmed/31991600
http://dx.doi.org/10.3390/app10113835
http://dx.doi.org/10.1016/B978-0-08-041273-3.50006-9
http://dx.doi.org/10.1007/978-3-319-16546-2_7
http://dx.doi.org/10.1016/j.compag.2019.104877
http://dx.doi.org/10.3390/s20072028
http://www.ncbi.nlm.nih.gov/pubmed/32260338
http://dx.doi.org/10.1109/IICITA.2019.8808839
http://dx.doi.org/10.1016/j.icte.2016.07.001
http://dx.doi.org/10.1109/MECO.2018.8405966
http://dx.doi.org/10.23919/ICCAS.2017.8204344
http://dx.doi.org/10.1109/IMCEC.2018.8469309
http://dx.doi.org/10.1016/j.compag.2019.105023
http://dx.doi.org/10.1016/j.inpa.2018.01.003
http://dx.doi.org/10.1109/ICMA.2018.8484456
http://dx.doi.org/10.1109/VLSI-DAT.2018.8373244
http://dx.doi.org/10.1007/978-3-030-27272-2_2
http://dx.doi.org/10.1109/MetroAgriFor50201.2020.9277553
http://dx.doi.org/10.1016/j.heliyon.2018.e00938
http://www.ncbi.nlm.nih.gov/pubmed/30519653
http://dx.doi.org/10.3390/en13164215
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
http://dx.doi.org/10.3390/app9091844
http://dx.doi.org/10.1016/S1352-2310(97)00447-0

Sensors 2021, 21, 3973 29 of 29

25. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.
1994, 5, 157–166. [CrossRef] [PubMed]

26. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
27. Hongkang, W.; Li, L.; Yong, W.; Fanjia, M.; Haihua, W.; Sigrimis, N. Recurrent Neural Network Model for Prediction of

Microclimate in Solar Greenhouse. IFAC-PapersOnLine 2018, 51, 790–795. [CrossRef]
28. Jung, D.H.; Seok Kim, H.; Jhin, C.; Kim, H.J.; Hyun Park, S. Time-serial analysis of deep neural network models for prediction of

climatic conditions inside a greenhouse. Comput. Electron. Agric. 2020, 173, 105402. [CrossRef]
29. Taki, M.; Ajabshirchi, Y.; Ranjbar, S.F.; Rohani, A.; Matloobi, M. Heat transfer and MLP neural network models to predict inside

environment variables and energy lost in a semi-solar greenhouse. Energy Build. 2016, 110, 314–329. [CrossRef]
30. Aggregate Farming in the Cloud (AFarCloud) H2020 Project. Available online: http://www.afarcloud.eu (accessed on

14 February 2021).
31. Podere Campáz—Produzioni Biologiche. Available online: https://www.poderecampaz.com (accessed on 1 February 2020).
32. Chollet, F. Keras. 2015 Available online: https://keras.io (accessed on 15 May 2021).
33. Raspberry Pi. Available online: https://www.raspberrypi.org/ (accessed on 1 June 2021).
34. Mazzia, V.; Khaliq, A.; Salvetti, F.; Chiaberge, M. Real-Time Apple Detection System Using Embedded Systems With Hardware

Accelerators: An Edge AI Application. IEEE Access 2020, 8, 9102–9114. [CrossRef]
35. Shadrin, D.; Menshchikov, A.; Ermilov, D.; Somov, A. Designing Future Precision Agriculture: Detection of Seeds Germination

Using Artificial Intelligence on a Low-Power Embedded System. IEEE Sens. J. 2019, 19, 11573–11582. [CrossRef]

http://dx.doi.org/10.1109/72.279181
http://www.ncbi.nlm.nih.gov/pubmed/18267787
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1016/j.ifacol.2018.08.099
http://dx.doi.org/10.1016/j.compag.2020.105402
http://dx.doi.org/10.1016/j.enbuild.2015.11.010
http://www.afarcloud.eu
https://www.poderecampaz.com
https://keras.io
https://www.raspberrypi.org/
http://dx.doi.org/10.1109/ACCESS.2020.2964608
http://dx.doi.org/10.1109/JSEN.2019.2935812

	Introduction
	Background
	Overview on Neural Networks
	Evaluation Metrics

	Related Work
	Methodology
	Data Collection and Cleaning
	Engineering Time Series from Sensor Data
	Sliding Window-Based Prediction
	Data Pre-Processing and Data Sets Creation
	Models Training
	``Old Model'' Re-Training

	Experimental Results
	Sliding Window and Sampling Interval
	NN Architecture
	Performance Analysis and Literature Comparison
	Possible Application Scenario and Reference Architecture

	Conclusions
	References

