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been devised in order to numerically evaluate this function [3]—[5], but [ll. BOUNDS FOR THEMARCUM (-FUNCTION
it is sometimes useful to have simple bounds, in order to gain imme- . . . .
. Lo . . e . The starting point of the proposed bounding procedure is an observa-
diate physical insight and avoid tedious and difficult numerical com- . e .
Utations tion about the integral (1) defining the Marcugfunction. In fact, we
P y . are integrating in the semi-infinite regi¢h oc). The integrand func-
Recently, new bounds have been proposed, based on suitable repre- . I . . o
: . . ion can be seen as a Rice probability density function (pdf) with its
sentations of the Marcui-function and generalized Marcug+func- arameted — 1 (see [9]). This function is unimodal, and it is pos-
tion [6]—[8], [2]. However, one difficulty lies in the fact that the tight- P - ; ' P

. sible to show that its mode can be approximated by the parameter
ness of the bounds is strongly dependent on the values of the argumeo? \e Marcum@-function [10]. Assuming > a, it is evident that

In particular, both upper and lower bounds are usually tight far«, the integrand is monotonic decreasing. In this case, it is possible to

but they are generally loose for < . Moreover, the tightness for find a very tight upper bound for the integrand adding the constraint

b > a may not be sufficient for some applications. . . .
In this correspondence. we propose new bounds for the Marctrr]rzlit the bounding function assumes the same value of the integrand
P ' prop Yhction inb. On the other hand, i# < «a, then the integrand is a

Q-function, which solve all of the aforementioned problems. Namelx . . o . .
thev are tight also fdr < «. and thev improve sianificantly on the tight- omplicated function which is first increasing and then decreasing. In
y g @ yimp g y 9 this case, it is extremely difficult to find a bounding function that is

ness fob > a. These satisfying results are obtained with the ussdof : . o .

- . . . also easy to integrate and tight. Therefore, it is expedient to evaluate
hocbounds for thé@th-order modified Bessel function valid only in the . . ) . )
integration region of the Marcu@-function. The resulting bounds re-1 ~ Qa, b), which essentially translates into integrating the Rice pdf

9 g ; 9 in [0, b]. Again, theintegrand is now monotonic, but increasing. With

quire the computation o_f thiéth-order modified Bessel fu_nctlon only. sqme effort, it is possible to find tight bounding functions for this inte-
The correspondence is structured as follows. In Section Il, we recg Lnd

the Marcum@-function. In Section Ill, we propose new bounds for th In the following, sinceQ(a, b) € [0, 1], it is taken for granted

Marcum@-function, and numerical results are presented in Section ItYiat in the case of the proposed upper bounds one should consider

Qr;avﬁ zianpgl:eccatit:)onn\sllare mentioned in Section V and conclusions a1rnem{1, upper boundl, while in the case of the lower bounds one

should considemax{0, lower bound. In fact, if the bounds are out

of the interval[0, 1], they become meaningless.
Il. MARCUM QQ-FUNCTION

The generalized Marcur@-function of orderM is defined by the A. First Caseb > «

integral 1) Upper Bound fob > a: A known upper bound for the modified

Bessel function is the following [9]:

S N M—1 2 2
x (i> exp <_x ta )IM_1 (ax)dz (1)
a

Qui(a, 5)2/ 3

b Io(az) < exp(ax), Yo >0. 4)

wherels; () is the() —1)th-order modified Bessel function of the e 4 o1y this inequality, it is easy to derive the following upper bound
first kind. The parametersandb are positive real. It can be shown thatfor the Marcum(-function:

El

) Je'e] 172 + (12 N
M k Qa, b) < / T exp <— - ) e’ dx
Quila, b) = Qu(a, b) + 7 H/2 37 (9) Li(a) () b ’
a des} p \2
k=1 _ / - |: (x—a) :|
= T eXp | = dx
where b-oo

Q1(a, b) = Q(a, b) :/ Z exp <— rta )Ig(ax) dz (3) be

2 g} 2
’ = / Y exp <_y7) dy
b—a 2

is usually referred to athe Marcum(@-function. By observing the pre-

ges} 2
ceding equations, itis evident that it is possible to focus our attention on + aV2rw exp <— —) dy
finding bounds for the Marcur@-function. In fact, we will bound the b—a V27 2
Marcum@-function in terms of th€th-order modified Bessel function. . (b—a)’ T b—a
. . - . =exp |— +ay/zerfel — 1. (5
The generalized Marcui?-function of orderM is then automatically 2 2 V2

bounded in terms of modified Bessel functions, frothto (M — 1)th ) ) ) o

order. The spirit of the proposed bounds for the Maragrfunction The key idea is th.e following. Th(_e upper boynd can pe significantly

is that of simply considering a suitable integral function @itteorder IMProved by observing that we are interested in boundirtg.) only

modified Bessel function), thus avoiding further integration. in the intervalb, oc). Therefore, we may find a tighter approximation
In [6], [7], the authors claim that numerical problems can bl this interval. We make the following observation. Since

encountered in evaluating (1), due to the semi-infinite integration N

region, and then they propose alternative integral expressions for < ¢ ) = erw > 0, VYa2>0

the generalized Marcung)-function with integration over a finite Io(2) (@)

interval. In both cases, they consider_ suitaple integral e_xp.ressiqpﬁ)l|OWS that

for the Oth-order modified Bessel function which appears inside the

integral of the Marcun®)-function. In this correspondence, we take a

different approach. Instead of transforming the integration region, we

work directly on the classic expression (3) and we introduce bounds

for the Oth-order modified Bessel function which are extremely tight Fig. 1, the functions.”, Io(x), ande” 2 (for b = 5) are com-

over the integration region. pared. Note that the upper boua’d’i—(;f’) for In () is extremely tight,

Io(x) < e exp(b)’

Ya >b. (6)
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Fig. 1. Comparison betwedR () ande® Ioe—ﬁf’) forb = 5. Fig. 2. Comparison betwee (=) and < ﬂjﬁ forb = 4.
TABLE | TABLE I
UPPERBOUNDS IN THEREGION b > a LOWER BOUNDS IN THEREGION b > a
UB1 Io(ab) _(b—ay®
o (PP 172 LBL | B0 Ferte (2)
. b—a explal
+a,/Terfc (W)}
X LB1S ,H_Laexp [_Q+2_a)2_
UBI1S 52 exp [—@]
LBIC |exp (—02;”2) Io(ab)
UBIC | exp (—£52) fo(ab)
+a\/§erfc b‘—;
(%) LBIMG | exp [- 5]
UBIMG |  exp [—@]
Based on this bound, we may derive the following lower bound on the
Marcum@-function:
but holds exclusively for: > b, which luckily is the interval of in-
terest. Hence, we can derive the following improved upper bound by e 22 +a?\ Io(ab)ab e**
multiplying the right-hand side of (5) bgflf(;;’b), obtaining Qa, ) 2 /I TP T T e
Io(ab)b /'°° |: (xz — a)2:|
) 2 / _ = — exp |—————| dzx
Ola, b) < Iy(ab) { ) |:_ (b .a) :|+a I erfe <b a)}' % e b 2 ;
exp(ab) 2 2 V2 _ Io(ab)b \/?/9C 1 ox {_ (x—a,)‘} de
= eab A 27T > p —2 4
7 Ip(ab)b . (b—a
:1/5 2ub) orfc( \/j) 9

This upper bound is referred to as UB1. In Table I, the expression of
the new upper bound is shown, together with bounds that previously
appeared in the literature. More precisely, the bound indicated as UB1S
is proposed in [6], the bound UB1C is proposed in [7], and UBIMG l?his lower bound will be referred to as LB1. In Table Il, the new lower
bound is shown and compared to bounds proposed in [6]-[8] and indi-
cated as LB1S, LB1C, and LB1MG, respectively.

proposed in [8].

2) Lower Bound fob > «: In order to find a lower bound for the
Marcum@-function, the following inequality on the modified Bessel

functionIy(x) can be verified: B. Second Casé: < a
1) Upper Bound fob < «: In this case, as previously mentioned,
@) we are integrating the Rice pdf over a region where the slope of the

Lo(b)b e Ya >0
xr
the inequalities (6) and (8) that we used in the preceding paragraph,

Io (L) 2 b s
integrand is first positive and then negative. From the considerations
The functions involved in (8) in the lower bound are shown in Fig. Breviously made, to derive upper and lower bounds we should not use

for b = 4. Again, the bound is tight and valid exclusively fer> b.
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because they yield extremely loose bounds. Instead, it is convenient to
express the Marcurp-function as follows:

TABLE Il

LOWER BOUNDS IN THEREGION D < «a

b 2 2
] ¥ +a
Qla,b)y=1-— / 2 exp <— u 5 ? ) Iy(ax) dz. (20) LB2 1 - exp (_a"’;(z)
o 2
o | fon (-5) ~ep -5
In this case, to find anpperbound for the Marcun®-function we need bt
to find alower bound for the Bessel function in the interjél b]. It +V3 [el‘fc (_ﬁ) —erfc ( 72 ]} )
is now possible to reuse inequality (6) (which is indeed a lower bound < w
for z < b), suitably rewritten as
Io(az) > IOW’ “w o e0, 0] (11) LB2S 1- S exp [—<“2”>2]
By substituting (11) into (10), the following upper bound on the
Marcum@-function can be derived: LB2aS 1-1 {exp __(b—2a)2]
b 2 2 —exp |— bta)®
Qla, b)=1— / z exp <— a —;a ) Iy(az) dz [ 2 ]}
2
<1- IO(”b) / { (@ _2“) } da LB2C exp( bz;a’) Io(ab)

_ Io(ab) [ _a2 _ _(b—a)2
=1 oab {exp < 7) exp |: 5
By substituting (13) into (10), it is possible to derive the following

+a, )X |:erfc <_L> — erfe <b - “‘ﬂ } (12) lower bound for the Marcur®)-function, which is referred to as LB2:
2 V2 V2

b
This upper bound is referred to as UB2. It is important to remark that, Q(a, b) =1 — / x exp <—
to the best of the authors’ knowledge, no upper bound can be found in v
the literature fob < «a.

2) LowerBoundfob < a: Starting again from (10), to findlawer
bound for the Marcund)-function we need to find anpperbound for
the Bessel function in the interviil, b]. To this end, we make the fol-
lowing consideration. Letting, = M we “bend” and “stretch”
the exponential curve such that we bring the point o (ab)) in the
point (b, Iy (ab)), i.e., we consider the function

exp (ﬁ aT) = exp log Io(ab) To(ab) T
b / b e

2

:E2—|—a
2

>1-— /; © exp <— cl 42”‘) exp(Cz) da
—1—exp <_“2 - CZ) ./U‘b,r(\xp {_%} da
=1-exp <—"’2 5 <2>
fol5)- 5]
+o T {f G%) ~ erfe <%)} } (14)

It is interesting to note the formal similarity between the upper bound

) Iy(ax)dx

Defining ¢ = '2s/a(eb) it js possible to prove that

Ip(azx) < exp(Cx), Yz € [0, b]. (13)

In fact, since (12) and the lower bound (14). The latter bound is reported in Table Il
together with the bounds LB2S, LB2aS, and LB2C proposed in [6], [8],
2 . . . I
x A o) = o2 Io(ax) —12— Iy(ax) >0, Vo >0 and [7], respectively.
and IV. NUMERICAL RESULTS

2

j? exp(Cz) = * exp(Cx) > 0 In this section, we compare the Marcughfunction with the ob-
tained bounds and with some bounds previously proposed in the liter-
ature [6]-[8] and considered in Section Ill. It is worth remarking that
simplified bounds can be derived by using approximations for the error
function and the Bessel function [11]. Examples of simplified bounds
are shown in [10].

Numerical results are presented as follows. We consider the two

it follows that, (ax) andexp((x) are both concave. Since

Iy (0) = exp(0) = 1

Io(ab) = exp(Cb) = exp[log Ip(ad)]

dIy(ax) _ _ cased > a andb < «. For each of these cases, we present the upper
de  le=0 1,(0)=0 bounds and the lower bounds. We consider several fixed values of the

and parametes and, for each case, we consider the behavior of the Marcum
d exp(Cx) Q-function and the considered bounds as a function of the remaining

Tdr laeo ¢>0 parameteb. An extensive analysis of the performance of the proposed

bounds (especially for larger values of the parameteaadb) can be

we conclude thaf,(ax) < exp(¢x), forz € (0, D). found in [10].
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TABLE IV
UPPERBOUNDS COMPARISON @ = 1 AND b > a
b | Qa,b) UB1 UB1 UB1S UB1S | UBIC | UBI1C | UBIMG | UBIMG
% % % %
1 0.73 1.04 43.20 - - 1.09 49.05 1.00 36.44
2 0.26 0.30 15.16 - - 0.38 43.47 0.60 125.46
3 | 4.37E-02 | 4.67E-02 | 6.92 0.20 364.36 | 6.13E-02 | 40.45 0.13 209.57
4 | 2.88E-03 | 3.00E-03 | 3.82 | 1.48E-02 | 412.60 | 3.99E-03 | 38.13 | 1.11E-02 | 284.45
5 | 7.43E-05 | 7.61E-05 | 2.39 | 4.19E-04 | 463.90 | 1.01E-04 | 36.17 | 3.35E-04 | 351.12
6 | 7.28E-07 | 7.40E-07 | 1.63 | 4.47E-06 | 513.49 | 9.80E-07 | 34.48 | 3.72E-06 | 411.24
7 | 2.68E-09 | 2.72E-09 | 1.17 | 1.77E-08 | 560.55 | 3.57E-09 | 33.01 | 1.562E-08 | 466.18
8 | 3.71E-12 | 3.74E-12 | 0.88 | 2.61E-11 | 605.09 | 4.88E-12 | 31.71 | 2.28E-11 | 516.96
9 | 1.90E-15 | 1.91E-15 | 0.69 | 1.42E-14 | 647.35 | 2.48E-15 | 30.55 | 1.26E-14 | 564.31
10 | 3.63E-19 | 3.65E-19 | 0.55 | 2.86E-18 | 687.56 | 4.70E-19 | 29.51 | 2.57E-18 | 608.81
11 | 2.56E-23 | 2.58E-23 | 0.45 | 2.12E-22 | 725.97 | 3.30E-23 | 28.58 | 1.92E-22 | 650.88
12 | 6.71E-28 | 6.74E-28 | 0.38 | 5.79E-27 | 762.76 | 8.57E-28 | 27.73 | 5.31E-27 | 690.87
13 | 6.48E-33 | 6.51E-33 | 0.32 | 5.82E-32 | 798.12 | 8.23E-33 | 26.96 | 5.38E-32 | 729.03
14 | 2.31E-38 | 2.32E-38 | 0.27 | 2.15E-37 | 832.19 | 2.92E-38 | 26.25 | 2.00E-37 | 765.61
! ",\' ' ' 10° . . : : ‘ K . .
09l : — Marcum Qiunction || Fo Marcum Q function
| | - LB1
| ' - UB1
08+ | . ---UB1S .
! L - UBIMG E
0.7 + 4 — UB1C |
0.6 1 ]
0.5 &, VoY 1
04 | N\ ]
03+ N\ .
02 | Y ]
01 + - ]
0 . ; SRt .
10 11 12 b 13 14 15 -

Fig. 3. Upper bounds comparison (linear scadey: 10 andb > a. ] ) o
Fig. 4. Lower bounds comparison (logarithmic scale}= 1 andb > a.

A. First Cased > a
has a similar performance is the bound indicated as LB1C [7]. For in-
1) Upper Bounds fob > a: We compare the proposed bound UBIcreasing values of, the performance improvement of the proposed
to bounds previously proposed in the literature. In Table IV, we presdmund is even more pronounced [10].
a comparison among the considered bounds:foe 1 and several
values ofb. For each paita, b), we present the exact valdga, b) of .
the Marcum@-function, while for each of the considered bounds wg' Second Casé: < a
show the exact value and the relative error, with respect to the Marcunil) Upper Bounds fob < «: Since no upper bound was found in
@-function, expressed 490 x W and indicated as%. The the literature for the cade< «, we consider the proposed bound UB2
proposed bound UBL1 is the best one. The improvement with respecatawl compare it to the Marcuid}-function only. The two curves are
the second best bound (UB1C), in terms of the relative ef¥6rcan shown in Fig. 5. As can be seen, the bound UB2 becomes less tight
be as large as two orders of magnitude for lakgés can be seen, for increasing values df. Similar behavior is observed for almost all
the bound UBLS is greater thdnfor & < 2. The bound is in this values of the parameter.
case meaningless, hence the corresponding entries in Table IV are fille) Lower Bounds fob < «: In Fig. 6, we compare several lower
with —. In Fig. 3, the case far = 10 is considered and the bounds aréounds fora = 1 in linear scale. As is evident, the proposed bound
compared in linear scale. The improvement of the proposed bound okB2 is very tight, while the simple bound LB2S is loose. The max-
the others for largéis now between three and four orders of magnitudienum relative error with the proposed bound is around 1.4%, and it
[10]. is remarkably less than with the other bounds [10]. In this case, the
2) Lower Bounds fob > a: In Fig. 4, we consider the lower only lower bound comparable to the proposed bound LB2 is the bound
bounds for« = 1 in linear scale. As one can see, the proposed bouh@2aS. As shown in Fig. 6, the bound LB2aS has a “strange” behavior,
LB1 performs very well. The only bound previously proposed whichince for increasing values éfa sort of floor appears. This situation
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is even more pronounced for increasing values,oihere the bound
LB2 is still the tightest one [10].

V. APPLICATIONS

It can be shown that the cumulative distribution function of a non- [°!
central chi-square random variable with/ degrees of freedom can

be expressed in terms of the generalized Mar€function of order
M [12].
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the instantaneous signal-to-noise ratio of the received signal [8], [2].
Hence, the proposed bounds may be successfully employed to bound
this error probability.

VI. CONCLUSION AND DiscUSssION

In this correspondence, we presented new bounds for the Marcum
Q-function. The proposed bounds, especially when compared to
bounds previously introduced in the literature, have shown to be
extremely tight. In particular, the following specific remarks can be
made.

¢ For large values of the parameterandb, the computation of the
Marcum@-function according to any definition becomes critical, be-
cause of numerical problems in the integration region. The proposed
bounds are valid for large values @fandb without suffering any nu-
merical problem.

¢ Looking at the tightness tables relative to all possible combinations
of the parameters andb [10], the following remark can be made. Con-
sidering a value of the Marcum-function around.0~*, for increasing
a the proposed bounds improve, while the bounds previously proposed
in the literature worsen. Moreover, in the case «, the performance,
i.e., the tightness, improves quickly for increasing

¢ As far as we know, no upper bound for the Marc@sfunction has
been ever introduced fér< «. Hence, the proposed upper bounds may
be very useful in the computation of a Rice cumulative density function
for very small values of this function, i.e., for very low probabilities.
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