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Then the Vapnik–Chervonenkis dimension of�AN is upper-bounded as

V ( �AN ) � 4N(d+ 1) ln(N(d+ 1)):

Proof: We have �A1 = A, and

�AN = fA \B: A 2 A; B 2 �AN�1g; for N � 2:

A well-known property of shatter coefficients (see, e.g., [20]) implies
that forN � 2 andk � 1

�A (k) � A(k) �A (k):

Thus, �A (k) � A(k)
N by induction. DefineD = fAc:A 2 Ag. It

follows immediately from the definition thatA(k) = D(k). Hence,
we obtain

�A (k) � D(k)
N
: (14)

SinceD is the collection of all closed balls ind, we haveV (D) = d+
1 by a result of Dudley [23]. Next, we use a well-known consequence of
Sauer’s lemma which states that for any class of setsB and all integers
k � V (B)

B(k) �
ke

V (B)

V (B)

(see, e.g., [20, Corollary 4.1]). This and (14) imply that for allk � d+1

�A (k) �
ke

V (D)

NV (D)

=
ke

d+ 1

N(d+1)

: (15)

An upper bound toV ( �AN ) can now be obtained by finding ak for
which the right-hand side is less than2k. It is easy to check that if
d � 2, thenk = 4N(d+ 1) ln(N(d+ 1)) satisfies this requirement.
Since ford = 1 we obviously haveV ( �AN) � 2N , we obtain that for
all N; d � 1,

V ( �AN ) � 4N(d+ 1) ln(N(d+ 1)):
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New Bounds for the Marcum -Function

Giovanni E. Corazza, Member, IEEE,and
Gianluigi Ferrari, Student Member, IEEE

Abstract—New bounds are proposed for the Marcum -function, which
is defined by an integral expression where the0th-order modified Bessel
function appears. The proposed bounds are derived by suitable approx-
imations of the 0th-order modified Bessel function in the integration re-
gion of the Marcum -function. They prove to be very tight and outper-
form bounds previously proposed in the literature. In particular, the pro-
posed bounds are noticeably good for large values of the parameters of the
Marcum -function, where previously introduced bounds fail and where
exact computation of the function becomes critical due to numerical prob-
lems.

Index Terms—Marcum -function, modified Bessel function of the first
kind, upper and lower bounds.

I. INTRODUCTION

Calculation of the generalized MarcumQ-function of orderM , usu-
ally referred to asQM (a; b), and particularly the popular case(M =
1) indicated as MarcumQ-function Q(a; b), is important in many
problems of signal detection [1], [2]. Immediate examples are the com-
putation of error probability in transmission over fading channels or
detection probability for code acquisition in a direct-sequence code-di-
vision multiple-access (DS-CDMA) system. Several algorithms have
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been devised in order to numerically evaluate this function [3]–[5], but
it is sometimes useful to have simple bounds, in order to gain imme-
diate physical insight and avoid tedious and difficult numerical com-
putations.

Recently, new bounds have been proposed, based on suitable repre-
sentations of the MarcumQ-function and generalized MarcumQ-func-
tion [6]–[8], [2]. However, one difficulty lies in the fact that the tight-
ness of the bounds is strongly dependent on the values of the arguments.
In particular, both upper and lower bounds are usually tight forb � a,
but they are generally loose forb < a. Moreover, the tightness for
b � a may not be sufficient for some applications.

In this correspondence, we propose new bounds for the Marcum
Q-function, which solve all of the aforementioned problems. Namely,
they are tight also forb < a, and they improve significantly on the tight-
ness forb � a. These satisfying results are obtained with the use ofad
hocbounds for the0th-order modified Bessel function valid only in the
integration region of the MarcumQ-function. The resulting bounds re-
quire the computation of the0th-order modified Bessel function only.

The correspondence is structured as follows. In Section II, we recall
the MarcumQ-function. In Section III, we propose new bounds for the
MarcumQ-function, and numerical results are presented in Section IV.
A few applications are mentioned in Section V and conclusions are
drawn in Section VI.

II. M ARCUM Q-FUNCTION

The generalized MarcumQ-function of orderM is defined by the
integral

QM (a; b)=
1

b

x
x

a

M�1

exp �x2 + a2

2
IM�1(ax)dx (1)

whereIM�1(�) is the(M�1)th-order modified Bessel function of the
first kind. The parametersa andb are positive real. It can be shown that
[9]

QM(a; b) = Q1(a; b) + e
(a +b )=2

M�1

k=1

b

a

k

Ik(ab) (2)

where

Q1(a; b) = Q(a; b) =
1

b

x exp �x2 + a2

2
I0(ax) dx (3)

is usually referred to astheMarcumQ-function. By observing the pre-
ceding equations, it is evident that it is possible to focus our attention on
finding bounds for the MarcumQ-function. In fact, we will bound the
MarcumQ-function in terms of the0th-order modified Bessel function.
The generalized MarcumQ-function of orderM is then automatically
bounded in terms of modified Bessel functions, from0th to(M �1)th
order. The spirit of the proposed bounds for the MarcumQ-function
is that of simply considering a suitable integral function (the0th-order
modified Bessel function), thus avoiding further integration.

In [6], [7], the authors claim that numerical problems can be
encountered in evaluating (1), due to the semi-infinite integration
region, and then they propose alternative integral expressions for
the generalized MarcumQ-function with integration over a finite
interval. In both cases, they consider suitable integral expressions
for the 0th-order modified Bessel function which appears inside the
integral of the MarcumQ-function. In this correspondence, we take a
different approach. Instead of transforming the integration region, we
work directly on the classic expression (3) and we introduce bounds
for the0th-order modified Bessel function which are extremely tight
over the integration region.

III. B OUNDS FOR THEMARCUM Q-FUNCTION

The starting point of the proposed bounding procedure is an observa-
tion about the integral (1) defining the MarcumQ-function. In fact, we
are integrating in the semi-infinite region[b; 1). The integrand func-
tion can be seen as a Rice probability density function (pdf) with its
parameter� = 1 (see [9]). This function is unimodal, and it is pos-
sible to show that its mode can be approximated by the parametera

of the MarcumQ-function [10]. Assumingb > a, it is evident that
the integrand is monotonic decreasing. In this case, it is possible to
find a very tight upper bound for the integrand adding the constraint
that the bounding function assumes the same value of the integrand
function in b. On the other hand, ifb < a, then the integrand is a
complicated function which is first increasing and then decreasing. In
this case, it is extremely difficult to find a bounding function that is
also easy to integrate and tight. Therefore, it is expedient to evaluate
1�Q(a; b), which essentially translates into integrating the Rice pdf
in [0; b]. Again, theintegrand is now monotonic, but increasing. With
some effort, it is possible to find tight bounding functions for this inte-
grand.

In the following, sinceQ(a; b) 2 [0; 1], it is taken for granted
that in the case of the proposed upper bounds one should consider
minf1; upper boundg, while in the case of the lower bounds one
should considermaxf0; lower boundg. In fact, if the bounds are out
of the interval[0; 1], they become meaningless.

A. First Case:b � a

1) Upper Bound forb � a: A known upper bound for the modified
Bessel function is the following [9]:

I0(ax) � exp(ax); 8x � 0: (4)

Based on this inequality, it is easy to derive the following upper bound
for the MarcumQ-function:

Q(a; b) �
1

b

x exp �x2 + a2

2
e
ax
dx

=
1

b

x exp � (x� a)2

2
dx

=
1

b�a

(y + a) exp �y2

2
dy

=
1

b�a

y exp �y2

2
dy

+ a
p
2�

1

b�a

1p
2�

exp �y2

2
dy

= exp � (b� a)2

2
+ a

�

2
erfc

b� ap
2

: (5)

The key idea is the following. The upper bound can be significantly
improved by observing that we are interested in boundingI0(ax) only
in the interval[b; 1). Therefore, we may find a tighter approximation
in this interval. We make the following observation. Since

ex

I0(x)

0

= e
x I0(x)� I1(x)

I20 (x)
> 0; 8x � 0

it follows that

I0(x) � e
x I0(b)

exp(b)
; 8x � b: (6)

In Fig. 1, the functionsex, I0(x), andex I (b)

e
(for b = 5) are com-

pared. Note that the upper boundex I (b)

e
for I0(x) is extremely tight,
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Fig. 1. Comparison betweenI (x) ande , for b = 5.

TABLE I
UPPERBOUNDS IN THE REGION b � a

but holds exclusively forx > b, which luckily is the interval of in-
terest. Hence, we can derive the following improved upper bound by
multiplying the right-hand side of (5) byI (ab)

exp(ab)
, obtaining

Q(a; b)� I0(ab)

exp(ab)
exp � (b�a)2

2
+a

�

2
erfc

b�ap
2

: (7)

This upper bound is referred to as UB1. In Table I, the expression of
the new upper bound is shown, together with bounds that previously
appeared in the literature. More precisely, the bound indicated as UB1S
is proposed in [6], the bound UB1C is proposed in [7], and UB1MG is
proposed in [8].

2) Lower Bound forb � a: In order to find a lower bound for the
MarcumQ-function, the following inequality on the modified Bessel
functionI0(x) can be verified:

I0(x) � I0(b)b

eb
ex

x
; 8x � b: (8)

The functions involved in (8) in the lower bound are shown in Fig. 2
for b = 4. Again, the bound is tight and valid exclusively forx > b.

Fig. 2. Comparison betweenI (x) and , for b = 4.

TABLE II
LOWER BOUNDS IN THE REGION b � a

Based on this bound, we may derive the following lower bound on the
MarcumQ-function:

Q(a; b) �
1

b

x exp �x2 + a2

2

I0(ab)ab

eab
eax

ax
dx

=
I0(ab)b

eab

1

b

exp � (x� a)2

2
dx

=
I0(ab)b

eab

p
2�

1

b

1p
2�

exp � (x� a)2

2
dx

=
�

2

I0(ab)b

eab
erfc

b� ap
2

: (9)

This lower bound will be referred to as LB1. In Table II, the new lower
bound is shown and compared to bounds proposed in [6]–[8] and indi-
cated as LB1S, LB1C, and LB1MG, respectively.

B. Second Case:b < a

1) Upper Bound forb < a: In this case, as previously mentioned,
we are integrating the Rice pdf over a region where the slope of the
integrand is first positive and then negative. From the considerations
previously made, to derive upper and lower bounds we should not use
the inequalities (6) and (8) that we used in the preceding paragraph,
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because they yield extremely loose bounds. Instead, it is convenient to
express the MarcumQ-function as follows:

Q(a; b) = 1�
b

0

x exp �x2 + a2

2
I0(ax) dx: (10)

In this case, to find anupperbound for the MarcumQ-function we need
to find a lower bound for the Bessel function in the interval[0; b]. It
is now possible to reuse inequality (6) (which is indeed a lower bound
for x < b), suitably rewritten as

I0(ax) � I0(ab)

eab
e
ax
; x 2 [0; b]: (11)

By substituting (11) into (10), the following upper bound on the
MarcumQ-function can be derived:

Q(a; b) = 1�
b

0

x exp �x2 + a2

2
I0(ax) dx

� 1� I0(ab)

eab

b

0

x exp � (x� a)2

2
dx

=1� I0(ab)

eab
exp �a2

2
� exp � (b� a)2

2

+a
�

2
erfc � ap

2
� erfc

b� ap
2

: (12)

This upper bound is referred to as UB2. It is important to remark that,
to the best of the authors’ knowledge, no upper bound can be found in
the literature forb < a.

2) Lower Bound forb < a: Starting again from (10), to find alower
bound for the MarcumQ-function we need to find anupperbound for
the Bessel function in the interval[0; b]. To this end, we make the fol-
lowing consideration. Lettingxb = log I (ab)

a
, we “bend” and “stretch”

the exponential curve such that we bring the point(xb; I0(ab)) in the
point (b; I0(ab)), i.e., we consider the function

exp
xb

b
ax = exp

log I0(ab)

b
x :

Defining �
�
= log I (ab)

b
, it is possible to prove that

I0(ax) � exp(�x); 8x 2 [0; b]: (13)

In fact, since

d2

dx2
I0(ax) = a

2 I0(ax) + I2(ax)

2
> 0; 8x � 0

and
d2

dx2
exp(�x) = �

2 exp(�x) > 0

it follows thatI0(ax) andexp(�x) are both concave. Since

I0(0) = exp(0) = 1

I0(ab) = exp(�b) = exp[log I0(ab)]

dI0(ax)

dx x=0
= I1(0) = 0

and

d exp(�x)

dx x=0
= � > 0

we conclude thatI0(ax) < exp(�x), for x 2 (0; b).

TABLE III
LOWER BOUNDS IN THE REGION b < a

By substituting (13) into (10), it is possible to derive the following
lower bound for the MarcumQ-function, which is referred to as LB2:

Q(a; b) = 1�
b

0

x exp �x2 + a2

2
I0(ax) dx

� 1�
b

0

x exp �x2 + a2

2
exp(�x) dx

=1� exp �a2 � �2

2
�

b

0

x exp � (x� �)2

2
dx

=1� exp �a2 � �2

2

� exp ��2

2
� exp � (b� �)2

2

+�
�

2
erfc � �p

2
� erfc

b� �p
2

: (14)

It is interesting to note the formal similarity between the upper bound
(12) and the lower bound (14). The latter bound is reported in Table III,
together with the bounds LB2S, LB2aS, and LB2C proposed in [6], [8],
and [7], respectively.

IV. NUMERICAL RESULTS

In this section, we compare the MarcumQ-function with the ob-
tained bounds and with some bounds previously proposed in the liter-
ature [6]–[8] and considered in Section III. It is worth remarking that
simplified bounds can be derived by using approximations for the error
function and the Bessel function [11]. Examples of simplified bounds
are shown in [10].

Numerical results are presented as follows. We consider the two
casesb � a andb < a. For each of these cases, we present the upper
bounds and the lower bounds. We consider several fixed values of the
parametera and, for each case, we consider the behavior of the Marcum
Q-function and the considered bounds as a function of the remaining
parameterb. An extensive analysis of the performance of the proposed
bounds (especially for larger values of the parametersa andb) can be
found in [10].
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TABLE IV
UPPERBOUNDS COMPARISON: a = 1 AND b � a

Fig. 3. Upper bounds comparison (linear scale):a = 10 andb � a.

A. First Case:b � a

1) Upper Bounds forb � a: We compare the proposed bound UB1
to bounds previously proposed in the literature. In Table IV, we present
a comparison among the considered bounds fora = 1 and several
values ofb. For each pair(a; b), we present the exact valueQ(a; b) of
the MarcumQ-function, while for each of the considered bounds we
show the exact value and the relative error, with respect to the Marcum
Q-function, expressed as100� bound�Q(a; b)

Q(a; b)
and indicated as"%. The

proposed bound UB1 is the best one. The improvement with respect to
the second best bound (UB1C), in terms of the relative error"%, can
be as large as two orders of magnitude for largeb. As can be seen,
the bound UB1S is greater than1 for b < 2. The bound is in this
case meaningless, hence the corresponding entries in Table IV are filled
with�. In Fig. 3, the case fora = 10 is considered and the bounds are
compared in linear scale. The improvement of the proposed bound over
the others for largeb is now between three and four orders of magnitude
[10].

2) Lower Bounds forb � a: In Fig. 4, we consider the lower
bounds fora = 1 in linear scale. As one can see, the proposed bound
LB1 performs very well. The only bound previously proposed which

Fig. 4. Lower bounds comparison (logarithmic scale):a = 1 andb � a.

has a similar performance is the bound indicated as LB1C [7]. For in-
creasing values ofa, the performance improvement of the proposed
bound is even more pronounced [10].

B. Second Case:b < a

1) Upper Bounds forb < a: Since no upper bound was found in
the literature for the caseb < a, we consider the proposed bound UB2
and compare it to the MarcumQ-function only. The two curves are
shown in Fig. 5. As can be seen, the bound UB2 becomes less tight
for increasing values ofb. Similar behavior is observed for almost all
values of the parametera.

2) Lower Bounds forb < a: In Fig. 6, we compare several lower
bounds fora = 1 in linear scale. As is evident, the proposed bound
LB2 is very tight, while the simple bound LB2S is loose. The max-
imum relative error with the proposed bound is around 1.4%, and it
is remarkably less than with the other bounds [10]. In this case, the
only lower bound comparable to the proposed bound LB2 is the bound
LB2aS. As shown in Fig. 6, the bound LB2aS has a “strange” behavior,
since for increasing values ofb a sort of floor appears. This situation
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Fig. 5. Upper bound UB1 versus the MarcumQ-function:a = 10 andb < a.

Fig. 6. Lower bounds comparison:a = 1 andb < a.

is even more pronounced for increasing values ofa, where the bound
LB2 is still the tightest one [10].

V. APPLICATIONS

It can be shown that the cumulative distribution function of a non-
central chi-square random variable with2M degrees of freedom can
be expressed in terms of the generalized MarcumQ-function of order
M [12].

When characterizing the performance of differentially coherent and
noncoherent digital communications, the generic form of the expres-
sion for the error probability typically involves the MarcumQ-func-
tion, the arguments of which are proportional to the square root of

the instantaneous signal-to-noise ratio of the received signal [8], [2].
Hence, the proposed bounds may be successfully employed to bound
this error probability.

VI. CONCLUSION AND DISCUSSION

In this correspondence, we presented new bounds for the Marcum
Q-function. The proposed bounds, especially when compared to
bounds previously introduced in the literature, have shown to be
extremely tight. In particular, the following specific remarks can be
made.

� For large values of the parametersa andb, the computation of the
MarcumQ-function according to any definition becomes critical, be-
cause of numerical problems in the integration region. The proposed
bounds are valid for large values ofa andb without suffering any nu-
merical problem.

� Looking at the tightness tables relative to all possible combinations
of the parametersa andb [10], the following remark can be made. Con-
sidering a value of the MarcumQ-function around10�5, for increasing
a the proposed bounds improve, while the bounds previously proposed
in the literature worsen. Moreover, in the caseb � a, the performance,
i.e., the tightness, improves quickly for increasingb.

� As far as we know, no upper bound for the MarcumQ-function has
been ever introduced forb < a. Hence, the proposed upper bounds may
be very useful in the computation of a Rice cumulative density function
for very small values of this function, i.e., for very low probabilities.
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