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Linear Programming-Based Optimization of the Distance
Spectrum of Linear Block Codes

Gianluigi Ferrari, Member, IEEE,and Keith M. Chugg, Member, IEEE

Abstract—In this correspondence, we describe an approach for the iden-
tification of good distance spectra forpossibly existingbinary linear block
codes based on linear programming and the MacWilliams–Delsarte identi-
ties. Specifically, the linear program is defined by an expression character-
izing the performance of a potential code in terms of its distance spectrum
and constraints imposed by the MacWilliams–Delsarte identities. Using the
union bound to characterize performance, our results suggest that the best
distance spectrum is not a function of signal-to-noise ratio (SNR) above the
cutoff rate SNR and also suggest the existence of several unknown, good
codes. Characterizing the performance using the maximum spectral error
component of the union bound suggests spectral thinning with decreasing
SNR.

Index Terms—Distance spectrum, group codes, linear programming,
optimization methods.

I. INTRODUCTION

Assuming maximum-likelihood (ML) decoding, thefree distance
of a code (i.e., the minimum possible nonzero distance over all
codewords) is a good indicator of performance at moderate to high
signal-to-noise ratio (SNR). Maximizing the free distance was the
traditional design goal [1] for codes until the emergence ofturbo-like
codes [2]–[5], which perform well at SNRs where the minimum
distance is not the dominant characteristic of the code. Analysis of
turbo-like codes has highlighted the importance of the entire distance
spectrum rather than just the minimum distance [6]–[12].

With this appreciation, it is natural to inquire about the best distance
spectrum of a code for a given rate, block length, and channel. While
this is the goal of this correspondence, it is difficult to address this
inquiry exactly because i) an exact expression of performance in
terms of the distance spectrum is not available and ii) a necessary and
sufficient condition for the existence of a code with a given distance
spectrum is not known. Even if these two issues were surmounted,
the resulting computational optimization problem would likely be
intractable. Therefore, in this correspondence, we utilize one of two
proxy expressions for performance and rely on theMacWilliams–Del-
sarte identities[1] to constrain the distance spectra. This allows the
problem to be formulated as a linear programming problem that can be
solved numerically. This does not result in an optimized code design,
but rather in a candidate distance spectrum with best shape. As will be
described, there may or may not exist a code with such spectrum.

Linear programming techniques and the MacWilliams–Delsarte
identities have been applied in the past, but for different purposes than
in this correspondence. In [13], a linear programming approach was
considered, but it did not rely on the MacWilliams–Delsarte identities.
These identities were instead utilized in [14], [15], where they were
used to derive an upper bound on the number of codewords, in order to
obtain bounds on the rate of a binary code. The MacWilliams–Delsarte
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identities were also used in [16], [17], where the proposed linear
program aimed at proving the nonexistence of specific binary linear
codes.

This correspondence is organized as follows. In Section II,
we formalize the notion of distance spectrum and recall the
MacWilliams–Delsarte identities. In Section III, we formulate a linear
program with objective function given by the union bound on the
codeword error rate (WER), and solve it for the cases of an additive
white Gaussian noise (AWGN) channel and a perfectly interleaved
Rayleigh flat-fading channel. In Section IV, we consider an alternative
linear program, based on the dominant spectral error component of the
union bound. Finally, Section V contains concluding remarks.

II. DISTANCE SPECTRUM ANDMACWILLIAMS –DELSARTEIDENTITIES

Let C = fxxx1; . . . ; xxxMg be a code comprisingM codewords
of length n (i.e., xxxi = (xi; 1; . . . ; xi; n)), where each symbol
xi; j belongs to the binary alphabet and whered(xxx�; xxx�) � df if
� 6= �, whered(�; �) denotes the Hamming distance. The quantity
df is defined as theminimum or free distanceof the code. For
eachi 2 f0; 1; . . . ; ng, we defineai to be the average number of
codewords at distancei from a given codeword, i.e.,

ai =
1

M
� jf(�; �): d(xxx�; xxx�) = igj (1)

wherej � j represents the cardinality of the corresponding set. We define
aaa = (a0; a1; . . . ; an) as thedistance spectrumof the code [15], with

a0 + a1 + � � �+ an = M: (2)

If the code is linear, the distance spectrumaaa of the code reduces to its
weight spectrum. The free distance of the code reduces in this case to
the minimum possible nonzero weight of the codewords.

The MacWilliams–Delsarte identities [1], [18] are derived from the
relations existing between a code and its dual code [19]. In particular,
let x be an indeterminate and definebj ; j 2 f0; 1; . . . ; ng, by the
polynomial equality

1

M

n

i=0

ai(1� x)i(1 + x)n�i =

n

j=0

bjx
j : (3)

In general,bj appears to have no natural combinatorial significance,
but if faig is the weight spectrum of a binary linear block codeC,
thenbj equals the number of codewords of Hamming weightj in the
dual code ofC [20]. The equality (3) can be rewritten in terms of the
weight enumeratorA(x) = n

i=0
aix

i of the code and the weight
enumeratorB(x) = n

i=0
bix

i of its dual code as follows [1]:

B(x) =
1

M
(1 + x)nA [(1� x)=(1 + x)] : (4)

From (3), it is possible to derive [21]

bj =

n

i=0

aiKj(i) (5)

wherefKj(i)g are the so-called Krawtchouk polynomials [15]. The
coefficient ofxj in the polynomial(1� x)i(1 + x)n�i definesKj(i)
as

Kj(i) =

i

k=0

n�i

l=0

k+l=j

i

k

n� i

l
(�1)k (6)
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where, for the sake of conciseness, the notation fails to recall the ob-
vious fact thatKj(i) also depends onn. Hence, the following general
constraints hold for a generic binary linear block code:

a0 = 1

a1 = � � � = ad �1 = 0

ai � 0; i 2 fdf ; df + 1; . . . ; ng
n

i=0

aiK0(i) � 0

n

i=0

aiK1(i) � 0

� � �
n

i=0

aiKn(i) � 0:

(7)

The linear constraints (7) are necessary to characterize a binary linear
code, but may not be sufficient. It is an open question whether it is
possible to find additional constraints valid for a generic linear code.

III. U NION BOUND-BASED LINEAR PROGRAM

We consider ML decoding of linear block codes. In this case, a
simple upper bound on the WER is given by a union bound over all pos-
sible codewords [22]. Assuming linearity, this upper bound, in terms of
the distance spectrum, can be written as

PW �

n

i=d

aiP2(i); (8)

whereP2(i) denotes the pairwise error probability (PEP) between the
all-zero codeword and a codeword of weighti. This error probability
depends on the considered transmission channel, the code rateR, the
considered SNR, and the detection strategy. For the sake of notational
simplicity, we do not explicitly indicate the dependence of the PEP
on the code rate and the SNR. Using the upper bound in (8) as an
objective function� and constraining the coefficientsfaig to satisfy
the MacWilliams–Delsarte identities, we can formulate the following
linear program:

Minimize � =

n

i=1

aiP2(i) (9)

subject to

n

i=1

aiK0(i) � �K0(0)

n

i=1

aiK1(i) � �K1(0)

� � �
n

i=1

aiKn(i) � �Kn(0)

n

i=1

ai =M � 1:

(10)

The description of the hypothetical weight spectrumaaa is completed1

by stating thata0 = 1. To completely specify the above linear program,
the integern and the expression of the PEPP2(i) have to be specified.
Since the coefficientsP2(i) in (9) are known, the objective function�
is linear in the variablesfaig.

1Additional constraints of the forma = 0; i = 1; . . . ; � could be added
for some integer�. This would limit the search, embedded in the optimization
procedure, among distance spectra with minimum distance�. To avoid losing
any generality, we consider� = 1.

Fig. 1. Optimized distance spectrum, solution of a union bound-based linear
program with symmetry condition, forn = 48 andR = 1=2 (d = 12).

Solution of (9) and (10) is an integer programming problem and is,
therefore, intractable for reasonably large-sized problems. If we relax
the condition that the coefficientsfaig are integers and accept real
values, we may use thesimplex method[23] to solve (9) and (10) opti-
mally within this context. Clearly, however, the resulting solution may
not be the distance spectrum of a code because the best choice for
faig may be real values. Even in the case that the optimizing values
are integer, this only implies that the MacWilliams–Delsarte identities
are satisfied by these integers, not that a corresponding code exists.
Nonetheless, this approach should yield insight into the proper shape
of the distance spectrum.

As mentioned earlier, the PEP depends on the particular transmission
channel. In the following, we specialize and solve the linear program
(9) and (10) in two cases.

A. AWGN Channel

Considering transmission over an AWGN channel with antipodal
signaling, e.g., binary phase shift keying (BPSK), the PEP relative to
soft-input decoding can be expressed as [22]

P2(i) = Q 2
ES

N0

i = Q 2R
bi (11)

whereQ(x) is the area under a mean zero, unit variance Gaussian
density beyondx. Based on our experience, the linear program quickly
becomes numerically intractable, for various reasons, for increasing
codeword lengthn. In order to limit the number of independent
variablesfaig we will consider relatively short block lengths and the
following additional constrainedsymmetryof the distance spectrum:

a0 = an

a1 = an�1

� � �

a
b c�1

= a
d e

:

(12)

The linear program in (9) and (10) can be straightforwardly modified
to account for this additional constraint. A sufficient condition for the
distance spectrum to be symmetric is that the all-1 codeword belongs
to the codebook [21].

The solution of (9) and (10), imposing the symmetry condition and
settingn = 48 andR = 1=2, is shown in Fig. 1. In this case, the min-
imum nonzero coefficient of the solution corresponds todf = 12. An
interesting result is that the solution remains unchanged irrespective of
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TABLE I
WEIGHT ENUMERATORS CORRESPONDING TO THEDISTANCE SPECTRA OBTAINED AS SOLUTIONS, IN THE INDICATED CASES, OF A

UNION BOUND-BASED LINEAR PROGRAM WITH SYMMETRY CONDITION

the SNR considered. A general geometric justification of the indepen-
dence of the obtained solution from the SNR comes from the following
theorem. We assume that the scalar product of two vectors is denoted
by the symbol�, and that the all-1 vector is indicated with the symbol
1 = (1; . . . ; 1).

Theorem 1: Let a linear program LP be intended to maximize2 the
objective function

� = aaa � fff (13)

wherefff 2 n, with respect toaaa 2 n subject to a number of con-
straints including

aaa 2 + � + � � � � � + (14)

aaa � 1 = a1 + a2 + � � �+ an = M (15)

whereM 2 . The other constraints onaaa need not be specified. Let us
assume that LP admits the solutionaaamax. LetP = fxxx 2 n: xxx�1 = 0g
be the hyperplane passing through the origin and parallel toP0 =
fxxx 2 n: xxx � 1 = Mg.

Let LP1 be another linear program, the objective function of which
is

�1 = aaa � fff1 (16)

with fff1 6= fff and where the set of constraints is exactly the same as
in LP. LetfffP(fffP1 ) be the projection offff(fff1) ontoP . If fffP1 = cfff

P
;

c2 +, then LP1 admitsaaamax as its solution.
Proof: See the Appendix.

Considering the linear program (9) and (10) for a specific SNR, we
can interpret it as a particular case of the linear program LP of The-
orem 1, withfi given byP2(i). Note thatP2(1) > P2(2) > � � � >
P2(n) > 0, i.e.,P2(i) is monotonically decreasing oni. Changing the
SNR simply changes the rate of decrease, with respect toi, of P2(i).
Above the SNR corresponding to the cutoff rate, the sum of these terms
converges so that the rate of decrease with respect toi is very large (i.e.,

2The theorem holds in the same way in the case of minimization. The proof
can be straightforwardly modified.

exponential). Hence, the family of vectorsf(P2(1); . . . ; P2(n))g cor-
responding to different SNRs are contained in a small cone inn that
does not contain the vector1 orthogonal toP . In fact, this implies that
the corresponding vectors obtained by projection onto the hyperplane
P—as explained in Theorem 1—lie near each other and have the same
orientation (in the sense that the scalar product between any two of
them is positive). It is then arguable that the solution of the linear pro-
gram should not change significantly when changing the SNR. Numer-
ically, we find that the solution does not depend on the SNR at all.

The solution of the linear program shown in Fig. 1 is not a feasible
weight spectrum for a binary linear block code, in the sense that the
coefficientsfaig are not integers. However, in several cases, the linear
program has a solution where the coefficientsfaig are, within tight
numerical precision limits, nonnegative integers. Obviously, when the
code rateR approaches1, the solution approaches a binomial distri-
bution. In the limit(R = 1), it has to be binomial, since alln-tuples
are possible codewords. Moreover, in several special cases the solu-
tions are the distance spectra of well-known group codes. In Table I,
we report some of the obtained distance spectra which exactly match
with those of known group codes.3 In these cases, we can conclude that
these codes are “optimal” in the sense of minimizing the union bound
(9) on the WER. In other cases, the solution of the linear program is
a vector with nonnegative integers which does not correspond, to the
best of our knowledge, to the distance spectrum of any known block
code. This could predict the existence of still unknown codes. For ex-
ample, solving the considered linear program forn = 34 andk = 15,
the following weight enumerator is obtained:

A(x) = 1 + x
34 + 374(x10 + x

24) + 1152(x11 + x
23)

+ 1184(x12 + x
22) + 1848(x14 + x

20)

+ 7040(x15 + x
19) + 4785(x16 + x

18): (17)

As one can see, the obtained distance spectrum would correspond to
a (34; 15) binary linear code withdf = 10—provided that a search
procedure found a code with such a weight spectrum. To the best of our
knowledge, the(34; 15) group codes known up to now have at most
df = 9 [25]. Another example is the following distance spectrum,

3Incidentally, we observe that these codes are perfect or close to perfect.
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Fig. 2. Upper bounds on the WER over an AWGN channel relative to
optimized distance spectra, solutions of a union bound-based linear program
with symmetry condition, forR = 1=2 and increasing codeword lengthn.
The curves cross at the SNR
 = 2.46 dB corresponding to a cutoff rate
R = R = 1=2 over an AWGN channel with BPSK.

obtained by solving the linear program withn = 37 andk = 9. In this
case, the weight enumerator corresponding to the solution is

A(x) = 1 + x37 + 72(x15 + x22) + 183(x16 + x21): (18)

The hypothetical code corresponding to (18) hasdf = 15. This
achieves the highest possible allowed minimum distance [16]. In [26],
a (37; 9) code with maximum alloweddf = 15 is proposed, and its
distance spectrum is

A(x)=1+91x15+125x16+107x19+96x20+57x23+34x34+x37:

(19)

We finally evaluated the upper bounds on the WER (9) corre-
sponding to the obtained optimized distance spectra. In Fig. 2, the
upper bounds relative to the caseR = 1=2 are shown for increasing
codeword lengthn. They cross at a specific SNR
(co)b , such that the
cutoff rateR0 coincides with the code rateR. In the case of BPSK
transmission over an AWGN channel, this SNR can be written [22] as



(co)
b =

1

R
ln

1

21�R � 1
: (20)

Substituting forR = 1=2 in (20),
(co)b = 2.46 dB is obtained, which
is the SNR corresponding to the intersection of the various bounds in
Fig. 2. This means that the proposed linear program leads to distance
spectra which asymptotically (for increasingn) show decreasing error
probability for any SNR such thatR < R0. This is reasonable, since
the objective function is a union bound, i.e., a sort of averaged per-
formance measure converging above the channel cutoff rate SNR [27].
This result does suggest that, above the cutoff rate SNR, the best dis-
tance spectrum is not dependent on the SNR.

B. Perfectly Interleaved Rayleigh Flat-Fading Channel

In this case, the general setting of the linear program does not change
with respect to the AWGN channel case. The only difference lies on the
expression of the PEP. For BPSK signaling over a perfectly interleaved
Rayleigh flat-fading channel and in the case of coherent hard detection
followed by decoding, the PEP can be written [22] as

P2(i) = pi
i�1

k=0

i� 1 + k

k
(1� p)k (21)

Fig. 3. Comparison between the PEP over an AWGN channel and the PEP over
a Rayleigh flat-fading channel, as a function of the distancei, forR = 1=2 and
increasing SNR
 .

where

p =
1

2
1�

R
b
1 +R
b

: (22)

In order to justify the results obtained in the case of a Rayleigh flat-
fading channel, we make a preliminary comparison between the PEP
in the AWGN channel case and the PEP in the Rayleigh flat-fading
channel case. In Fig. 3, the PEPs in the two cases, as functions of the
distance, are compared for different SNRs. As one can see, in loga-
rithmic scale the PEPs in the two cases are approximately linear, and
the approximation is the better, the larger the distance or the higher the
SNR. According to the given interpretation of Theorem 1, the distance
spectrum solution of the linear program is expected to remain almost
unchanged at any SNR. Moreover, Theorem 1 predicts that the distance
spectrum obtained in the current case should be very similar to that ob-
tained in the AWGN channel case. In fact, the PEP (21) in the Rayleigh
flat-fading channel case is rapidly decreasing as in the AWGN channel
case. Numerical results show that the solution of the linear program in
the two channel cases—when setting in the same way all other param-
eters—does not change. The solution is exactly the same whether an
AWGN channel or a perfectly interleaved Rayleigh flat-fading channel
is considered.

In this case as well, we evaluated the upper bounds on the WER ob-
tained with the optimized distance spectra. In Fig. 4, the upper bounds
are shown in the case ofR = 1=2 for increasing codeword lengthn.
The same behavior as in the AWGN channel case is observed in the cur-
rent case: the curves corresponding to different codeword lengths cross
at a precise point, relative to the channel cutoff rate. In fact, in the case
of BPSK(q = 2) transmission over a Rayleigh flat-fading channel, the
SNR corresponding to the channel cutoff rate can be expressed [22] as



(co)
b =

q(2R � 1)

(q � 2R)R
=

(2R � 1)

(1� 2R�1)R
: (23)

Substituting forR = 1=2, we find
(co)b = 4.51 dB, which is exactly
the SNR where the curves cross.

IV. M AXIMUM SPECTRAL ERROR COMPONENT-BASED

LINEAR PROGRAM

Based on the evidence available from existing turbo-like code de-
signs, the insensitivity of the best distance spectrum to SNR is most
likely due to the use of the union bound. To obtain a useful result for
SNR below the cutoff rate SNR, another measure of performance is
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Fig. 4. Upper bounds on the WER over a Rayleigh flat-fading channel with
optimized distance spectra, solutions of a union bound-based linear program
with symmetry condition, forR = 1=2, and increasing codeword lengthn.
The curves cross at the SNR
 = 4.51 dB corresponding to a cutoff rate
R = R = 1=2 over a Rayleigh flat-fading channel with BPSK and coherent
detection.

Fig. 5. Distance spectra, solutions of the maximum spectral error
component-based linear program with symmetry condition, in the case with
n = 48 andR = 1=2, for 
 = 1 dB and
 = 8 dB.

required. However, adopting a complex bound will substantially com-
plicate the optimization problem (see Section V).

In this section, we consider characterizing performance by the max-
imum term in the union bound. This is not a strict bound in any sense,
but it is reasonable to expect that at lower SNRs this would more ac-
curately track the exact WER. The resulting nonlinear optimization
problem is

Minimize max
i
faiP2(i)g (24)

where the minimization is carried out over all possibleaaa, subject to
the constraints (10). We refer to a termaiP2(i) as aspectral error
component. It is possible to transform this nonlinear program into an
equivalent linear program by definingG as

G = max
i
faiP2(i)g (25)

and noting that

G � aiP2(i); i 2 f1; . . . ; ng: (26)

Fig. 6. Distribution of the spectral error components in the AWGN case,
relative to the distance spectrum solution of the maximum spectral error
component-based linear program with symmetry condition, in the case with
n = 48 andR = 1=2, for 
 = 3 dB.

Considering the set of constraints given by (26) and combining them
with the constraints (10), the following linear program can be formu-
lated:

Minimize G =

n

i=1

0 � ai + 1 �G (27)

subject to

G � 0

G � a1P2(1)

� � �

G � anP2(n)
n

i=1

aiK0(i) � �K0(0)

� � �
n

i=1

aiKn(i) � �Kn(0)

n

i=1

ai =M � 1:

(28)

There is a fundamental difference with respect to the linear program
in (9) and (10). In (27) and (28), the PEP appears in the constraints
(28), but does not in the objective function (27). This means that, in the
linear program (27) and (28), changing the SNR leaves unmodified the
objective function, but modifies the domain whereaaa can vary. In this
case, we expect that the optimized distance spectrum will depend on
the particular SNR. Moreover, since for large SNR it holds that

n

i=1

aiP2(i) � max
i2f1;...;ng

faiP2(i)g (29)

we expect that solving (27) and (28) and (9) and (10) will yield similar
results at moderate to high SNR.

In order to make a comparison with the results obtained in Section
III, we apply the symmetry condition to the linear program (27) and
(28). Forn = 48 andR = 1=2, the optimized distance spectra, for

b = 1 dB and
b = 8 dB, are shown in Fig. 5. As one can see, for

b = 8 dB, the solution is very similar to the distribution in Fig. 1.
However, there is a significant difference at low SNR, where the tails
of the optimized distribution in the current case become significant.
In Fig. 6, the spectral error components corresponding to the distance
spectrum obtained for
b = 3 dB (around the cutoff rate) are shown.
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Fig. 7. Comparison, forn = 48 andR = 1=2, between performance curves
relative to the union bound-based linear program (UB) and curves relative to
the maximum spectral error component-based linear program (max SEC). In
particular, in each case two curves are shown, corresponding to the union bound
and the maximum spectral error component, respectively.

The spectral error components relative to the indexes between1 and16
have almost the same (maximum) value.

In order to further compare the results obtained with the two
proposed linear programs, the maximum spectral error component,
corresponding to the solution of the union bound-based linear program,
and the union bound, corresponding to the solution of the maximum
spectral error component-based linear program are also evaluated.
The results are shown in Fig. 7. Even if the solution of the union
bound-based linear program does not depend on the SNR, the index
imax of the maximum spectral error component does. Whileimax = 18
for 
b = 0 dB, the indeximax reduces todf = 12 for 
b � 6 dB.
In Fig. 7, the curves obtained with the maximum spectral error
component-based linear program are such that for any SNR, the
corresponding solution of the linear program is used. In particular,
for 
b = 1 dB the spectral error components have almost the same
maximum value for all indexes between2 and 20 (a1 = 0), while
for 
b = 7 dB, the maximum value approximately corresponds to
the indexes between1 and12. This justifies the fact that the union
bound derived from the maximum spectral error component-based
linear program converges to the union bound derived from the union
bound-based linear program only for very large SNR.

V. CONCLUDING REMARKS

In this correspondence, we considered a linear programming ap-
proach to the optimization of the weight spectrum of a hypothetical
binary linear block code transmitted over an AWGN channel or a per-
fectly interleaved Rayleigh flat-fading channel. Linear optimization
was carried out, where the objective function was a union bound on the
WER, or the maximum spectral error component of this bound, based
on a hypothetical weight spectrum. The constraints were derived from
the MacWilliams–Delsarte identities. With the union bound-based ap-
proach, in several cases the obtained distance spectra corresponded to
those of known group codes, and in other cases, the possible existence
of new group codes was suggested, but not proven. The union bound-
based approach led to the identification of distance spectra which show
asymptotically (for increasing codeword length) decreasing error prob-
ability for an SNR above that corresponding to the channel cutoff rate.
Ironically, although motivated by the belief that the entire distance
spectrum should eventually determine the performance of a code, our
results suggest that above the cutoff rate SNR theminimum distanceis
the primary factor. This is most likely due to the use of the union bound

and, in fact, the maximum spectral error component-based linear pro-
gram suggests that the conclusions might be different in the SNR re-
gion below the channel cutoff rate SNR. Specifically, the results using
this performance metric suggest that the best design should sacrifice a
smaller free distance for a thinner spectrum.

Extension of the proposed approach to the low-SNR region in
a meaningful manner is desirable. Substituting for a tighter upper
bound, as for example the tangential sphere bound [28], valid for SNRs
below that corresponding to the channel cutoff rate, could lead to
the identification of distance spectra which guarantee asymptotically
low error probability near the channel capacity [29]. However, our
previous attempts to incorporate the tangential sphere bound have
not been fruitful. While this is a conceptually simple modification
of the union bound-based approach, in practice, we have found that
the optimization problem becomes extremely difficult. Furthermore,
since the union bound results in a linear program, we can ensure that
the stated problem is solved optimally [24], while a tangential sphere
bound will result in a nonlinear program where such claims cannot be
made.

An open problem, from a numerical point of view, is the extension of
the proposed method to larger codeword lengths and to nonsymmetric
weight spectra. This could be accomplished by considering more so-
phisticated tools of linear optimization. Moreover, in the cases where
the solution of the linear programs (9) and (10) or (27) and (28) is con-
stituted by noninteger numbers, it would be interesting to look at the
nearest (according to a suitable measure) integer distribution, i.e., a
possible weight spectrum.

APPENDIX

PROOF OFTHEOREM 1

Before proving Theorem 1, we present two lemmas which are useful.
We recall the notation used in the previous sections. In particular, we
denote byaaa 2 n ann-dimensional vector(a1; a2; . . . ; an). Given
two vectorsaaa andbbb, we define their scalar product as

aaa � bbb = a1b1 + � � �+ anbn 2 :

Lemma 1: Let us consider two vectorsaaa; fff 2 n and the hyper-
planeP = fxxx 2 n: xxx � 1 = 0g (P passes through the origin).
Let us denote byfffP the projection offff onto the hyperplaneP . If
aaa0 = aaa + cfff

P , c 2 +, then

aaa
0 � fff � aaa � fff: (30)

Proof: By linearity of the scalar product, we can write

aaa
0 � fff = (aaa+ cfff

P) � fff = aaa � fff + cfff
P � fff: (31)

From the definition of projection, it followsfffP � fff � 0. This proves
(30).

We interpret Lemma 1 as follows. Let us define the hyperplane

P 0 = fxxx 2 n: xxx = yyy + aaa; 8yyy 2 Pg

i.e., the hyperplane parallel toP which contains the vectoraaa. For the
sake of notational simplicity, we will use the notationP 0 = P + aaa.
Considering the scalar productaaa �fff (a hypothetical objective function),
if aaa “moves” insideP 0 in the direction offffP , then the hypothetical
objective function increases. Lemma 1 can be generalized as follows.

Lemma 2: Let us consideraaa; fff; fffP 2 n and the hyperplaneP
as defined in Lemma 1. Let us consider a vectorggg 2 P such that
ggg � fffP � 0. If aaa00 = aaa + ggg, then

aaa
00 � fff � aaa � fff: (32)



1800 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 7, JULY 2003

Proof: Owing to the linearity of the scalar product, in order to
prove (32) it is sufficient to prove thatggg � fff � 0. Two cases can be
distinguished.

1) fff is orthogonal toP . This case is trivial. In fact, any vectorggg 2 P
is orthogonal tofff , i.e.,ggg � fff = 0.

2) fff is not orthogonal toP . In this case,fff �fffP > 0. The hyperplane

F = fxxx 2 n: xxx = c1 fff + c2fff
P
; 8 c1; c2 2 g

is orthogonal toP . Moreover,

F \ P = fxxx 2 n: xxx = rfff
P
; 8 r 2 g = l

is a hyperline insideP . It follows that if ggg � fffP = 0, thenggg
is orthogonal toF soggg � fff = 0. If ggg � fffP > 0, thenggg is not
orthogonal toF . Thenfff � fffP > 0 results inggg � fff > 0.

Lemma 2 can be interpreted as follows. Given the hyperplaneP and
the vectorfffP as defined in Lemma 1, one can consider the hyperline
l � P orthogonal tofffP . The hyperplaneP is divided into two regions
by l. We defineR1 as the region (including the hyperlinel) which con-
tainsfffP , andR2 = PnR1 the complementary region. Considering the
hyperplaneP0 = P+aaa, it is possible to identify two regions,R0

1 � P 0

andR0
2 � P 0, such thatR0

1 = R1 + aaa andR0
2 = R2 + aaa. A generic

vectoraaa00 as defined in Lemma 2 is such thataaa00 2 R0
1.

We now propose a proof of Theorem 1.

Proof [Theorem 1]: The solutionaaamax of the LP must be such
that

aaa
max 2 P 0 = fxxx 2 n: xxx � 1 = M; M 2 g:

Let us consider the hyperlinel�P and the regionsR1�P andR2�P
as defined above. We define byl0= l+aaamax�P 0 the hyperline parallel
to l such thataaamax 2 l0. Similarly, we considerR0

1 = R1 + aaamax

andR0
2 = R2 + aaamax. Obviously,l0 � R0

1. Since we assumed that
LP admits a solution, it follows thatR0

1 \ D = aaamax, whereD is
the domain determined by all the constraints of LP (including (14) and
(15)). In fact

a) if (l0\D)nfaaamaxg 6= f;g, then, considering a vectoraaa00 2 l0\D,
it follows thataaa00 � fff = aaamax � fff . According to thefundamental
theorem of optimization[24], the solution of a linear program,
when it exists, is unique. Since we assumed that LP admits a
solution, it must bel0 \ D = aaamax;

b) if (R0
1nl

0)\D 6= f;g, then according to Lemma 2 it is possible
to find a vectoraaa00 2 R0

1nl
0, aaa00 6= aaamax, such thataaa00 � fff >

aaamax�fff . This contradicts the assumption thataaamax is the solution
of LP, i.e., that it maximizes the scalar product (13). It follows
that(R0

1nl
0) \ D = f;g.

From a) and b) it follows thatR0
1 \ D = aaamax. Let us now consider

the linear program LP1. It is possible to prove that

aaa
max � fff

1
= max

aaa

2 Dfaaa � fff
1
g:

In fact, according to Lemma 2,aaa00 � fff
1
� aaamax � fff

1
only if aaa00 2

R0
1nfaaa

maxg. However, we have shown above that(R0
1nfaaa

maxg) \
D = f;g. It thus follows that the solution of LP1 must beaaamax.
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