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Linear Programming-Based Optimization of the Distance identities were also used in [16], [17], where the proposed linear
Spectrum of Linear Block Codes program aimed at proving the nonexistence of specific binary linear
codes.

Gianluigi Ferrarj Member, IEEEand Keith M. ChuggMember, IEEE  This correspondence is organized as follows. In Section I,
we formalize the notion of distance spectrum and recall the

Abstract_in this correspondence, we describe an approach for the iden MacWilliams—Delsarte identities. In Section Ill, we formulate a linear

i , Wi i i - . N . . .

tification of good distance spectra forpossibly existingoinary linear block program with objective function given .by the union bound on t.h.e
codes based on linear programming and the MacWilliams-Delsarte identi- codeword error rate (WER), and solve it for the cases of an additive
ties. Specifically, the linear program is defined by an expression character- white Gaussian noise (AWGN) channel and a perfectly interleaved
izing the performance of a potential code in terms of its distance spectrum Rayleigh flat-fading channel. In Section IV, we consider an alternative

anq constraints imposed _by the MacWilliams—Delsarte identities. Using the linear program, based on the dominant spectral error component of the
union bound to characterize performance, our results suggest that the best . b d F I ion V . ludi K
distance spectrum is not a function of signal-to-noise ratio (SNR) above the union bound. Finally, Section V contains concluding remarks.

cutoff rate SNR and also suggest the existence of several unknown, good

codes. Characterizing the performance using the maximum spectral error Il. DISTANCE SPECTRUM AND MACWILLIAMS —DELSARTE | DENTITIES
component of the union bound suggests spectral thinning with decreasing

SNR. Let C = {xi,...,zm} be a code comprising/ codewords
Index Terms—bistance spectrum, group codes, linear programming, Of length n (i.e., 2, = (i1, ..., ®;»)), where each symbol

optimization methods. x; ; belongs to the binary alphabet and whéfe,,, z,) > d; if

u # v, whered(-, -) denotes the Hamming distance. The quantity

dy is defined as theminimumor free distanceof the code. For

each: € {0, 1, ..., n}, we definea; to be the average number of
Assuming maximum-likelihood (ML) decoding, tHfeee distance codewords at distandgefrom a given codeword, i.e.,

of a code (i.e., the minimum possible nonzero distance over all 1

codewords) is a good indicator of performance at moderate to high @ = 35 H{(p, v): d(zp, 2,) =i} 1)

signal-to-noise ratio (SNR). Maximizing the free distance was the .

traditional design goal [1] for codes until the emergenceudfo-like  where|- | represents the cardinality of the corresponding set. We define

|. INTRODUCTION

codes [2]-[5], which perform well at SNRs where the minimuna = (o, a1, ..., a,) as thedistance spectrurof the code [15], with
distance is not the dominant characteristic of the code. Analysis of
turbo-like codes has highlighted the importance of the entire distance ao+ar+---+an =M. (2)

spectrum rather than just the minimum distance [6]-[12]. h deis i he di fth de red .
With this appreciation, it is natural to inquire about the bestdistanl:fet,eco e s linear, the |stqnce spectraraf the code re qces.to Its
ight spectrum. The free distance of the code reduces in this case to

spectrum of a code for a given rate, block length, and channel. whil'gnt < ibl oht of th d q
this is the goal of this correspondence, it is difficult to address h{d€ minimum possible nonzero weight of the codewords.

inquiry exactly because i) an exact expression of performance inThe MacWilliams—Delsarte identities [1], [18] are derived from the

terms of the distance spectrum is not available and ii) a necessary 5‘?48“0”5 existing between a code and its dual code [19]. In particular,

sufficient condition for the existence of a code with a given distand8! © be an indeterminate and defing, j € {0, 1, ..., n}, by the

spectrum is not known. Even if these two issues were surmount&(,?,lynOm'aI equality

the resulting computational optimization problem would likely be 1 & , , n _

intractable. Therefore, in this correspondence, we utilize one of two i Z a(l—a)(1+2)"" = Z bz’ (3)
proxy expressions for performance and rely onMeeWilliams—Del- =0 j=0

sarte identitieq1] to constrain the distance spectra. This allows th% general}; appears to have no natural combinatorial significance

problem to be formulated as a linear programming problem that canbe” ¢ {a:} is the weight spectrum of a binary linear block code

solved numerically. This does not result in an optimized code desi . -,
. . . . . b
but rather in a candidate distance spectrum with best shape. As WI||OEgn ; equals the number of codewords of Hamming weiglt the

. - . ual code ofC [20]. The equality (3) can be rewritten in terms of the
described, there may or may not exist a code with such spectrum. : R o i .
Linear programming techniques and the MacWilliams—Delsar ee'ght enumeratorl(z) = 3, «ix" of the code and the weight
. R . . . ~ r) = ” b; z i .
identities have been applied in the past, but for different purposes thegnumeratoﬂ(x) i=o bi" ofits dual code as follows [1]
in this correspondence. In [13], a linear programming approach was 1 -
considered, but it did not rely on the MacWilliams—Delsarte identities. B(e) = M (1+2)" A1 = 2)/(1+2)]. )
These identities were instead utilized in [14], [15], where they wer - . .
used to derive an upper bound on the number of codewords, in orde'r%gm (3), itis possible to derive [21]
obtain bounds on the rate of a binary code. The MacWilliams—Delsarte n
bj = aiK(i) ®)
=0
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where, for the sake of conciseness, the notation fails to recall the ob- 7 D
vious fact thati; () also depends on. Hence, the following general
constraints hold for a generic binary linear block code: Y EESR— 1 (| M
ag =1
a1:-~~:a‘df,1:() S
(14Zo,ie{d‘f,df—kl,...,n} a(;4
: g
> aiKo(i) > 0 -3
=0 @
n 2
D aiKi(i) >0
=0 1
> aiKu(i) 2 0. %70 20 30 40 50
i=0 Distance i

The linear constraints (7) are necessary to characterize a binary linear
code, but may not be sufficient. It is an open question whether it #d- 1. Optimized distance spectrum, solution of a union bound-based linear

possible to find additional constraints valid for a generic linear codeP"°9am With symmetry condition, for = 48 andf = 1/2 (d; = 12).

Il. UNION BOUND-BASED L INEAR PROGRAM Solution of (9) and (10) is an integer programming problem and is,
] ) ] ) therefore, intractable for reasonably large-sized problems. If we relax
~We consider ML decoding of linear block codes. In this case, e condition that the coefficientss; } are integers and accept real
s!mple upper bound on the WER is given by.a union bound over all PQlues, we may use trmplex methogR3] to solve (9) and (10) opti-
sible codewords [22]. Assuming linearity, this upper bound, in terms gfa|1y within this context. Clearly, however, the resulting solution may

the distance spectrum, can be written as not be the distance spectrum of a code because the best choice for

n {a;} may be real values. Even in the case that the optimizing values
Py < Z ai Pa(i), 8) are integer, this only implies that the MacWilliams—Delsarte identities
i=djy are satisfied by these integers, not that a corresponding code exists.

whereP (i) denotes the pairwise error probability (PEP) between tﬁ\éonethgless, this approach should yield insight into the proper shape
all-zero codeword and a codeword of weightThis error probability ©f the distance spectrum. ) o
depends on the considered transmission channel, the cod,rtte As mentioned earlle_r, the PEP de_pt_ands onthe partlcul_artransmlssmn
considered SNR, and the detection strategy. For the sake of notatidifgnnel- In the following, we specialize and solve the linear program
simplicity, we do not explicitly indicate the dependence of the PE) and (10) in two cases.
on the code rate and the SNR. Using the upper bound in (8) as an
objective functiorl’ and constraining the coefficien{s;;} to satisfy A AWGN Channel
the MacWilliams—Delsarte identities, we can formulate the following Considering transmission over an AWGN channel with antipodal
linear program: signaling, e.g., binary phase shift keying (BPSK), the PEP relative to
n soft-input decoding can be expressed as [22]
Minimize T=>aiPi) 9)

i=1 Pyi)=Q <, [2 % i) =Q (\/ZR%%) (11)

Z‘”KO(” 2 —Io(0) whereQ(z) is the area under a mean zero, unit variance Gaussian

l? density beyond:. Based on our experience, the linear program quickly

Z“'K (i) > —K1(0) becomes numerically intractable, for various reasons, for increasing

e codeword lengthn. In order to limit the number of independent
subject to . (10) variables{a;} we will consider relatively short block lengths and the

n following additional constrainedymmetryof the distance spectrum:

> aiK, (i) > —K.(0) ao = an

ij1 a] = adn—1

Sai=M-1. . (12)

\ =1
- . . . a'L$J_1 :("[ﬁy

The description of the hypothetical weight spectraris completed 2 2
by stating thatio = 1. To completely specify the above linear programThe linear program in (9) and (10) can be straightforwardly modified
the integer and the expression of the PER(i) have to be specified. to account for this additional constraint. A sufficient condition for the
Since the coefficient®: (i) in (9) are known, the objective functidh  distance spectrum to be symmetric is that thel aibdeword belongs
is linear in the variablega; }. to the codebook [21].

1Additional constraints of the form 01 5 could be added The solution of (9) and (10), imposing the symmetry condition and

i =0,2=1,..., . . _ . . . . .

for some integed. This would limit the search, embedded in the optimizatior?ettmgn =48 andR___ 1/2’ is shown _'n Fig. 1. In this case, the min
procedure, among distance spectra with minimum distande avoid losing Imum nonzero coefficient of the solution corresponds to= 12. An
any generality, we considér= 1. interesting result is that the solution remains unchanged irrespective of
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TABLE |
WEIGHT ENUMERATORS CORRESPONDING TO THEDISTANCE SPECTRA OBTAINED AS SOLUTIONS, IN THE INDICATED CASES OF A
UNION BOUND-BASED LINEAR PROGRAM WITH SYMMETRY CONDITION

Code n | k A(z)

Hamming 15 | 11 1+ 25 + 35(z% + 212) + 105(2* + 1) + 168(z® + 2'0)
+280(z® + 2%) + 435(27 + 28)

Self-dual 16 | 8 1+ 216 + 112(2® + 2'9) + 3028
Golay 23 | 12 1+ 2% + 253(27 + z18) + 506(z® + 2'%) + 1288(z!! + z'2?)
Extended Golay | 24 | 12 1+ 224 + 759(2® + 216) 4 2576212

Hamming 31 | 26 1+ 2% +155(2% + 228) + 1085(z* + 227) + 5208(x® + 226)22568(2® + 225)
+82615(2" + 224) + 247845(2% + 223) + 628680(z° + %) + 1383096(z1° + z21)
+2648919(z!! + 220) + 4414865(x'2 + z'°) + 6440560(z'3 + z18)
+8280720(z'* + z7) + 9398115(z!® + x16)

the SNR considered. A general geometric justification of the indepeexponential). Hence, the family of vectdrd (1), ..., P (n))} cor-
dence of the obtained solution from the SNR comes from the followingsponding to different SNRs are contained in a small cof®’ithat
theorem. We assume that the scalar product of two vectors is denaleds not contain the vectarorthogonal taP. In fact, this implies that
by the symbol, and that the all- vector is indicated with the symbol the corresponding vectors obtained by projection onto the hyperplane
1=(1,...,1). ‘P—as explained in Theorem 1—lie near each other and have the same
orientation (in the sense that the scalar product between any two of
them is positive). It is then arguable that the solution of the linear pro-
gram should not change significantly when changing the SNR. Numer-
ically, we find that the solution does not depend on the SNR at all.
The solution of the linear program shown in Fig. 1 is not a feasible
wheref € R", with respect tax € R" subject to a number of con- weight_spectrum for a t_)inary linear block gode, in the sense thgt the
straints including coefficients{a; } are not integers. However, in several cases, the linear
program has a solution where the coefficiefits} are, within tight
acR" xR x--- xRt (14) numerical precision limits, nonnegative integers. Obviously, when the
code rateR? approacheg, the solution approaches a binomial distri-
bution. In the limit(R = 1), it has to be binomial, since all-tuples

whereM € R. The other constraints anneed not be specified. Let usare possible codewords. Moreover, in several special cases the solu-
assume that LP admits the solutigh™ . LetP = {z € R": g-1 =0}  tions are the distance spectra of well-known group codes. In Table |,

be the hyperplane passing through the origin and parallé’to=We report some of the obtained distance spectra which exactly match

Theorem 1: Let a linear program LP be intended to maxiniizke
objective function

T=a f (13)

a-l=a14+ar+-+a,=M (15)

{zeR:2-1= M} with those of known group codédn these cases, we can conclude that
Let LP1 be another linear program, the objective function of whicii€se codes are “optimal” in the sense of minimizing the union bound
is (9) on the WER. In other cases, the solution of the linear program is
a vector with nonnegative integers which does not correspond, to the
Ih=a-f, (16) best of our knowledge, to the distance spectrum of any known block

code. This could predict the existence of still unknown codes. For ex-
with f, # f and where the set of constraints is exactly the same asiple, solving the considered linear programifor 34 andk = 15,
in LP. Letfp(fi’) be the projection of (f,) ontoP. If ff =cf”, the following weight enumerator is obtained:
c€RT, then LP1 admita™* as its solution.

) _ 34 — 40,10 24 o/ 11 23
Proof: See the Appendix. d Alr) =147 +3T4(x 7 +27) +1152(0 +27)

Considering the linear program (9) and (10) for a specific SNR, we +1184(" 4+ 0%) +1848(a " + 2”°)
can interpret it as a particular case of the linear program LP of The- + 7040(2 + 2'°) + 4785(2'® + %), (17)
orem 1, withf; given by P,(i). Note thatP»(1) > P (2) > -+ >
Py(n) > 0,i.e.,P,(i) is monotonically decreasing anChanging the As one can see, the obtained distance spectrum would correspond to
SNR simply changes the rate of decrease, with respegctabP, (i). (34, 15) binary linear code withl; = 10—provided that a search
Above the SNR corresponding to the cutoff rate, the sum of these terigcedure found a code with such a weight spectrum. To the best of our

converges so that the rate of decrease with respécs tery large (i.e., knowledge, the34, 15) group codes known up to now have at most
dy = 9 [25]. Another example is the following distance spectrum,
2The theorem holds in the same way in the case of minimization. The proof
can be straightforwardly modified. 3Incidentally, we observe that these codes are perfect or close to perfect.
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Yo [dB] Fig.3. Comparison between the PEP over an AWGN channel and the PEP over

a Rayleigh flat-fading channel, as a function of the distanéer R = 1/2 and

. . increasing SNRyy,.
Fig. 2. Upper bounds on the WER over an AWGN channel relative to

optimized distance spectra, solutions of a union bound-based linear program
with symmetry condition, forR = 1/2 and increasing codeword length where
The curves cross at the SNFgm) = 2.46 dB corresponding to a cutoff rate
Ry, = R = 1/2 over an AWGN channel with BPSK. -
(1 _ B ) . 22)
1+ Ry,
In order to justify the results obtained in the case of a Rayleigh flat-
fading channel, we make a preliminary comparison between the PEP
in the AWGN channel case and the PEP in the Rayleigh flat-fading
channel case. In Fig. 3, the PEPs in the two cases, as functions of the
istance, are compared for different SNRs. As one can see, in loga-
rithmic scale the PEPs in the two cases are approximately linear, and
the approximation is the better, the larger the distance or the higher the
SNR. According to the given interpretation of Theorem 1, the distance
spectrum solution of the linear program is expected to remain almost
unchanged at any SNR. Moreover, Theorem 1 predicts that the distance
spectrum obtained in the current case should be very similar to that ob-
We finally evaluated the upper bounds on the WER (9) corr¢éained in the AWGN channel case. In fact, the PEP (21) in the Rayleigh
sponding to the obtained optimized distance spectra. In Fig. 2, that-fading channel case is rapidly decreasing as in the AWGN channel
upper bounds relative to the caBe= 1/2 are shown for increasing case. Numerical results show that the solution of the linear program in
codeword length:. They cross at a specific SN{{“‘)), such that the the two channel cases—when setting in the same way all other param-
cutoff rate Ry coincides with the code ratB. In the case of BPSK eters—does not change. The solution is exactly the same whether an
transmission over an AWGN channel, this SNR can be written [22] Z8VGN channel or a perfectly interleaved Rayleigh flat-fading channel
1 1 is considered.
’y’}(fo) =7 In {ﬁ} (20) In this case as well, we evaluated the upper bounds on the WER ob-
tained with the optimized distance spectra. In Fig. 4, the upper bounds
Substituting forkR = 1/2 in (20),+"” = 2.46 dB is obtained, which &ré shown in the case & = 1/2 for increasing codeword length
is the SNR corresponding to the intersection of the various boundsTiR€ same behavior as inthe AWGN channel case is observed in the cur-
Fig. 2. This means that the proposed linear program leads to distafR@! case: the curves corresponding to different codeword lengths cross
spectra which asymptotically (for increasinyjshow decreasing error at & precise point, relative to the channel cutoff rate. In fact, in the case
probability for any SNR such tha® < R,. This is reasonable, since of BPSK(q = 2) transmission over a Rayleigh flat-fading channel, the
the objective function is a union bound, i.e., a sort of averaged p&tNR corresponding to the channel cutoff rate can be expressed [22] as
formance measure converging above the channel cutoff rate SNR [27].
This result does suggest that, above the cutoff rate SNR, the best dis-
tance spectrum is not dependent on the SNR.

DO =

obtained by solving the linear program with= 37 andk = 9. In this
case, the weight enumerator corresponding to the solution is

Alz) =1+ 227+ 72(xl5 + :cgz) + 183(116 + :cm). (18)

The hypothetical code corresponding to (18) las = 15. This
achieves the highest possible allowed minimum distance [16]. In [2
a (37, 9) code with maximum allowed; = 15 is proposed, and its
distance spectrum is

- 19

A(z)=1+4912"" 41252 +107x

23

—1—34.7334 —|—.7737.
(19)

+9622°+572

(co) _ (I(2R - 1) _ (2R - 1)
TG 2BR T (-2 O)R

(23)

Substituting fork = 1/2, we find A,fl(f") = 4.51 dB, which is exactly

] ) ] the SNR where the curves cross.
In this case, the general setting of the linear program does not change

with respect to the AWGN channel case. The only difference lies on the
expression of the PEP. For BPSK signaling over a perfectly interleaved
Rayleigh flat-fading channel and in the case of coherent hard detection
followed by decoding, the PEP can be written [22] as Based on the evidence available from existing turbo-like code de-

iy . signs, the insensitivity of the best distance spectrum to SNR is most

) i s i—14+k .
P(i)=p"Y (1-p)
k=0 k

B. Perfectly Interleaved Rayleigh Flat-Fading Channel

IV. MAXIMUM SPECTRAL ERROR COMPONENT-BASED
LINEAR PROGRAM

likely due to the use of the union bound. To obtain a useful result for

21
1) SNR below the cutoff rate SNR, another measure of performance is
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log,,{a, P,(i)}

UB on P,

-9 m =3B

-1

1 6 11 16 21 26 31 36 41 46
Distance i

12 3 45 6 7 8 9 10

Yo [dB] Fig. 6. Distribution of the spectral error components in the AWGN case,
relative to the distance spectrum solution of the maximum spectral error

Fig. 4. Upper bounds on the WER over a Rayleigh flat-fading channel witbmponent-based linear program with symmetry condition, in the case with

optimized distance spectra, solutions of a union bound-based linear prognam- 48 and2 = 1/2, for v, = 3 dB.

with symmetry condition, foR = 1/2, and increasing codeword length

The curves cross at the SNR°> = 4.51 dB corresponding to a cutoff rate o . ) L

Ry = R = 1/2 over a Rayleigh flat-fading channel with BPSK and cohererfEonsidering the set of constraints given by (26) and combining them

detection. with the constraints (10), the following linear program can be formu-
lated:
7 n
Minimize G=) 0-ai+1-G (27)
6 =1
5 G>0
G 2 dlpz(l)
3;4 i
=
o3 G > anP(n)
2 i
. i Ko(1) > =K
; subject to ;a Ko(i) 2 —Ko(0) (28)
0 - n
0 6 12 18 24 30 36 42 48 Zailﬁrn(i) > —K,(0)
Distance i i=1 B
Fig. 5. Distance spectra, solutions of the maximum spectral error i a =M —1
component-based linear program with symmetry condition, in the case with — t ’
n =48 andR = 1/2, for v, = 1 dB andy, = 8 dB. =1

There is a fundamental difference with respect to the linear program
in (9) and (10). In (27) and (28), the PEP appears in the constraints
nE'?S), but does not in the objective function (27). This means that, in the
linear program (27) and (28), changing the SNR leaves unmodified the
jective function, but modifies the domain wherean vary. In this

required. However, adopting a complex bound will substantially co
plicate the optimization problem (see Section V).
In this section, we consider characterizing performance by the m

imum term in the union bound. This is not a strict bound in any Sensceaise, we expect that the optimized distance spectrum will depend on

but it is reasonable to expect that at lower SNRs this would more 3Fe particular SNR. Moreover. since for larae SNR it holds that
curately track the exact WER. The resulting nonlinear optimization P ' ' 9

problem is -
Z a; Po(i) = {max
; ie{l,....,n
Minimize max{a; P2 (i)} (24) =1
' we expect that solving (27) and (28) and (9) and (10) will yield similar
where the minimization is carried out over all possiblesubject to results at moderate to high SNR.

faiPa(i) (29)

the constraints (10). We refer to a temn (i) as aspectral error In order to make a comparison with the results obtained in Section
componentlt is possible to transform this nonlinear program into atil, we apply the symmetry condition to the linear program (27) and
equivalent linear program by defining as (28). Forn = 48 andR = 1/2, the optimized distance spectra, for
~+w = 1 dB andy, = 8 dB, are shown in Fig. 5. As one can see, for
G = max{a; P (i)} (25) ~, = 8 dB, the solution is very similar to the distribution in Fig. 1.
! However, there is a significant difference at low SNR, where the tails
and noting that of the optimized distribution in the current case become significant.

In Fig. 6, the spectral error components corresponding to the distance
G > a; Pa(i), ied{l,....n}. (26) spectrum obtained fop, = 3 dB (around the cutoff rate) are shown.
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10" ; , : , - and, in fact, the maximum spectral error component-based linear pro-
0 ~\\ — UB(from UB-based LP) ‘ gram suggests that the conclusions might be different in the SNR re-
10717053 = MaxSEC (fom UB-based LP) 1 gion below the channel cutoff rate SNR. Specifically, the results using
NN -+-+ UB (from Max SEC-based LP) . . . e
1072 ~OOIG, - Max SEG (from Max SEC-based LP) |- this performance metric suggest that the best design should sacrifice a
0 ~ \\;';, smaller free distance for a thinner spectrum.

. 10™ e N Extension of the proposed approach to the low-SNR region in
a ’ .\\: a meaningful manner is desirable. Substituting for a tighter upper
S 10°| B \'\' bound, as for example the tangential sphere bound [28], valid for SNRs
C:ﬂ’ ol ‘\\\ : below that corresponding to the channel cutoff rate, could lead to

10° N the identification of distance spectra which guarantee asymptotically
B (c0) W\ low error probability near the channel capacity [29]. However, our
10 p y pacity
10 3 - previous attempts to incorporate the tangential sphere bound have
1072 / \ : not been fruitful. While this is a conceptually simple modification
/ W of the union bound-based approach, in practice, we have found that
10714t L\ the optimization problem becomes extremely difficult. Furthermore,
o 1 2 3 4 6 7 8 9 10 since the union bound results in a linear program, we can ensure that

5
¥y [dB] the stated problem is solved optimally [24], while a tangential sphere

i i bound will result in a nonlinear program where such claims cannot be
Fig. 7. Comparison, fon = 48 andR = 1/2, between performance curves

relative to the union bound-based linear program (UB) and curves relative%ade' . . . . .

the maximum spectral error component-based linear program (max SEC). AN 0pen problem, from a numerical point of view, is the extension of

particular, in each case two curves are shown, corresponding to the union botkii proposed method to larger codeword lengths and to nonsymmetric

and the maximum spectral error component, respectively. weight spectra. This could be accomplished by considering more so-

phisticated tools of linear optimization. Moreover, in the cases where

The spectral error components relative to the indexes betivard16 th_e solution of t_he linear programs (9) and (1(.)) or (27.) and (28) is con-
stituted by noninteger numbers, it would be interesting to look at the

have almost the same (maximum) value. . ) . 2 .
In order to further compare the results obtained with the tV\)?)earest (according to a suitable measure) integer distribution, i.e., a
ssible weight spectrum.

proposed linear programs, the maximum spectral error componé?ﬁ
corresponding to the solution of the union bound-based linear program,

and the union bound, corresponding to the solution of the maximum APPENDIX

spectral error component-based linear program are also evaluated. PROOF OFTHEOREM 1

The results are shown in Fig. 7. Even if the solution of the union gefore proving Theorem 1, we present two lemmas which are useful.
bound-based linear program does not depend on the SNR, the inggx recall the notation used in the previous sections. In particular, we
imax Of the maximum spectral error component does. Whil& = 18 denote bys € R" ann-dimensional vectofas, as, ..., a.). Given

for 7, = 0 dB, the indexi..x reduces tol; =12 for » > 6 dB.  two vectorse andb, we define their scalar product as

In Fig. 7, the curves obtained with the maximum spectral error

component-based linear program are such that for any SNR, the a-b=ab+ -+ anb, €R.

corresponding solution of the linear program is used. In particular,

for v, = 1 dB the spectral error components have almost the sam . . "
maximum value forpall indexes betvvgenand 20 (a1 = 0), while ‘Lemma 1: Let us consider two vectors f € R" and the hyper-

o ) - laneP? = {& € R": -1 = 0} (P passes through the origin).
for v, = 7 dB, the maximum value approximately corresponds P L
the indexes betweeh and 12. This justifies the fact that the uniontl’tij,et us deno7t)e byf Te projection off onto the hyperplan@. If
bound derived from the maximum spectral error component-bas%d: a+cf” c€RT then
linear program converges to the union bound derived from the union a-f>a-f. (30)
bound-based linear program only for very large SNR. -

Proof: By linearity of the scalar product, we can write

’ P P
In this correspondence, we considered a linear programming ap- a-f=latef) f=a ftef -f. (31)

proach to the optimization of the weight spectrum of a hypotheticglom the definition of projection, it followg” - £ > 0. This proves
binary linear block code transmitted over an AWGN channel or a P&R0). - 0
fectly interleaved Rayleigh flat-fading channel. Linear optimization
was carried out, where the objective function was a union bound on tha/Ve interpret Lemma 1 as follows. Let us define the hyperplane
WER, or the maximum spectral error component of this bound, based
on a hypothetical weight spectrum. The constraints were derived from
the MacWilliams—Delsarte identities. With the union bound-based ap- . .
proach, in several cases the obtained distance spectra corresponggﬁ'tc}he hyperplane parallel @ which contains the vectar. For the

those of known group codes, and in other cases, the possible exist _Of n_otatlonal simplicity, we will use th? notat_r@h_: P+ a.
of new group codes was suggested, but not proven. The union bou 8_r15|der|ng the scalar produetf (a hypothetical objective function),

based approach led to the identification of distance spectra which shh “”_‘OVGS" |n_5|d¢_a7?’ in the direction off”, then the hypothetlcal
asymptotically (for increasing codeword length) decreasing error protgpjectlve function increases. Lemma 1 can be generalized as follows.
ability for an SNR above that corresponding to the channel cutoff rate._emma 2: Let us consider, f. f© € R" and the hyperplan®
Ironically, although motivated by the belief that the entire distancgs defined in Lemma 1. Let us consider a vegioe P such that
spectrum should eventually determine the performance of a code, gurf73 > 0.1fa”" = a+g,then

results suggest that above the cutoff rate SNRriemum distances

the primary factor. This is most likely due to the use of the union bound a'-f>a-f. (32)

V. CONCLUDING REMARKS

P={xcRz=y+a VyecPr}
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Proof: Owing to the linearity of the scalar product, in order to
prove (32) it is sufficient to prove that- f > 0. Two cases can be

Lo (1]
distinguished.

[2

(3]

1) fisorthogonaltd. This case istrivial. In fact, any vectgre P
is orthogonal tof, i.e.,g - f = 0.

2) fisnotorthogonal té. Inthis casef-f~ > 0. The hyperplane

f:{m€R712$201 f+(32f7j-,vcls CzER} [4]

is orthogonal tdP. Moreover,

FNP={zeR:z=rf",VreR} =1 5

—

is a hyperline insidé?. It follows that if g - f7 = 0, theng
is orthogonal taF sog- f = 0.1If g - 7 > 0, theng is not

orthogonal taF. Thenf - f7 > O resultsing - £ > 0. O (6]

Lemma 2 can be interpreted as follows. Given the hyperpiaaad
the vectorf” as defined in Lemma 1, one can consider the hyperline
I ¢ P orthogonal tof” . The hyperplan@ is divided into two regions
by!. We defineR; as the region (including the hyperlitjpwhich con-
tainsf” , andR, = P\R.1 the complementary region. Considering the
hyperplané®’ = P+ a, itis possible to identify two region®} C P’
andR5 C P, such thalR| = R1 + a andR5 = R + a. A generic
vectora” as defined in Lemma 2 is such thdt € R .

We now propose a proof of Theorem 1.

(71
(8]

9]

[10]
Proof [Theorem 1]: The solutiona™** of the LP must be such [11]
that
[12]
a"™eP ={zxcR"x-1=M MER]}.
Let us consider the hyperliriec P and the region& ; C P andR> CP [13]
as defined above. We define By=1+a™** C P’ the hyperline parallel

L. . 14
to [ such thate™** € ['. Similarly, we considelR| = R; + a™** [14]
andR), = Rz + a™*. Obviously,I’ C R}. Since we assumed that
LP admits a solution, it follows thaR; N D = a™**, whereD is [15]

the domain determined by all the constraints of LP (including (14) and
(15)). In fact

a) if (I'nD)\{a™**} # {0}, then, consideringavectaf € I'nD,  [16]
it follows thata” - f = a™** - f. According to thundamental
theorem of optimizatiof24], the solution of a linear program, [17]

when it exists, is unique. Since we assumed that LP admits ?18
solution, it must bé’ N D = a™*; I

b) if (R1\I')ND # {0}, then according to Lemma 2 it is possible [19]
to find a vectore” € R\, a”’ # a™**, such tha” - f >
a™**. f. This contradicts the assumption th8f** is the solution

. . . 20
of LP, i.e., that it maximizes the scalar product (13). It follows [20]

that(R{\I') n D = {0}. [21]
From a) and b) it follows thaR| N D = a™**. Let us now consider [22]
the linear program LP1. It is possible to prove that

a™ - f, =max € D{a- f,}. [23]
H " H " [24]
In fact, according to Lemma & - f; > a™* - f, only if a" €
R1\{a™*}. However, we have shown above tH&\\{a™**}) N [25]
D = {0}. It thus follows that the solution of LP1 must b&**. O
[26]
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