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Abstract: In this paper, we consider the problem of decentralised binary detection in sensor 
networks characterised by non-constant observation Signal-to-Noise Ratios (SNRs) at the sensors. 
In general, SNRs at the sensors could have a generic non-constant distribution. In order to analyse 
the performance of these decentralised detection schemes, we introduce the concept of sensor SNR 
profile, and we consider four possible profiles (linear, quadratic, cubic and hyperbolic) as 
representative of a large number of realistic scenarios. Furthermore, we show how the impact of 
communication noise in the links between the sensors and the Access Point (AP) depends on the 
sensor SNR profile (i.e. the spatial distribution of the observation noise). More precisely, different 
sensor SNR profiles are compared under two alternative assumptions: (i) common maximum sensor 
SNR or (ii) common average sensor SNR. Finally, we propose an asymptotic (for a large number of 
sensors) performance analysis, deriving a simple expression for the limiting probability of decision 
error. We validate our theoretical analysis with experimental results. 
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1 Introduction 

Recent years have witnessed an increasing interest for the 
use of distributed detection techniques in sensor networks, 
especially for civilian applications, e.g. environmental 
monitoring. The application of distributed detection 
techniques in the military field has, on the other hand, a 
long history. In all cases, the goal of a sensor network  
with distributed detection is to identify the status of a 
phenomenon of interest through a collaborative action of the 
sensors. In several situations, however, the sensors might 
observe the same phenomenon with varying quality. In 
other words, while some sensors might have direct access to 
the phenomenon (e.g. they are close to a monitored source 
of heat), other sensors might not (e.g. there is an obstruction 
between them and the target source of heat). Therefore, a 
relevant problem, with practical implications, consists in 
evaluating the performance of distributed detection schemes 
with non-constant observation quality at the sensors. 

Distributed detection has been an active research field for a 
long time. In particular, several approaches have been proposed 
to study this problem (Reibman and Nolte, 1981; Hoballah and 
Varshney, 1989). The increasing interest, over the last decade, 
for sensor networks, has spurred a further research activity 
burst on distributed detection techniques in this context (Blum 
et al., 1997; Viswanathan and Varshney, 1997; Chong and 
Kumar, 2003). The impact of communication constraints, e.g. 
limited bandwidth and presence of noise, is considered in Gini 
et al. (1998), where a randomisation paradigm for decentralised 
detection is proposed to overcome the communication bottle-
neck. In Chen et al. (2004), the authors consider the problem  
of decentralised detection in wireless sensor networks where 
communication links are affected by fading. In the latter 
scenario, the optimal distributed detection strategy is first 
derived on the basis of the integration of the communication 
and fusion phases, and then suboptimal (requiring a limited a 
priori knowledge of the channel state) strategies are developed. 
This approach is further extended in  Chen and Willett (2005), 
where the authors optimise the local decision strategy in sensor 
networks with fading, and in Jiang and Chen (2005), where  
the authors propose a decentralised detection strategy based  
on censoring sensors, which transmit only when their local 
likelihood ratios are sufficiently large. 

In Ferrari and Pagliari (2006), a communication-
theoretic-oriented framework for performance analysis  
of sensor networks with noisy communication links is 
proposed. While in Ferrari and Pagliari (2006) a common 
value for the Signal-to-Noise Ratio (SNR) at the sensors  
is considered, in this paper, we assume that the sensors 
observe a common binary phenomenon with different SNRs. 
The sequence of sensor SNRs is referred to as sensor SNR 
profile. Provided that the original sensor SNRs are properly 

rearranged, without loss of generality one can consider only 
monotonically non-increasing profiles. 

Since it is reasonable to assume that linear, quadratic, 
cubic and hyperbolic sensor SNR profiles can be 
representative of a large number of realistic situations, we use 
these profiles to investigate the impact of non-constant sensor 
SNRs on the performance of the considered decentralised 
detection schemes. The comparison between the performance 
of networks with different sensor SNR profiles is carried out 
in scenarios where either the maximum or the average sensor 
SNR is kept constant. Our results show that, for a given 
sensor SNR profile, selection of a proper subset of the sensors 
leads to a minimisation of the probability of decision error at 
the access point (AP). More precisely, for very steep sensor 
SNR profiles (i.e. very irregular sensor SNR distribution 
without rearrangement in a non-increasing order), it turns out 
that the best performance is obtained by selecting only the 
sensors with the highest SNRs (asymptotically, only the 
sensor with highest SNR). We also investigate the network 
performance in a theoretical scenario where sensors do not 
take binary decisions on the observed phenomenon, but 
transmit the conditional Probability Density Functions (PDFs) 
of their observable. Since the focus of this paper is on  
the impact of varying observation quality at the sensors,  
we consider a simple model, given by Binary Symmetric 
Channel (BSC), for a noisy communication link and we 
assume that the noise intensity (given by the cross-over 
probability of BSC) is the same for all links. Our approach 
could be extended considering also varying quality of the 
communication links – for instance, this would correspond to 
different cross-over probabilities according to the considered 
BSC model. Based on the use of the De Moivre–Laplace 
approximation (Papoulis, 1991), we apply our framework to 
analyse the network performance in an asymptotic (for very 
large values of the number of sensors) regime. Finally,  
an experimental set-up is considered to determine a realistic 
sensor SNR profile. The most suited profile for the 
considered experimental scenarios turns out to be linear. 

This paper is structured as follows. In Section 2, we 
provide the reader with important mathematical preliminaries 
on binary decentralised detection in sensor networks.  
In Section 3, the probability of decision error is derived  
in different scenarios: (i) with ideal communication links 
(Subsection 3.1), (ii) with noisy communication links 
(Subsection 3.2) and (iii) with no quantisation at the sensors 
(Subsection 3.3). In Section 4, we characterise the sensor 
SNR profile, whereas in Section 5 the obtained performance 
results are discussed. In Section 6, an asymptotic (for a large 
number of sensors) performance analysis is presented. In 
Section 7, two simple experiments are proposed to determine 
a realistic sensor SNR profile. Finally, conclusions are drawn 
in Section 8. 
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2 Preliminaries 

The focus of this paper is on a classical sensor network 
scenario where all sensors observe a common phenomenon and 
are connected to a single AP (Viswanathan and Varshney, 
1997). In particular, we consider binary decentralised 
detection, in the sense that the observed phenomenon can 
assume two possible values. We denote these two hypotheses 
as H0 and H1, respectively. The observation at the ith sensor, at 
a given epoch,1 can be expressed as  

, 1,2, ,i i ir H s n i N= ⋅ + = …  

where si is the intensity of the phenomenon observed at the 
ith sensor and ni is the observation noise at the same sensor. 
Assuming that the noise samples {ni} are independent and 
have the Gaussian distributions ( ){ }σN 20,

i
, SNR at the 

ith sensor can be defined as  
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In order to make a decision, the ith sensor compares the 
observation ri with a threshold value  τi and computes a 
binary decision ( )−�i i iu U r τ , where U(⋅) is the unit step 
function. Once all sensors have made their local decisions 
{ui}, the AP receives2 an array of N binary values, and  
makes a final decision u0 according to a proper fusion rule 

( )rec rec
0 1 N, ,u u u= Γ … . In a scenario with the same SNR at all 

sensors ( )( )
sensorSNR constant ,i =  the considered fusion rule  

is the following majority-like fusion rule (Reibman and  
Nolte, 1988): 
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While the described approach is based on the assumption 
that each sensor makes a hard binary decision, i.e. binary 
quantisation at the sensors is considered, it can be extended 
to a theoretical scenario where no quantisation is carried out 
at the sensors. In other words, each sensor transmits to AP 
its local likelihood value – this extension is the subject of 
Subsection 3.3. 

Consider now a generic scenario with different SNRs at the 
sensors. In this case, a decision based on the majority-like 
fusion rule (equation 1) might not be the best choice. In fact, if 
a sensor is very noisy (i.e. its observation SNR is very small), 
its decision should be taken into account with a low level of 
reliability in the fusion process at AP. Therefore, it would be 
reasonable to assign each sensor a weight proportional to its 
own SNR – this approach is similar to that proposed in Chen et 
al. (2004), where the weights are assigned according to the link 
qualities. AP could then make a final decision taking into 
account the weights assigned to the sensors. Note that the 
improvement, in terms of probability of decision error, comes 
at the price of non-optimal network energy efficiency, since all 

sensors, even those with low SNR, have to send their decisions 
to the AP and waste the same amount of energy. 

In the following, we consider a system where the AP 
takes into account the N local sensor decisions with the  
same weight, i.e. without considering their SNRs, and adopts 
a majority-like decision rule (as in equation 1). In order to 
take into consideration the sensor SNR profile, the threshold  
for local decision at each sensor is properly optimised, as 
explained in detail in Subsection 3.1.2. 

3 Probability of decision error 

The probability of decision error can be generally written as  

( ) ( )
( )

e 0 0 1 0 0

0 0 1 1

( )

( )

P P u H P u H H H P H

P u H H H P H

≠ = = =

+ = =

�
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where H is the true hypothesis.3 We now derive analytical 
expressions for equation (2), distinguishing between a scenario 
with ideal communication links and a scenario with noisy 
communication links. We also derive an analytical expression 
for equation (2) when no quantisation is carried out at the 
sensors, i.e. when sensors transmit their local likelihood values. 

3.1 Ideal communication links 

3.1.1 Probability of decision error 

Consider the first conditional probability at the right-hand side 
of equation (2) and recall the threshold value k in the majority-
like decision rule (equation 1). There is an error, i.e. 0 1u H=  
given that 0H H= , if i k≥  sensors decide for H1 when H0 
has happened. In this case, there can be ( )N

i  combinations of 
sensors deciding for H1. We denote as ( )i jΩ  the jth possible 

combination ( )( )1, , N
ij = …  in a scenario where i sensors are in 

error.4 Therefore, the conditional probability of interest can be 
expressed as follows:  
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where ( )(Ω ( ))
1 0

i j
lP u H H=  is the probability that at the lth 

sensor, in the ( )i jΩ th combination (out of the ( )N
i  possible 

ones), a wrong decision is made when H0 has happened. 
Similarly, the second conditional probability at the right-

hand side of equation (2) can be expressed as  
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where ( )( ( ))
1 1

i j
lP u H HΩ =  is the probability that at the lth 

sensor, in the ( )i jΩ th combination, a correct decision is 
made when H1 has happened. 

3.1.2 Decision threshold selection at the sensors 

In the literature, it is shown that using the same threshold at 
all sensors is an asymptotically optimal solution if and only if 
SNR at the sensors is constant (Tsitsiklis, 1988). In the 
currently considered scenario (with different SNRs at the 
sensors), it is not reasonable to use the same threshold at all 
sensors. Therefore, one needs to choose another criterion for 
local decisions at the sensors. 

In this paper, we consider a locally optimal decision 
scheme.5 In other words, each sensor makes a binary 
decision which minimises, for the corresponding SNR, its 
probability of (local) error – this corresponds to a Person-
By-Person Optimisation (PBPO) approach to decentralised 
detection (Alhakeem and Varshney, 1995). The optimal 
value for the threshold τi is such that  

( ) ( ) ( ) ( )1 1 0 0i ip H P H p H P H=τ τ  (5) 

where ( ) 2 2
i( ) 2

1 e i is
ip H τ στ − −∝  and ( ) 2 2( 2 )

0 e i i
ip H τ στ −∝ . 

From equation (5), one readily obtains that the optimal local 
threshold at the ith sensor is  
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In the presence of ideal communication links from the 
sensors to AP, a generic term in equations (3) and (4) can be 
written as  
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where 2( / 2)( ) 1 2 e d
x

yx yπ −
−∞

Φ ∫� . In general, the 

computation of the probability of decision error, based on the 
evaluation of equations (3) and (4), depends on (i) the chosen 
value for k, (ii) the sequence of the detected phenomenon 
amplitudes {si} at the sensors, (iii) the sequence of noise 
variances {σi} and (iv) the sequence of thresholds {τi}. Using 
equation (6) in equation (7), one obtains 
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As expected, the probability of decision error does not 
depend on the sequences {si} and {σi} separately but, 
rather, only on the sequence of ratios { }i is σ , i.e. on the 

sequence of sensor SNRs. In other words, the probability of 
decision error depends on the sensor SNR profile 
{ }( )

sensorSNR i . Therefore, evaluating the system performance 

of the sensor network as a function of the sensor SNR 
profile is a meaningful problem. 

3.2 Noisy communication links 

In a realistic wireless communication scenario, 
communication links between the sensors and AP may be 
noisy. In Ferrari and Pagliari (2006), it is shown how to 
extend the previous approach for the evaluation of the 
probability of decision error to a scenario where some of the 
links from the sensors to AP are noisy. As a general model 
for a noisy link, we consider a BSC. 

Let us denote by p the cross-over probability of BSCs (the 
same for all noisy communication links). In this case, the 
decision made at the lth sensor, i.e. ul, might be ‘flipped’, 
with probability p, by the communication link. In particular, 
the component conditional probabilities in equation (2) 
depend on p. For instance, the conditional probability (3) has 
to be modified by replacing the decisions made locally by the 
sensors with the corresponding received decisions: 
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where ( ( )) reci j
lu Ω −  and ( ( )) reci j

mu Ω −  are the received versions of 

the local decisions ( ( ))i j
lu Ω  and ( ( ))i j

mu Ω , respectively. The 
conditional probability (4) has to be modified similarly. A 
generic term in equation (8) can then be expressed as follows:  
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1 0 1 1 Φ Φ .l l

l
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Since we are considering locally optimal selection of the 
decision thresholds at the sensors, there is no difference (in 
terms of the decision strategy at the sensors) between a 
scenario with ideal communication links and a scenario  
with noisy communication links. Therefore, the derivation 
considered in Subsection 3.1.2 for sensor threshold selection 
holds in this case as well. 

We remark that the proposed BSC model for a 
communication link is realistic for a sensor network where 
there are strong Line-Of-Sight (LOS) communication channels 
between the sensors and AP. In this case, each communication 
link can be modelled as an Additive White Gaussian Noise 
(AWGN) channel, and the cross-over probability can be  
given an explicit expression depending on the considered 
coding/modulation format. For instance, in the case of uncoded 
Binary Phase Shift Keying (BPSK), the cross-over probability 
can be written as follows (Proakis, 2001): 

( )
2

2
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12 e d
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where ( ) 1 Φ( )Q x x−�  and bγ  is SNR at AP (at the output 
of a communication link). This illustrative mapping of  
the cross-over probability p into a realistic model for the 
communication links underlines that our conclusions are 
meaningful also for practical (wireless) sensor networks. 
Moreover, it would be possible to extend our framework in 
order to take directly into account link communication 
constraints, such as, for example, the available bandwidth 
(Xiao and Luo, 2005). In order to model a communication 
link with fading, we point out, however, that a BSC model 
might not be the most appropriate one. Other models, such 
as Binary Erasure Channel (BEC) (Cover and Thomas, 
1991), might be more suitable. 

3.3 Absence of quantisation 

The previous analysis holds when each sensor makes a 
binary decision about the observed phenomenon, i.e. there is 
a two-level quantisation of the corresponding observable. 
Such a design choice could be motivated by the limited 
bandwidth of realistic communication links. At the other 
extreme, one can evaluate the network behaviour when no 
quantisation is considered at the sensors. In this case, the 
conditional PDF of the observed signal, rather than a single 
bit, is transmitted to AP. Obviously, this is not practical, but 
gives important indications about the improvement brought 
by the use of quantisation. 

In the absence of quantisation, AP decision is based on 
the received observations vector { }1 2 Nr ,r , ,r= …r . Under 
the Maximum A posteriori Probability (MAP) detection 
criterion, the decision rule at AP is the following:  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0 1 1
0

1 0 0 1 1

if

if

H p H P H p H P H
u

H p H P H p H P H

⎧ >⎪= ⎨
<⎪⎩

r r

r r
 (11) 
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observations are supposed independent. After a few 
manipulations, equation (11) can be rewritten as  
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Since the observable ri has the form discussed in Section 2, 
the decision rule (12) can be expressed as  
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Based on equation (13), the two conditional probabilities in 
equation (2) become, respectively:  
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Since { }in  are independent Gaussian random variables  
with zero mean and variance equal to one, it follows  
that ( )2 2 2

1 1
0,N N

i i i i ii i
n s N sσ σ

= =
∼∑ ∑  (Papoulis, 1991). 

Therefore, in a scenario with no quantisation at the sensors, 
the probability of decision error equation (2) can be finally 
written as follows: 

( )
( ) ( )

( )
( ) ( )

2
0

2
11

e 02

2
1

2
0

2
11

12

2
1

ln
2

2

ln
2

.

2

N
i

i i

N
i

i i

N
i

i i

N
i

i i

P H s
P H

P P H
s

P H s
P H

Q P H
s

σ

σ

σ

σ

=

=

=

=

⎛ ⎞
−⎜ ⎟

⎜ ⎟= Φ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞

+⎜ ⎟
⎜ ⎟+ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑

∑

∑

 (16) 

4 Sensor SNR profiles 

As observed in the previous section, the probability of 
decision error ultimately depends on the sensor SNR profile 
{ }( )

sensorSNR i . A generic example of sensor SNR profile is 

shown in Figure 1(a): the sensor SNRs are generally not 
monotonically ordered. However, since it is always possible 
to reorder the sensor SNRs from highest to lowest, as shown 
in Figure 1(b), without loss of generality, one can restrict 
his/her attention to a scenario where the sensor SNR profile 
is non-increasing. 

Based on the observation in the previous paragraph, in 
order to characterise non-increasing sensor SNR profiles  
we consider four possible cases (SNRs are expressed  
in dB):  

0
2

0
3

0

0

Linear profile : SNR SNR
Quadratic profile: SNR SNR
Cubic profile : SNR SNR

SNR
Hyperbolic profile: SNR ,

1

i

i

i

i

c i
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= − ⋅
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= − ⋅

=
+ ⋅

 (17) 

where i = 0,…,N – 1; N is the number of sensors; SNR0 is the 
highest sensor SNR; and c is a suitable constant which 
uniquely characterises the sensor SNR profile slope. For this 
reason, we denote c as slope coefficient. A large value of c 
corresponds to a scenario where the sensor SNRs decrease 
rapidly (i.e. the corresponding realistic non-ordered sensor 
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SNR profile is highly varying), whereas a small value of c 
corresponds to a scenario where the sensor SNRs are similar 
(i.e. the corresponding realistic non-ordered sensor SNR 
profile is almost constant). If c = 0, all profiles degenerate  
to a constant profile, i.e. 0SNR SNR ,i i= ∀ . In Figure 1(b), 
illustrative graphical examples of the four profiles are shown. 
We remark that both convex (linear, quadratic and cubic) and 
concave (hyperbolic) profiles are being considered. As one 
can see, by suitably setting the values of SNR0 and c, a large 
number of realistic sensor SNR profiles can be characterised. 
This underlines the applicability of our framework. In Section 
7, we will propose a simple experiment to characterise a 
realistic sensor SNR profile. 

Figure 1 Illustrative sensor SNR profile: (a) realistic and (b) 
reordered with non-increasing values of SNRs. In 
particular, in part (b) four possible interpolating 
profiles (linear, quadratic, cubic and hyperbolic)  
are shown (see online version for colours) 

 

In equation (17), we have assumed that the maximum SNR 
and the slope coefficient c are the same for all profiles. 
However, in this case the winning profile is always the 
linear, since the sensor SNR at any position is higher than 
the corresponding one in any other profile. In order to 
obtain a ‘fair’ comparison between the various profiles, one 
can impose that all SNR profiles have the same average 
value, denoted as SNR.  

• By imposing that the slope coefficient c is the same for 
all profiles, after a few manipulations one obtains that 
the maximum SNRs in the various cases need to be set 
as follows: 
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• Specularly, imposing that the maximum SNR is the 
same for all the sensors, the slope coefficient in the  
four considered cases need to be set in the following 
way:6 
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Finally, one should observe that in equation (19) it must 
hold that 0SNR SNR 0− ≥  and 0SNR SNR 1≤ . 

We point out that throughout this paper we make the 
implicit assumption that SNR profiles are perfectly known 
and available at AP. This is expedient for performance 
analysis. However, in a realistic scenario, the mechanisms 
to collect SNR values from the resource-constrained sensors 
may not be very accurate, and relying too much on it  
may not be helpful. Collecting the values accurately is a 
challenging problem, which needs further investigation. For 
example, SNR values could be collected during a training 
phase, when each sensor computes its local SNR and send  
it to AP. In Section 7, we propose a simple experimental 
validation of our theoretical assumptions. 

5 Performance results 

5.1 Ideal communication links 

Let us first consider a sensor network with ideal 
communication links from the sensors to AP. In Figure 2,  
the probability of decision error is shown, as a function of  
the number of nodes N, in scenarios with linear, quadratic, 
cubic and hyperbolic SNR profiles. For comparison, the 
performance in a scenario with constant SNR profile is also 
shown. The profiles have the same value of SNR0, set to 12 
dB, and (for non-constant profiles) the same slope coefficient 
c = 0.25. The a priori probabilities of the phenomenon are 
such that P(H0) = 10P(H1): this is meaningful for situations 
where a phenomenon is rare (e.g. the phenomenon under 
observation is an unusually high humidity level). Both 
analytical results (according to the framework developed in 
the previous sections) and the Monte Carlo simulation results 
are shown as lines and symbols, respectively.7 Obviously, the 
best performance is guaranteed by the constant SNR profile, 
since all sensors have the highest SNR (i.e. SNR0 = 12 dB). 
One can observe that for a small number of sensors (N ≤ 3), 
the performance with the hyperbolic profile degrades 
immediately, whereas the performance with linear, quadratic 
and cubic profiles is similar to that with the constant profile. 
For increasing number of sensors, the probability of decision 
error with cubic and quadratic profiles tends to increase 
rapidly, whereas the probability of decision error with a linear 
profile tends to flatten. This degradation, for increasing 
number of sensors, is due to the fact that, for a fixed value of 
the maximum sensor SNR, the average sensor SNR tends to 
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decrease for all non-constant profiles. This decrease is more 
rapid for cubic and hyperbolic profiles. 

Figure 2 Probability of decision error, as a function of the 
number of the sensors N, in a scenario with linear, 
quadratic, cubic, hyperbolic and constant SNR profiles, 
with SNR0 = 12 dB  in all cases. The value of the 
coefficient c (for non-constant profiles) is c = 0.25 and 
P(H0) = 10P(H1). The lines correspond to analytical 
results, whereas the symbols are associated with 
simulation results (see online version for colours) 

 

On the basis of the results shown in Figure 2, the following 
question is meaningful: for a given value of SNR0, what are 
the conditions under which the use of a limited number of 
sensors (lower, for instance, than N) is the winning strategy? 
In order to answer this question, in Figure 3 the probability 
of decision error is shown, as a function of the coefficient c, 
in a scenario with linear SNR profile and P(H0) = 10P(H1). 
The lines correspond to analytical results, whereas the 
symbols are associated with the Monte Carlo simulation 
results. Two possible values for the highest sensor SNR,  
i.e. SNR0, are considered: 12 and 16 dB, respectively. For 
each value of the sensor SNR, various numbers of sensors 
are considered. Obviously, the curves corresponding to 
scenarios with only N = 1 sensor are constant with respect  
to c. The impacts of the parameters c and SNR0 can be 
characterised as follows. 

• For small values of c, i.e. in a scenario with almost 
constant SNR profile, the best performance is obtained 
using all sensors, regardless of the value of 0SNR .  
For large values of c (i.e. irregular sensor SNR profile 
before monotonic reordering), the best performance is 
obtained using only the sensors with the highest SNR. 
Note that the best asymptotic performance (c → ∞) is 
obtained using only the sensor with highest SNR 
( )0SNR ; however, the probability of decision error 
might be intolerably high. 

• For low values of  SNR0, the impact of c is ‘mild’,  
whereas for high values of SNR0 the impact of c is 
relatively stronger. This behaviour can be interpreted  
as follows. If at least one sensor is highly accurate, i.e. 
SNR0 is high, then in order to optimise the network 

performance the right subset of sensors should be 
carefully chosen. In other words, the higher is the 
sensitivity of at least one sensor in observing the 
phenomenon, the more accurate the selection of a 
suitable subset of sensors has to be carried out. 

As one can observe from Figure 3, for a given value of c, 
the best performance is obtained selecting a specific number 
of sensors – those with highest SNRs, starting from the  
one with SNR0. In order to characterise this behaviour in 
more detail, in Figure 4 the optimal value of the number  
of sensors to be selected is shown, as a function of c, for 
various values of SNR0. The results in Figure 4 show that  
(i) the optimal number of sensors is a decreasing function of 
c, and (ii) the lower is SNR0, the faster the optimal number 
of sensors decreases for increasing values of c. A careful 
reader might wonder, at this point, why the optimal number 
of sensors does not reduce by one in correspondence with 
each vertical (decreasing) step. This behaviour is due to the 
fact that the decision threshold τi at ith sensor is computed 
according to equation (6), which represents a locally 
optimal threshold selection strategy. Therefore, one can 
conclude that such a threshold selection strategy is not 
globally optimal (from the entire distributed decision 
process), as already observed in Willett et al. (1992). The 
individuation of globally optimal decision thresholds at the 
sensors in a scenario with non-constant sensor SNR profile 
is currently under investigation. However, given that the 
local thresholds are selected according to equation (6), the 
results presented in this paper are correct. 

Figure 3 Probability of decision error, as a function of the 
coefficient c, with SNR0 equal to 12 and 16 dB, 
respectively. Various values of the number of  
sensors N are considered, in a scenario with linear 
sensor SNR profile and P(H0) = 10P(H1). The lines 
correspond to analytical results, whereas the symbols 
are associated with simulation results (see online 
version for colours) 

 

In Figure 5, the probability of decision error is shown, as a 
function of the number of sensors N, for the same scenario 
considered in Figure 2, but imposing a common average 
sensor SNR value ( )SNR , rather than a common maximum 
sensor SNR value 0(SNR ) , as shown in Figure 2. Unlike 
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Figure 2, one can observe that in Figure 5 the probability of 
decision error is a decreasing function of N in all considered 
cases. In other words, increasing the number of sensors 
makes the probability of decision error lower and lower.  
In this case, it turns out that the winning SNR profile is  
the cubic. Comparing Figure 2 with Figure 5, one can 
conclude that: 

• for a common value of 0SNR , the higher is the 
irregularity of the sensor SNR profile, the worse is the 
network performance – the best non-increasing profile 
is the linear; 

• for a common value of SNR , the higher is the 
irregularity of the sensor SNR profile, the better is the 
network performance. 

Figure 4 ‘Optimal’ number of sensors (for minimising the 
probability of decision error) as a function of the 
coefficient c, in a scenario with linear sensor SNR 
profile and P(H0) = 10P(H1). Three values for SNR0 
are considered (two of them are the same as in  
Figure 3) (see online version for colours) 

 

In order to evaluate the impact of the slope coefficient c on the 
network performance, we impose both a common maximum 
sensor SNR (i.e. a common value of SNR0) and a common 
average sensor SNR (i.e. a common value of SNR ). The 
corresponding values of the coefficient c for all considered 
profiles are chosen according to equation (19). In Figure 6, the 
probability of decision error is shown as a function of the 
number of sensors N. The average sensor SNR is set as in 
Figure 5 and two possible values for the maximum sensor SNR 
are considered: (i) SNR0 = 14 dB (solid lines) and (ii) SNR0 = 
20 dB (dashed lines). One can observe that in the case with 
SNR0 = 14 dB all the curves overlap, i.e. the optimised values 
of c (according to equation (19)) lead to the same performance 
for all the considered profiles (i.e. linear, quadratic, cubic and 
hyperbolic). In the case with SNR0 = 20 dB, instead, the 
performance differs from profile to profile and the winning 
profile is the cubic, as in a scenario with common values of 
average sensor SNR and slope coefficient (see Figure 5). This 
can be explained as follows. For a given average sensor SNR, a 
cubic profile is such that there is a relatively larger number of 

sensors with high SNR and, consequently, a larger number of 
sensors with low SNR. Therefore, this suggests that the 
network performance tends to be optimised if, for a given 
average sensor SNR, the variance of the sensor SNRs is larger. 

Figure 5 Probability of decision error, as a function of the 
number of sensors N, for the same scenario of Figure 2  
and a common average value SNR 12 dB= . The lines 
correspond to analytical results, whereas the symbols 
are associated with simulation results (see online 
version for colours) 

 

Figure 6 Probability of decision error, as a function of the 
number of sensors N, with SNR 12 dB=  (as in  
Figure 5). Two possible common values for SNR0 are 
considered: (i) SNR0 =14 dB (solid lines) and (ii)  
SNR0 =20 dB (dashed lines) (see online version for 
colours) 

 

From the results shown in Figure 6, one could ask 
himself/herself what is the relative role played by the two 
common parameters in equation (19), i.e. SNR0 and SNR . In 
order to answer this question, in Figure 7 the sensor SNR 
profile is shown in the two scenarios considered in Figure 6: 
(a) SNR = 12 dB and SNR0 = 14 dB and (b) SNR  = 12 dB 
and SNR0 =20 dB.8 From the results in Figure 6 and Figure 7, 
the following comments can be made. 

• The parameter SNR  determines the profile shape, i.e. 
how the sensor SNR decays as a function of the number 
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of nodes. However, the shape remains approximately 
the same for the considered values of SNR0, as one can 
see comparing Figure 7(a) with Figure 7(b). The only 
difference consists of a ‘compression’ of the profiles 
along the vertical axis. 

• The parameter SNR0 or, more precisely, the distance 
between SNR0 and SNR,  determines (as shown in 
Figure 6) the network performance and the winning 
profiles, i.e. the profile which guarantees the lowest 
probability of decision error. 

Figure 7 Sensor SNR profiles for N = 11 and SNR = 12 dB. 
Two values of SNR0 are considered: (a) SNR0 = 14 dB 
and (b) SNR0 = 20 dB. All the possible interpolating 
profiles of interest (linear, quadratic, cubic and 
hyperbolic) are shown (see online version for colours) 

 

In Figure 8, the probability of decision error is shown, as  
a function of the maximum sensor SNR (i.e. SNR0), in a 
scenario with SNR  = 12 dB and N = 11 sensors. All the 
proposed profiles for the sensor SNRs (i.e. linear, quadratic, 
cubic and hyperbolic) are considered. One can observe that 
the cubic profile is the winning profile for a sufficiently 
high maximum sensor SNR (as previously shown in Figure 
6), whereas the other profiles have a worse performance and 
the corresponding probability of decision error seems to 
reach a floor. The fact that the cubic profile is the winning 

can be motivated on the basis of the results in Figure 7. In 
fact, we have observed that for a reduced subset of sensors 
the cubic profile has sensor SNR values (relatively) higher 
than the corresponding ones in the other profiles considered 
in this paper. Moreover, in Figure 2 it is shown that a proper 
choice of a sensor subset can minimise the probability of 
decision error, since the performance is dominated by the 
sensor with the highest SNR. 

Figure 8 Probability of decision error, as a function of the 
maximum sensor SNR, in a scenario with SNR  = 12 
dB and N = 11 sensors. All the proposed sensor SNR 
profiles (linear, quadratic, cubic and hyperbolic) are 
considered (see online version for colours) 

 

5.2 Noisy communication links 

While in the previous subsection, we have considered a 
scenario with ideal communication links, we now extend 
the previous analysis in order to evaluate the impact of the 
sensor SNR profile in the presence of noisy communication 
links. More precisely, in a simple network scenario with  
N = 3 sensors, we compare directly the performance with 
linear, quadratic and cubic sensor SNR profiles. We do not 
consider the hyperbolic profile, since we have shown in 
Subsection 5.1 that the overall performance with this profile 
is worse than that with the other profiles – in fact, in the 
presence of a hyperbolic profile the average sensor SNR has 
to be very high in order to obtain an acceptable performance 
level. We evaluate the probability of decision error in a 
scenario with all noisy communication links (considering 
two values for the cross-over probability p, equal to 10–3 and 
10–1, respectively) and, for comparison, in a scenario with 
all ideal links. In Figure 9, the probability of decision error 
is shown, as a function of the slope coefficient c, in various 
scenarios with SNR0 = 16 dB and P(H0) = 10P(H1). In 
Figure 10, the same sensor network scenario is considered, 
but the average sensor SNR is kept constant to SNR  = 16 
dB – for each value of c, the corresponding value of SNR0  
is determined according to equation (18). On the basis  
of the results shown in Figures 9 and 10, it is possible  
to characterise, performance-wise, the interaction between 
the sensor SNR profile and the communication noise as 
follows. 
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• In a scenario with common value of SNR0, the impact 
of the sensor SNR profile is very similar in scenarios 
with ideal communication links and with noisy 
communication links. For the same value of c, the 
probability of decision error increases if the profile 
changes from linear to cubic. Obviously, for c = 0  
the performance with the three profiles coincides. 
Moreover, asymptotically (for large values of c) the 
probability of decision error is the same regardless of 
the profile. Therefore, it is possible to identify a critical 
value of c beyond which the impact of the sensor SNR 
profile is the highest. The impact of the noise is strong 
for small values of c, whereas it becomes negligible for 
large values of c. In fact, for any given profile, the 
curves associated with ideal links and those associated 
with noisy links tend to coincide for increasing values 
of c. In other words, the less regular is the sensor SNR 
profile (i.e. the larger is c), the milder is the impact of 
the noise in the communication links. On the other 
hand, if the sensor SNR is very similar across the 
sensors, then the noise in the communication links has  
a severe impact of the network performance. This latter 
scenario is analysed in detail in Ferrari and Pagliari 
(2006). 

• In a scenario with a common value of SNR , rather 
than a common maximum sensor SNR, the eP c−  
curves do not tend to coincide for large values of the 
slope coefficient c. In other words, the impact of value 
of c in a scenario with common SNR  is stronger than 
in a scenario with common SNR0. On the other hand, 
for small values of the slope coefficient c, the 
performance in a scenario with common SNR  is 
similar to that in a scenario with common SNR0. From 
the results in Figure 10, one can also make another 
observation. In the presence of ideal communication 
links, for increasing values of c the best performance is 
obtained by quadratic and cubic profiles (this was 
expected from the results in Figure 5). In contrast, in 
the presence of noisy communication links, for 
increasing values of c the best performance is given by 
a linear sensor SNR profile. 

5.3 Absence of quantisation 

In Figure 11, the probability of decision error is shown, as a 
function of N, when no decision is made at the sensors,  
i.e. the sensors transmit to AP their observation likelihoods. 
The a priori probabilities of the phenomenon are such that  
P(H0) = 10P(H1). The sensor SNR profiles are the same of 
those considered in Figure 2, i.e. linear, quadratic, cubic and 
hyperbolic, and the slope coefficient is fixed to c = 0.25. For 
comparison, the results for a constant profile (i.e. c = 0)  
are also shown. As in Figure 2, one can observe that the 
higher is the irregularity of SNR profile, the worse is the 
performance. In this case as well, there exists an optimum 
value of N which minimises the probability of decision 
error, but it is higher than the equivalent one in a scenario 

with local binary decisions (i.e. two-level quantisation at  
the sensors). 

Figure 9 Probability of decision error, as a function of the 
coefficient c, in a scenario with N = 3 sensors and 
P(H0) = 10P(H1). The common value of the maximum 
sensor SNR is SNR0 =16 dB. Three possible scenarios 
are considered: (i) all ideal links (p = 0) and all  
noisy links with (ii) 310−=p  and (iii) 110−=p , 
respectively. For comparison, the performance with  
N = 1 sensor is also shown (horizontal solid line)  
(see online version for colours) 

 

Figure 10 Probability of decision error, as a function of the 
coefficient c, for the same scenario of Figure 9 and a 
common average value of the sensor SNR equal to 
SNR  = 16 dB (see online version for colours) 

 

Comparing Figure 11 with Figure 2, one can observe that, for 
a given value of N, equivalent curves are different: obviously, 
for a given sensor SNR, the probability of decision error in 
the absence of quantisation is lower than that in the presence 
of quantisation. In fact, transmission of PDF from a sensor to 
AP leads to no local loss of information. The obtained 
performance, therefore, can be interpreted as a lower bound 
for the performance of any realistic decentralised detection 
scheme. In practice, this lower bound can be approached 
using a sufficiently large number of quantisation levels at the 
sensors. Finally, one can observe that, also in the case with no 
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quantisation at the sensors, simulation and analytical results 
are in excellent agreement. 

Figure 11 Probability of decision error, as a function of the 
number of sensors N, in the absence of quantisation and 
in the same scenario considered in Figure 2. Various 
sensor SNR profiles are considered: linear, quadratic, 
cubic and hyperbolic (with c = 0.25), and constant  
(i.e. c = 0). Lines correspond to analytical results, 
whereas symbols are associated with simulation results 
(see online version for colours) 

 

6 Asymptotic analysis 

In the previous sections, we have proposed a simple, yet 
effective, framework for performance analysis of a sensor 
network with non-constant SNR profile. In order to 
investigate the asymptotic (for large sensor SNR) network 
performance, we analyse the limiting behaviour of the 
conditional probability ( )0 1 0P u H H=  in equation (8) 

when SNR0 becomes increasingly large – the same approach 
can be considered for the evaluation of ( )0 0 1 .P u H H=  

Taking into account the results in Section 2, one obtains  
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where i, j = 0, 1. Using equations (20) and (21) in equation 
(9) (and in similar terms appearing in the expression for the 
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which is the same relation given in Ferrari and Pagliari 
(2006) for a constant SNR profile. This result implies that, 
asymptotically, the network performance is dominated by 
the sensor with the highest SNR, i.e. SNR0. In other words, 
for a sufficiently high value of SNR0, the sensor network 

behaves as if the profile were constant and equal to SNR0. 
All the analysis developed in Ferrari and Pagliari (2006) for 
a scenario with constant sensor SNRs can then be applied in 
this asymptotic 0(SNR )→ ∞  regime. 

Figure 12 Asymptotic 0(SNR )→ ∞  probability of decision 
error, as a function of the cross-over probability p of 
the noisy communication links. Various values of the 
number of sensors N are considered. Both exact results 
(solid lines) and approximate results with the 
DeMoivre–Laplace approximation (dashed lines)  
are shown (see online version for colours) 

 

At this point, it is interesting to evaluate what happens when 
not only the sensor SNRs are large but also the number of 
sensors N becomes large. Applying the De Moivre–Laplace 
theorem (Papoulis, 1991), we can approximate the binomial 
distributions within the two terms in equation (22) as 
Gaussian distributions with means, respectively, Np and  
N(1 – p), and with the same variance Np(1–p). After a few 
manipulations, one obtains:  

( ) ( )0 1 0 ( )P u H H Q p Nα= �  

( ) ( )0 0 1 ( )P u H H Q p Nβ= �  

where ( ) (0.5 ) (1 )p p p pα − −� , and ( ) ( ).p pβ α−�  
Using the fact that ( ) 1 ( )Q x Q x− = − , the limiting probability 
of decision error equation (22) can be finally approximated as 
follows:  

( )asym
e ( ) , 1.P Q p N Nα� �  (23) 

Note that the final approximate expression (23) no longer 
depends on the a priori probabilities of the phenomenon  
(i.e. P(H0) and P(H1)). In Figure 12, the performance obtained 
using equation (23) is shown and compared with the exact 
probability of decision error. As expected, the probability  
of decision error increases when the noise level (i.e. the  
cross-over probability p) increases, due to the fact that 
transmissions are less reliable. Besides, for low values of p 
the performance improves because the communication noise 
level is not high and, consequently, the probability of decision 
error decreases to zero. The approximate expression (23) 
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becomes more and more accurate when the number of sensors 
N increases. This is due to the fact that the De Moivre–
Laplace theorem is verified with high accuracy when 

1Np � , i.e. when the number of sensors is sufficiently large 
(for a given value of p). Note that we have not specified the 
sensor SNR profile, since all profiles lead to the same 
performance in an asymptotic (SNR0 → ∞) regime. In fact, 
when SNR0 is sufficiently large, all profiles described in 
equation (17) behave as a constant profile (as discussed at the 
beginning of this section). 

7 Experimental validation 

In this section, we show experimental results relative to 
SNRs measured at the sensors, in order to validate the 
theoretical models proposed in this paper. In particular, we 
evaluate the Received Signal Strength Indication (RSSI) in 
order to obtain sensor SNR-like profiles. Equivalently to the 
RSSI, one could also use the Path Loss indicator. In fact, the 
following equation (in logarithmic scale) holds:  

t RSSI + Path LossP =  

where Pt is the transmit power (dimension: [dBm]) and Path 
Loss is the power reduction incurred by propagation 
(dimension: [dB]). Since in our experiments we set Pt = 0 
dBm, one easily obtains:  

RSSI = – Path Loss. 

The main idea of our experiments is as follows. A mobile 
mote sends periodically a message, called beacon, whereas N 
remote nodes, at fixed positions with respect to the mobile 
mote, receive the beacon and store the received power. 
Finally, a vector of N power levels is obtained, and an SNR-
like profile can be derived. The experimental set-up9 is 
schematically shown in Figure 13, from (a) practical and (b) 
logical viewpoints, respectively. We deploy four MicaZ 
nodes at the vertices of a square area of 90 × 90 cm2, and the 
remaining mobile (beacon) mote acts as the event ‘generator’ 
and is denoted as Firing Mote (fm). As shown in Figure 13, 
four nodes are placed at the vertices of the network surface. 
The fm moves inside the network, sending messages to the 
fixed nodes. Note that in the considered experimental set-up, 
the observed phenomenon corresponds to the message sent by 
the mobile node. In order to replicate the theoretical analysis, 
after receiving the message from the fm, the four fixed nodes 
should take a decision (e.g. based on the received power), and 
send their decisions to an AP. Since our goal, in this section, 
is to characterise the sensor SNR profile, we do not consider 
the communication phase from the sensors to AP. 

Two experiments have been run: 

a the fm, which sends the beacon, is very close to one of 
the remote (fixed) nodes;  

b the fm is in the middle between the network centre and 
one of the four vertices of the square network surface, 
i.e. a fixed node. 

In Figure 14, the Path Loss is shown, as a function of the 
remote node IDs (indicated in Figure 13(a)), in two different 
scenarios: (a) fm is very close to one of the fixed nodes and (b) 
fm is in the middle between the network centre and one of the 
fixed nodes. As one can see from Figure 14(a), the lowest Path 
Loss is obtained, as expected, in correspondence to the nearest 
remote node. In this case, the profile described is a heavyside-
like function, since only the fixed node closest to fm senses a 
high RSSI (or, equivalently, a low Path Loss), while the others 
do the opposite. In Figure 14(b), fm is in a more central region 
and, therefore, the measured power profile is, as expected, 
smoother than that observed in Figure 14(a). 

Figure 13 Experimental set-up: (a) practical scheme with five 
motes (one ‘firing/beacon node’ and four fixed nodes), 
deployed over a square network surface with area equal 
to 90 × 90 cm2 and (b) its corresponding logical 
scheme. The considered platforms are constituted by 
MicaZ motes using a communication protocol 
compliant with the IEEE 802.15.4 standard (see online 
version for colours) 

 

Rearranging the values in Figure 14(b) in an increasing order, 
one can obtain a decreasing profile, as described in the previous 
sections, of Path Loss or RSSI measures. In Figure 15, the Path 
Loss profile is shown, as a function of the mote ID, for the four 
different cases (relative to the position of the mobile mote) 
considered in Figure 14(b). As one can observe, on the average, 
the profile is approximately linear. 



 Decentralised binary detection with non-constant SNR profile 35 

Figure 14 Path Loss profiles in the presence of four MicaZ motes 
sensing fm. Fm is placed either (a) very close to one of 
the vertices or (b) between the centre of the area and 
one of the vertices (see online version for colours) 

 
Figure 15 Reordered Path Loss profiles in the scenarios 

considered in Figure 14(b) (see online version for 
colours) 

 

8 Concluding remarks 

In this paper, we have analysed the performance of 
decentralised detection schemes in sensor networks where the  
observation  SNRs  differ from sensor to sensor, and AP is not 

aware of the particular observation quality at each sensor. The 
sensors, however, optimise their decision thresholds according 
to their corresponding SNRs. In order to model this scenario, 
we have considered four possible sensor SNR profiles (linear, 
quadratic, cubic and hyperbolic) and we have characterised 
them by using a slope coefficient and the maximum sensor 
SNR. For increasing steepness of the (ordered) sensor SNR 
profile,i.e. for an increasingly irregular realistic sensor SNR 
profile, the best performance is obtained by selecting a lower 
and lower number of sensors (those with highest SNRs). In a 
scenario with common average sensor SNR, the profile which 
guarantees the best performance is the cubic. This is due to the 
fact that it corresponds to the profile with the largest (in relative 
terms) number of sensors with SNR higher than the average 
value. Therefore, a general conclusion is that, for a given 
average sensor SNR, the best performance is obtained when the 
variance of the sensor SNR is large, i.e. the sensor SNR profile 
is irregular. The presence of noisy communication links has 
also been considered. In this case, we have shown that the more 
irregular is the sensor SNR profile, the milder is the impact of 
the noise level in the communication links. In an asymptotic 
regime 0(SNR )→ ∞ , when the sensor SNRs are sufficiently 
high and the number of sensors is sufficiently large, the 
performance no longer depends on the phenomenon a priori 
probabilities and the sensor SNR profile. Finally, we have 
considered a simple experimental approach to determine 
realistic sensor SNR profiles. 
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Notes 

1 For ease of notational conciseness, we do not explicitly 
indicate the epoch of the observations. However, we are 
assuming that all sensors simultaneously observe the common 
phenomenon. 

2 In the presence of ideal communication links, rec
i iu u= . 

However, as it will be shown in the following, in the presence 
of noisy communication links it might happen that rec

i iu u≠ . 

3 The events { }0H H=  and { }1H H=  will simply be 
denoted as H0 and H1, respectively. 

4 Note that ( )i jΩ  depends also on N. However, for the sake of 
notational simplicity, this dependence is not explicitly 
indicated. The context should eliminate any ambiguity. 

5 We are implicitly assuming that each sensor estimates its own 
observation SNR. 

6 The value of ch in the last line of equation (19) cannot be 
given a closed-form expression, but can be numerically 
evaluated. 

7 We point out that the analytical results are exact. This justifies 
the excellent agreement between analysis and simulations. 

8 Note that the scale of the vertical axis of Figure 7(a) is 
different from that of Figure 7(b). 

9 Since our experiments are developed in a laboratory 
environment, there is furniture all around the square area 
where the sensors are deployed. However, we can consider 
the reflected signals negligible. 


