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Abstract: Home monitoring supports the continuous improvement of the therapy by sharing data
with healthcare professionals. It is required when life-threatening events can still occur after hospital
discharge such as neonatal apnea. However, multiple sources of external noise could affect data
quality and/or increase the misdetection rate. In this study, we developed a mechatronic platform
for sensor characterizations and a framework to manage data in the context of neonatal apnea. The
platform can simulate the movement of the abdomen in different plausible newborn positions by
merging data acquired simultaneously from three-axis accelerometers and infrared sensors. We
simulated nine apnea conditions combining three different linear displacements and body postures in
the presence of self-generated external noise, showing how it is possible to reduce errors near to zero
in phenomena detection. Finally, the development of a smart 8Ws-based software and a customizable
mobile application were proposed to facilitate data management and interpretation, classifying the
alerts to guarantee the correct information sharing without specialized skills.

Keywords: bionic; neonatal apnea; three-axis accelerometer; zero-failure; 8Ws

1. Introduction

Recent studies showed that the healthcare system should adopt new innovative technolo-
gies [1] for patients’ remote assistance and monitoring [2], acquiring data in real time to design a
predictive algorithm for future implementation of artificial intelligence [3–5]. The development
of these tools [6,7] has to consider the zero-failure approach [8] in managing any informa-
tion and related data mining to assure pathological phenomena detection [9] and reduction
of errors over time. Thus, it is mandatory to schedule data-implementing semantic ontolo-
gies [10] identifying a continuous improvement and teaching process applicable to human
and machine, in line with the Global Standard Method for Society 5.0 [8].

This model is difficult to adopt in remote conditions where both technologies and
controlled environment (i.e., humidity, temperature, vibrations, etc.) are not certified for
its specific use [11–13]. In this context, the autonomous region of interest identification of
the specific phenomena require filtered data by clinicians. Therefore, there is the need to
develop devices, with dedicated human–machine interface, able to avoid errors in detection
and analysis without expensive sensors [14]. These sensors have to be downgraded in terms
of risk level via feedback systems and smart algorithms capable of managing uncertain
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data [15]. Moreover, these smart devices have to improve skills [16] via educational tools
such as video tutorials.

To implement this type of self-assisted approach, we have to identify a real pathological
case designing the related human-cyber-physical space [8] and the optimal management
of processed data, simulating physical conditions via mechatronic devices. Finally, the
obtained data have to be scheduled considering the 8Ws [8] to improve the quality and
performance of the smart software.

In this study, we focused on neonatal apnea, which is one of the most common car-
diorespiratory events detected in newborns. Neonatal apnea is defined as a respiratory
pause that lasts for at least 20 s or more than 10 s when coupled with low hemoglobin
saturation and bradycardia [17,18]. Neonatal apnea can be caused by different underlying
conditions (e.g., cardiac disease, infections, intracranial injury, metabolic disorders, and up-
per airway anomalies), but it often reflects the immaturity of the respiratory neural control.
On the basis of the presence of brainstem-driven breathing efforts and airway obstructions,
apneic episodes are traditionally classified as follows: (i) central apneas, (ii) obstructive
apneas, and (iii) mixed apneas [13]. Although neonatal apnea may resolve within 40 weeks
postmenstrual age, persistent episodes can still occur, prolonging hospital stay beyond
this time, with monitoring at home potentially required [19]. Of note, delayed resolution
of recurrent apnea might lead to worse neurodevelopmental outcomes [20], although
life-threatening apneic events become rare after 43 weeks postconceptional age [21].

In the neonatal intensive care unit (NICU), vital signs of newborns at risk are contin-
uously monitored through multi-sensor systems based on electroencephalography and
polysomnography, and many different devices are commercially available for home moni-
toring [22]. Although several techniques (e.g., transthoracic impedance pneumography,
pulse oximetry, respiratory inductance plethysmography, nasal thermistry, abdominal
pressure tracing) can be implemented to detect neonatal apnea events, the majority sense
artifacts and are relatively unable to detect obstructive apneas [13,23], increasing the risk
of delay between phenomena detection and alert activation. Therefore, the availability
of low-cost and easy-to-use monitoring devices together with parent-friendly education
resources may be pivotal after hospital discharge.

In our work, we developed a mechatronic platform to simulate the movement (linear
displacement and acceleration) of the abdomen during breathing to test the performance
of sensors used to evaluate the presence or the absence of the movement of the abdomen
occurring in non-obstructive apnea events. Therefore, we studied the spectrum of three-axis
accelerometers and infrared sensors (IR) before and after introducing external noise with a
servo-controlled hammer. Moreover, we reproduced the effect of soft materials (clothing)
using additive manufacturing technology.

We also applied the zero-failure approach [8] in the data acquisition to prevent any
possible misdetection related to sensor reliability, which defines the answers to the 8Ws.

Finally, we developed an Android application to educate the parents through informa-
tive tutorials and medical questionnaires without dedicated training, reducing at the same
time the human–machine interaction gap [24].

In conclusion, this work aimed to propose a framework to test and measure sensors
to capture non-obstructive apnea events. This approach could be applied to different
clinical conditions and implemented in dedicated simulation-laboratories within innovative
education program [25,26] of Hospital 4.0 [27].

2. Materials and Methods
2.1. Mechatronic Platform

We realized a mechatronic platform composed of 3 sections: the first (Figure 1a(i)) is
dedicated to the vibration noise detection, where a first accelerometer is placed directly in
contact with the 3D printed ceiling. The second section (Figure 1a(ii)) generates disturbing
vibrations using a hammer of known mass moved by a servomotor (Figure 1b(i)) with a
continuous rotation DS04-NFC (torque: 5.5 kg/cm), enabling change of the speed, displace-
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ment, and energy transmitted to the mechatronic platform. The last section can rotate up
to 180◦ (Figure 1a(iii)), reproducing the real positions of a newborn lying down on the
bed and simulating the movement of the abdomen during breathing (Figure 1b(ii); linear
displacement of 0.5–1.5; resolution 0.11µm/step; speed 0–120 bpm) via a hybrid stepper
motor (nema 17, 17HS19-2004S1, torque: 5.9 kg/cm), controlled by the chopper stepper
driver A4988 (Allegro MicroSystems, Worcester, MA, USA).
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Figure 1. Mechatronic device for the physical simulation of the abdomen displacement: (a) schemat-
ics of the mechatronic platform, (i) vibration noise detector module, (ii) hammer module with
adjustable energy, (iii) human motion/position simulator module; (b) 3D printed mechatronic plat-
form, (i) servomotor, (ii) stepper motor, (iii) soft printed composite disc for the simulation of the
physical response of clothes, (iv) infrared sensor support pole.

In this section, we also added soft 3D printed composite [28] discs (Figure 1b(iii)) to
simulate the physical response of clothing or mattress. Soft components were developed
via Freeformer 200-3X (Arburg, Loßburg, Germany) on the basis of db-PED technology
by using Cawiton PR13630 medical-grade material (Rubberfabriek Wittenburg BV, Zee-
wolde, the Netherlands) [29] at extrusion/environmental temperatures of 210 ◦C and 50 ◦C,
respectively, and printing speeds from 20 mm/s to 65 mm/s.

Finally, a support pole (Figure 1b(iv)) was designed for IR that does not require light
and contact during detection.

All the mechanical parts were designed with SolidWorks® v. 2015 (Solidsolution,
London, UK). The mechanical components (red and transparent colors, Figure 1b) were
fabricated using a custom-made 3D printer based on fused deposition modeling (FDM)
technology (Bio-4esti) [30]. A dedicated extruder for bobbin filament with a 1.75 mm
diameter was used to create the hard parts. The 3D model was printed using polylactic
acid (PLA, 175N1, Velleman Inc., Legen Heirweg, Gavere, Belgium) extruded at 205 ◦C and
on a printing platform at 60 ◦C. The printing speeds were set between 25 and 80 mm/s
for external perimeters and filling, respectively. White 3D printed parts were fabricated
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via stereolithography (SLA) 3D printing technology (Formlabs2, Somerville, MA, USA)
using rigid resin material (RIGID, Somerville, MA, USA). After the printing phase, resin
objects were washed with isopropyl alcohol (GIP103, Girelli Alcool, Milano, IT) for 5 min
and cured under UV light (HybriLinker, UVP, Upland, CA, USA) for 15 min.

2.2. Sensors, Microcontroller, and Android App

The accelerometers were chosen considering three-axis low and ultralow power Ana-
log Devices’ products (Table 1), selecting the accelerometer printed circuit board (PCB)
based on the ADXL335 (SparkFun, Electronics, Colorado, USA) integrated circuit because
of its measurement range (±3 g) and sensitivity (682 LSB/g).

Table 1. Main features of the accelerometers by Analog Devices considered for the application
proposed here.

Model Type Measurement
Range

Output
Resolution Sensitivity Scale Factor

ADXL 335 Analog ±3 g - 300 mV/g 1 -
ADXL 345 Digital ±2 g 10 bit 256 LSB/g 3.9 mg/LSB
ADXL 350 Digital ±1 g 10 bit 512 LSB/g 1.95 mg/LSB
ADXL 313 Digital ±0.5 g 10 bit 1024 LSB/g 0.952 mg/LSB

1 With a voltage supply vs. = 3 V.

Figure 2 shows the signal obtained by placing the devices on the abdomen of a volun-
teer (among the authors of the work) to acquire the signals for the preliminary evaluation of
the abdomen’s movement and its possible attenuations/noises/interferences evaluations.
Moreover, the multisensory platform was equipped with the Sharp GP2Y0A41SK0F Analog
Distance IR Sensor (Sharp Electronics, Osaka, Japan). Temperature and relative humidity
can be measured using one DHT11 (20–90% RH, 0–50 ◦C) sensor. To manage the motion
devices, we adopted an Arduino Mega 2560 Board (Arduino, Monza, IT) connected in
parallel communication with an Arduino DUE Board that reads and saves the sensor values
on the 16GB SD card (Kingston Technology, Fountain Valley, CA, USA). Finally, for the
local communication with the human interface, we installed an HC-06 Bluetooth antenna
(Guangzhou HC information technology Co., Guangzhou, China).
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with a dedicated signal detector. In the example portrayed, the gravity acceleration was subtracted
from the signal amplitude.
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All the microcontrollers were programmed with Arduino SDK 1.8.5, and the GUI
was developed using the MIT App Inventor 2 platform and installed on an Android
tablet (Galaxy Tab A SM-T585, Samsung, Seoul, South Korea) equipped with 7.0 Android
software version.

2.3. Statistical Analysis

The data were analyzed via Excel (Office365) and reported as mean ± SD. In detail,
the χ2 test was performed for testing the relationship between categorical variables (i.e.,
“IR adoption” and “detection”). Moreover, we calculated the odds of detecting an error
(unusable data/detected breathing) for each tested condition (i.e., for each different angle
and displacement with or without IR sensor). Finally, the average value of the odds was
calculated for each displacement (500 µm, 1000 µm, and 1500 µm) and for each angle (45◦,
90◦, and 135◦). Statistical significance was set at p ≤ 0.05.

3. Results

We obtained a rapid prototyping tool and easy-to-scale platform, selecting two mi-
crocontroller boards for the management and analysis of events during monitoring (HCP
Space). The PCBs operate in parallel, one is equipped with an ATMega 2560 while the
second with an ATSAM3X8E.

Adopting the cheaper ADXL 335 (Table 1) and exploiting the 12 bits ADC of an
ATSAM3X8E-based board, we were able to obtain a sensitivity of 682 LSB/g with a scale
factor of around 1.46 mg/LSB. This sensor, coupled with the two microcontrollers, repre-
sents a good trade-off between costs and performances, assuring the design lower limit
in terms of resolution and sampling. In this way, the software could be easily scaled on
a multicore and high-resolution platform (i.e., ESP 32), but a custom PCB will be needed
to manage the high power required for engine motion control. Moreover, the proposed
platform is already designed to be used with bionic device, such as a 3D printed newborn,
by inserting the system inside it. The signal of the movement of the abdomen during sleep
simulation was easily identified (Figures 2 and 3a,b) through the ADXL 335, assuring the
absence of external vibrations.

Using the aforementioned platform, we were able to simultaneously acquire three
analog inputs (Figure 3a), maintaining a sampling frequency over 26 kHz. In this way, it
was possible to evaluate the noise on the z-axes from each accelerometer. Therefore, we
reproduced external disturbances to support the selection of the shock absorber able to
damp it. In detail, Figure 3b represents the movement of the abdomen during breathing
in the presence of noise generated through the servo-assisted hammer, highlighted by the
superimposition of the two signals. In this test, the three accelerometers were placed in
parallel to the support floor simulating a newborn in the supine position and considering
his z-axis.

To analyze any possible position on the bed, we obtained a final sampling frequency
over 4kHz, acquiring simultaneously six analogue signals from our smart controller: all
three coordinates from the abdomen accelerometer, only the z-coordinate from the ceil-
ing/bed accelerometers, and the related IR sensor located perpendicularly to the abdomen
accelerometer.

We also simulated the pause of the abdomen’s movement, occurring in neonatal apnea,
by stopping the stepper motor for more than 10 s to classify and schedule the uncertain
data when the noise was superimposed to the accelerometer signal. In detail, we tested
nine different conditions: three human motion-position and three linear displacement
values (Table 2). For each test, we simulated 100 breathing repetitions, assumed as linear
movements, and three random “apnea events” defined as absence of motion for 20 s.
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Figure 3. Representative signals acquired via multi-sensor accelerometers. (a) Signals plotted by
Arduino SDK serial plotter. (b) Simulation of external noise generated via the hammer module by
changing the displacement ((i) and (ii), respectively). Data were stored on a SD card and plotted with
Microsoft Excel software. For both graphs, the x-axis is in number of sample and the y-axis represents
the amplitude in bit. Green line: ceiling noise; red line: bed noise; blue line: signal detected by the
accelerometer fixed on the module emulating the abdomen movement.

We classified as unusable data the episodes where the signal of the noise accelerometer
was higher in amplitude than the one acquired from the simulation platform.

The results suggested that apneas characterized by different abdominal displacement
(i.e., 500 µm, 1000 µm, and 1500 µm) could be identified in any position (i.e., human position
module of 45◦, 90◦, and 135◦ angles), reaching errors of 4.24 ± 3.11% and 11.02 ± 5.41%
with and without the use of IR sensor, respectively. Moreover, a significant relationship
between “detection” and “IR sensor adoption” was found (detected without-IR sensor: 812
vs. detected with-IR sensor: 864; unusable data without-IR sensor: 88 vs. unusable data
with-IR sensor: 36; χ2

(1, n = 1800) = 23.42; p < 0.001). Specifically, on the basis of the odds



Sensors 2022, 22, 249 7 of 12

ratio, we found that the odds of detecting an unusable data was 2.60 times higher if the
system was not equipped with an IR sensor.

Table 2. Mechatronic breathing simulations: accelerometer detection versus multisensory detection.

Angle Displacement
(µm)

Detected
Breathing

(no IR)

Unusable
Data (no IR)

Detected
Breathing

Unusable
Data

45◦ 500 86 14 93 7
1000 91 9 97 3
1500 93 7 99 1

90◦ 500 84 16 92 8
1000 90 10 95 5
1500 95 5 98 2

135◦ 500 87 13 94 6
1000 91 9 97 3
1500 95 5 99 1

We observed an inverse correlation between displacement (500 µm, 1000 µm, and
1500 µm) and uncertain data (16.76 ± 2.09%, 10.30 ± 0.70%, 6.02 ± 1.31%) that could be
reduced (7.54 ± 1.16%, 3.82 ± 1.25%, 1.35 ± 0.60%) using the accelerometers simultaneously
with the IR sensor. As expected, it was easier to identify the abdomen displacement in the
inclined positions (45◦ and 135◦ angles) because of a multi-axis detection of the phenomena.

To avoid the EEPROM saturation, we added the card reader for the real-time data
storing, enabling the main part of the software to only analyze and detect the phenomena.

Moreover, we proposed the following scheme to manage data and apnea episodes
(Figure 4).
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At the beginning of the monitoring, a timer (T) is started to count the duration of
delays between breaths. We simultaneously acquire the signals from accelerometers and IR
(perpendicular to the abdomen accelerometer) to reduce uncertain data, as described in
the simulation experiment. When the breathing activity cannot be identified due to inter-
ferences, the timer is never set to zero. If the acceleration measured by the accelerometer
applied on the abdomen (gbody) is greater than the one measured on the bed (gbed), it means
that the signal from the breathing sensor is clearly detected. Then, it can be compared with
a threshold level (gth), indicating the acceleration value related to displacement, in order to
verify if there is an apnea or not. In the case of T being less than 10 s (which is the limit
risk condition), the timer is reset and the monitoring loop starts again. If T is between
10 and 20 s, an apnea alert is generated, and the platform activates the parent survey to
acquire both saturation (SAT) and beats per minute (BPM) to evaluate the real status of the
newborn. When both SAT and BPM are below 90, we are in a critical condition and the
rescue process will be activated. On the contrary, the movement analyses restart.

When it is not possible to obtain a clear gbody signal for more than 20 s continuously,
the timer is updated, activating the rescue process sending an alert to an Android app on
the dedicated tablet. Then, the software enables the hardware port and its coupled relay to
control any installed automatic actuator (bed motion). The mobile app counts the number
of alerts (extracted from data uncertain or not), stores all the available data (temperature,
humidity, acceleration, and displacement), and runs the user interface for the application
to help a non-expert rescuer.

The smart controller (Figure 5a) was equipped with a human–machine interface
connected via a Bluetooth module assuring a proximity control. In this way, we can prevent
any possible intrusion and software corruption. Moreover, in case of a lost connection, the
mobile app tries to reconnect itself, and if it fails, a sound alert is activated.

Following the above-mentioned data flow, the care provider receives the alert on the
patient’s condition which generates a direct link to a video tutorial for the first intervention
and a dedicated survey (Figure 5b). The simple form can be filled to record the events and
other useful data such as the beats per minute, the blood saturation level, body positioning,
and the patient’s skin color, and the data will be transmitted to a remote expert team. At
the end of this process, the monitoring can be restarted by pressing the reset button.

The answers are classified via a risk color code (red: immediate intervention; yel-
low: planned check-up; green: prospective study), sending an automatic short message
(Figure 5c,d) or e-mail to the healthcare system, improving the monitoring reliability over
time and reducing the intervention delay.

Then, the data are stored directly on the parent’s and doctor’s tablets without the
necessity of a server reducing the related costs.

Finally, to reduce the variability of a possible predictive algorithm, the doctor can
filter the information on the government’s cloud after a professional visit, overcoming the
subjectivity of the survey’s answers.

In detail, the smart platform has to handle the 8Ws [8] collecting the smart data mined
as described in Table 3. In this way, any smart software should be able to suggest the best
strategy considering the acquired information (i.e., available tools, parameters), assuring
the required continuous improvement.
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Table 3. Healthcare 4.0—8Ws and related reply for neonatal apnea smart scheduling.

What Has
Happened?

Where Is the
Problem?

Why Has It
Happened?

Who Can
Restore It? What to Do?

Which
Devices and
Tools to Use?

When to Do
It?

How to Do It
Well?

Colors
Smart

platform
geolocation

Phenomena
discrimina-

tion

Available
devices and

resources

Operative
and

validated
protocols

According to
acquired data
and available

devices

Timing and
related

impact on
delay and

quality
results

Big data
analysis and
continuous

improve-
ment

4. Conclusions

In clinical trials, ethical issues hamper the characterization of the sensors directly on
patients. Therefore, we developed a mechatronic platform to simulate the absence or pause
of the abdomen’s movement (breathing), which occurs in the non-obstructive apnea, in
order to assure a reliable and standardized method to evaluate the effectiveness of multisen-
sor systems. We designed a 3D printed structure with two degrees of freedom to reproduce
the movement of the abdomen and body positioning. Moreover, we implemented soft
printed elements to reproduce the physical effect of mattress and clothing.

The designed platform included three-axial accelerometers MEMS and three IR sensors.
One accelerometer detects the noise generated from the platform, the second enables the
evaluation of different types of shock absorbers (to install at the base of the bed), and the
last sensor analyzes the movement of the abdomen during breathing. Finally, the IR sensor,
properly placed perpendicularly to the abdomen, supports the detection of the phenomena
reducing the uncertain data in the presence of noise introduced by changing the parameters
of the hammer module.

Moreover, the electronic PCB is equipped with humidity/temperature sensors, as well
as relays for the activation of external devices, such as a bed shaker or the climate control
of the room. Finally, to avoid any hacker attack, we adopted a Bluetooth antenna for the
local communication with the tablet.

The installed mobile application displays the survey, educates the untrained user with
a video tutorial, and reduces the delay for the first aid via automatic message editing. The
clinician can filter and store the acquired data and, when required, improve the information
quality, customizing the survey.

The proposed framework and bionic-based simulator could be scaled to a medical
simulation laboratory using 3D printed morphological models extracted from patient CT-
scan or MRI (digital bio-library) to simulate pathology and the related medical procedure.
Finally, considering human habits during training, data are scheduled via 8Ws, and the
mobile app could generate a quiz for the evaluation of the improved skills.

Author Contributions: Conceptualization, writing—original draft preparation, R.F., R.S., N.D.,
F.P.L.M., M.G.M., F.P. and C.C.; software, data curation, validation, formal analysis, and investiga-
tion, R.F.; methodology, resources, visualization, supervision, project administration, R.F. and C.C.;
writing—review and editing, R.F., R.S., N.D., F.P.L.M., G.R., M.M., L.S., G.F., C.M., M.G.M., F.P. and
C.C.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be provided upon request.

Acknowledgments: We thank Margherita Burattini and Giulio Colavolpe for the manuscript proof-
reading, and Pietro Schianchi, Massimiliano Bocchi, Sonya Lanfranchi, Michele Cannata, and Maur-
izio Conca for the technical and logistic support.



Sensors 2022, 22, 249 11 of 12

Conflicts of Interest: Ruben Foresti is a founder and shareholder of UIMEI srls, a company that
prototypes and realizes medical devices. Giacomo Rozzi is the founder of JEM Tech srl, a company
that realizes medical devices for the intra-surgical evaluation of the heart movement. Francesco Paolo
Lo Muzio is a shareholder of JEM Tech srl.

References
1. Umair, M.; Aamir Cheema, M.; Cheema, O.; Li, H.; Lu, H. Impact of COVID-19 on IoT Adoption in Healthcare, Smart Homes,

Smart Buildings, Smart Cities, Transportation and Industrial IoT. Sensors 2021, 21, 3838. [CrossRef]
2. Malasinghe, L.P.; Ramzan, N.; Dahal, K. Remote patient monitoring: A comprehensive study. J. Ambient Intell. Humaniz. Comput.

2019, 10, 57–76. [CrossRef]
3. Puaschunder, J.M. The Potential for Artificial Intelligence in Healthcare. SSRN Electron. J. 2020, 6, 94–98. [CrossRef]
4. Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [CrossRef] [PubMed]
5. Lo Muzio, F.P.; Rozzi, G.; Rossi, S.; Luciani, G.B.; Foresti, R.; Cabassi, A.; Fassina, L.; Miragoli, M. Artificial intelligence supports

decision making during open-chest surgery of rare congenital heart defects. J. Clin. Med. 2021, 10, 5330. [CrossRef]
6. Belletti, B.; Berardengo, M.; Collini, L.; Foresti, R.; Garziera, R. Design of an instrumentation for the automated damage detection

in ceilings. NDT E Int. 2018, 94, 31–37. [CrossRef]
7. Tonelli, A.; Candiani, A.; Sozzi, M.; Zucchelli, A.; Foresti, R.; Dall’Asta, C.; Selleri, S.; Cucinotta, A. The geek and the chemist:

Antioxidant capacity measurements by DPPH assay in beverages using open source tools, consumer electronics and 3D printing.
Sens. Actuators B Chem. 2019, 282, 559–566. [CrossRef]

8. Foresti, R.; Rossi, S.; Magnani, M.; Guarino Corrado, L.B.; Delmonte, N. Smart Society and Artificial Intelligence: Big Data
Scheduling and the Global Standard Method Applied to Smart Maintenance. Engineering 2020, 6, 835–846. [CrossRef]

9. Foresti, R.; Rossi, S.; Pinelli, S.; Alinovi, R.; Sciancalepore, C.; Delmonte, N.; Selleri, S.; Caffarra, C.; Raposio, E.; Macaluso, G.;
et al. In-vivo vascular application via ultra-fast bioprinting for future 5D personalised nanomedicine. Sci. Rep. 2020, 10, 3205.
[CrossRef] [PubMed]

10. Mishra, S.; Jain, S. Ontologies as a semantic model in IoT. Int. J. Comput. Appl. 2020, 42, 233–243. [CrossRef]
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