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Abstract—We investigate the impact of state-complexity reduc-
tion on the performance of maximum likelihood sequence detec-
tion (MLSD) receivers for direct-photodetection long-haul optical
communication systems affected by uncompensated chromatic
dispersion (CD). We directly compare two possible approaches:
(i) detection through a simple “brute-force” state-complexity
reduction strategy and (ii) a more structured reduced-state se-
quence detection (RSSD) strategy. The performance of both
state-complexity reduction techniques is evaluated considering
two realistic optical transmission schemes, based on on-off keying
(OOK) and optical duobinary modulation (ODBM), respectively.
The detection algorithms are characterized considering the impact
of the timing offset, the quantization scheme, and the amount of
uncompensated CD. As one would expect, for a given number
of states in MLSD receivers, the schemes based on RSSD ex-
hibit better performance with respect to those based on simple
brute-force state-complexity reduction. However, we show that
MLSD schemes based on the use of brute-force state-complexity
reduction are characterized by a better complexity/performance
trade-off for low/medium CD values, whereas RSSD is the best
choice for high CD values.

Index Terms—Maximum likelihood sequence detection (MLSD),
on-off keying (OOK), optical duobinary modulation (ODBM),
optical fiber communications, reduced-state sequence detection
(RSSD).

I. INTRODUCTION

D UE to the increasing availability of low-cost high-speed
integrated circuits, maximum likelihood sequence de-

tection (MLSD) for optical transmission schemes is gathering
the interests of both research institutions and industry. Re-
cently, several works have characterized various aspects of
MLSD schemes for optical communications based on direct
photodetection and operating in the electrical domain. In
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particular, in [1]–[5], MLSD schemes based on the use of the
Viterbi algorithm [6] (VA) have been characterized in terms of
tolerance against chromatic dispersion (CD) and polarization
mode dispersion (PMD). In these papers, various models for
the branch metrics of the VA have been considered. However,
to account for a large system memory, due, for example, to
severe values of uncompensated CD, a standard VA requires
a number of states which is an exponential function of the
system memory. In [7], the authors analyze the performance of
MLSD schemes with reduced state-complexity. More precisely,
a reduced state is obtained by selecting a subset of the “most
representative” postcursor bits (selected by minimization of the
bit error rate, BER). In [8], the ultimate performance limits,
in terms of achievable information rate [9], of direct-detection
optical communication systems have been presented. These
results suggest that very large values of uncompensated CD
can in principle be tolerated through the use of electronic
signal processing based on suitable detection algorithms and
forward error correction schemes. However, even if electronic
signal processing is attractive from a theoretical viewpoint,
the results in [8] indicate that the required state complexity
increases tremendously due to a large system memory. The use
of complexity reduction techniques becomes, therefore, crucial.

In this paper, we focus on complexity reduction tech-
niques for MLSD receivers suitable for optical communication
systems with direct photodetection, by expanding upon pre-
liminary results in [10]. More precisely, we investigate and
compare two different state-complexity reduction techniques:
(i) “brute-force” state-complexity reduction techniques, which
consist of a hard truncation of the system memory assumed
by the VA, and (ii) classical reduced-state sequence detection
(RSSD) techniques [11]–[13]. Simple brute-force state com-
plexity reduction has previously been investigated (see, e.g.,
[7]). Nonetheless, in this paper, we extend previous results by
giving a rigorous description on how state reduction is per-
formed, by considering an extensive performance comparison
between brute-force and RSSD state-complexity reduction
techniques, and by analyzing the impact of the modulation
format and several system parameters. As representative case
studies for numerical analysis, we consider schemes with
two modulation formats: on-off keying (OOK) with non-re-
turn-to-zero (NRZ) pulses and optical duobinary modulation
(ODBM). Since our focus is on state-complexity reduction,
we limit the analysis to a linear optical fiber model. The data
rate is assumed to be equal to 10 Gb/s in both cases. The
performance of the considered MLSD algorithms with reduced
state complexity is characterized taking into account several
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Fig. 1. Optical communication system model with direct photodetection.

important parameters, namely: timing offset, quantization
level, and uncompensated CD. The obtained results show
that, whenever the effective system memory is small (i.e., low
CD values), the use of brute-force state-complexity reduction
techniques is an appealing choice from the viewpoint of the
complexity-performance trade-off, whereas for larger values of
the effective system memory (i.e., medium/high CD values) the
use of RSSD techniques guarantees a good tradeoff.

This paper is structured as follows. In Section II, the con-
sidered communication system models are discussed. In Sec-
tion III, preliminaries on MLSD are given. In Section IV, state-
complexity reduction techniques are discussed. In Section V,
the simulation setup is presented. In Section VI, the impact of
the timing offset on the system performance is investigated. In
Section VII, the impact of the quantization scheme of the ob-
served received signal on the system performance is investi-
gated. In Section VIII, the performance of the proposed reduced
state-complexity MLSD algorithms is characterized in terms of
tolerance against uncompensated CD. In Section IX, the ob-
tained results are interpreted and discussed. Section X concludes
the paper.

II. COMMUNICATION SYSTEM MODEL

In Fig. 1, an optical communication system model with
direct photodetection is shown. At the input of the system,
a sequence of independent and equally likely information
bits is assumed. We consider two different
optical modulation schemes: (i) OOK with NRZ pulses and
(ii) ODBM. In the NRZ-OOK case, the modulator (MOD)
comprises an NRZ pulse shaping filter, an electrical low-pass
filter, and a Mach-Zehnder device in push-pull configuration.
The input/output relation of the Mach–Zehnder device is as
follows [14]:

(1)

where is the output electrical field, is the input elec-
trical field from the laser source, is the modulation index, and

is the input voltage normalized in the range ( 0.5,0.5). The
modulated signal propagates through a linear optical fiber char-
acterized by the following frequency response [15]:

(2)

where is the total amount of uncompensated CD (usually ex-
pressed in [ps/nm]), is the optical carrier wavelength (dimen-
sion: [nm]), and is the propagation speed ( m/s).
The received optical signal is corrupted by wideband ampli-
fied spontaneous emission (ASE) noise, which we assume to be
dominant over all other noise sources. The ASE noise is mod-
eled as a white Gaussian complex bidimensional vector process

(one complex dimension per polarization) [15], with mono-lat-
eral power spectral density per complex dimension equal to .
The received optical signal, i.e., the sum of the useful signal and
the noise, is filtered by an optical filter with transfer function

and then converted to an electrical signal by a square-law
photodetector. The signal is then passed through an electrical
filter with transfer function .

The obtained electrical signal is sampled at frequency
, where is the bit interval and is the sam-

pling rate expressed in samples per bit interval (or oversampling
factor). The samples relative to the th bit interval are collected
in vectors

in which , , where
is an arbitrary time reference used to align the information

sequence and the output sample sequence, and is the sampling
offset (for more details, see [8]).

If ODBM is used, the MOD block includes also a precoder,
inserted between the data source and the shaping filter. The
precoder is intended to allow simple threshold detection at
the receiver and consists of a modulo-2 accumulator [16]. The
Mach–Zehnder device input-output relation in the ODBM case
is as follows:

(3)

where is the output electrical field, is the input elec-
trical field from the laser source, and is the input voltage,
normalized in the range ( 0.5,0.5).

III. PRELIMINARIES ON MLSD RECEIVER STRUCTURES

In the following, we briefly review MLSD schemes based on
the VA and introduce the adopted branch metrics [1], [3]–[5],
[8].

A. Viterbi Algorithm

The MLSD strategy corresponds to choosing the most likely
data sequence given an observed sequence of samples. In other
words, the MLSD strategy leads to the selection of the following
estimate of the transmitted data sequence:

(4)

where is the probability density function (pdf) of the
observable vector given the data sequence

. We remark that the cardinality of the observable
vector is larger than if oversampling is used (i.e., ).
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Assume that the system satisfies a finite memory property [17],
i.e.,

(5)

where the notation stands for the sequence of elements
; is the state associated with a pos-

sibly used encoder, or a modulation with memory; and is
the system memory. In particular, the state is an integer
function of and . In other words, the observable

depends on information bits and an integer value
. The state of the system may be defined as follows:

(6)

and can be interpreted as the state of a finite state machine
(FSM) driven by the input data sequence. Considering a time-in-
variant FSM (as will be the case in the following), a “next-state”
function which, given and , returns can be identified.
In this case, by application of chain factorization to , (4)
may be expressed as [17]

(7)

where the branch metric will be discussed in the next subsection.
The decision rule (7) can be efficiently computed by means of
a dynamic programming algorithm such as the VA, which op-
erates on a trellis diagram whose breadth is given by the cardi-
nality of the set of possible values of , i.e.,
the number of states.

B. Branch Metrics

Determining the correct branch metrics is fundamental in
order to successfully implement the VA. In general, the branch
metrics involved in electronic dispersion compensation (EDC)
cannot be formulated in closed form and can be given the
following approximation:

(8)

where is th sample belonging to the observable at epoch
, is a hypothetical bit at epoch , and identifies a

transition in the trellis diagram. In (8), the conditional depen-
dence of the sample on previous observables , and

on the samples belonging to the same observable, is
deliberately neglected. Although not strictly exact, from a prac-
tical viewpoint, this assumption is numerically accurate [8]. In
fact, the conditional dependence between observables may arise
due to the receiver front-end memory, which is usually kept as

small as possible in order to avoid additional intersymbol inter-
ference.

In [18], a method is proposed for computing the exact pdf
of an observed sample in a fiber optic communication scheme
with a standard (noiseless) front-end, formed by the cascade of
(i) a linear optical filter, (ii) a square law photodetector, and
(iii) an electrical filter. More precisely, an analytic expression
for the moment generating function of the sample is obtained,
from which the pdf can be derived through an inverse Laplace
transform.

In [8], we have introduced the following simple best-fit ap-
proximate expression of the exact branch metrics:

(9)

where , , , and are functions of and can be
obtained by numerical least squares fitting of the exact metric
in [18]. This branch metric expression allows a very accurate
approximation of the exact metric, while retaining a low com-
putation complexity.

C. Quantization of the Observables

Quantization is carried out by applying a nondecreasing
monotone staircase function which maps real-valued quantities
onto integer numbers. A quantization function is completely
described by the number and positions of the so-called quan-
tization thresholds. A uniform quantization is a quantization
function which is characterized by equally spaced quantization
thresholds. The quantization thresholds partition the observable
domain into regions associated with an integer number. If the
number of bits representing the quantized value is , then
regions are considered and, correspondingly, thresholds.

A uniform quantization function is uniquely identified by the
number of bits and a suitably defined quantization range .
In particular, we assume that adjacent thresholds are placed at
a distance , with the minimum threshold placed
at and the maximum threshold placed at . An
illustrative example with is shown in Fig. 2. If we denote
the quantized interval to which the observable belongs by
an index and, as a consequence, the quantized observable
vector by , the VA branch metric (8)
becomes

in which the conditional probability mass function
is obtained as follows:

where denotes the quantization interval which corre-
sponds with the index and is obtained as de-
scribed in the previous subsection.
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Fig. 2. Uniform 3-bit quantization in the interval (0; Q ), where Q is the
quantization range and the number of thresholds is 2 � 1 = 7.

IV. STATE-COMPLEXITY REDUCTION TECHNIQUES

In this section, we introduce the state reduction techniques
considered in this work. As mentioned in Section I, the first
method is a straight memory truncation in the FSM that models
the channel, whereas the second approach corresponds to a more
refined state reduction technique. As a preliminary observation,
recall the definition (6) of the system state, where is the en-
coder/modulator state and denotes the channel memory. For
conciseness, in this section we will assume that no encoder is
present at the transmitter, therefore, the encoder/modulator state

will be omitted. The extension to account for the possible
presence of an encoder is possible following the guidelines in
the literature, e.g., [11]–[13], [17], [19]. Accordingly, the state
definition (6) becomes

(10)

A. Brute-Force State-Complexity Reduction

A possible state-complexity reduction approach consists of
using an FSM model accounting for a memory smaller than
the actual memory . The branch metrics at epoch will be
based on a reduced state

(11)

shorter than the full state and, therefore, will not be able
to correctly represent the statistical properties of the observed
sample. The reduced number of states is then

. Since this approach is suboptimal, the branch metrics can
be defined according to any reasonable criterion. In particular, it
seems reasonable to base the definition of the reduced state met-
rics on the exact branch metrics accounting for the full system
memory. We define the new branch metric as follows:

(12)

where a pseudo-transition is a function of the
reduced transition and represents the vector of

that depends on. In particular, the pseudo-transi-
tion is defined as follows:

(13)

where the precursor bit sequence and the
postcursor bit sequence are time in-
variant functions of and . The
source of inaccuracy is therefore given by the fact that pre-
cursor and postcursor sequences may differ from the actual
transmitted bits and the detection algorithm has no control
of this mismatch. The numerical results will be obtained
choosing the precursors and postcursors sequences based
on a pseudo-random bit sequence (PRBS). In particular, the

-bit pattern uniquely identifies a
position in an -PRBS periodic process such
that . The
pseudo-transition is then defined as follows:

(14)

The period of is and, in general, should be larger
than .

B. Reduced State Sequence Detection

The state-complexity of MLSD schemes can be naturally de-
coupled from the memory parameter by means of RSSD tech-
niques [11]–[13], [20]. Let denote the memory param-
eter to be taken into account in the definition of a reduced trellis
state

The branch metric can be obtained by defining the pseudo-tran-
sition as follows:

(15)

where the first bits, i.e., the precursor bit sequence, may
be chosen as an arbitrary time invariant function of ,

bits of the postcursor bits may be chosen by a per-sur-
vivor processing technique [20] as a time varying function of

, i.e., the bits are the infor-
mation bits associated with the survivor of . The remaining

postcursor bits can be defined either as tentative (or
preliminary) decisions or as an arbitrary time invariant function
of , as described in Section IV-A. Note that the use of
tentative decisions for postcursor bits is possible in the case of
brute-force state complexity reduction, as well.
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C. RSSD Versus Brute-Force State-Complexity Reduction

In both state-complexity reduction techniques described in
the previous subsections, the branch metric in the
reduced-state trellis can be defined in terms of a pseudo-transi-
tion according to the following:

where is defined as

for brute-force state-complexity
reduction

for RSSD.

In order to better understand the difference between RSSD
and brute-force state-complexity reduction, we refer to a linear
intersymbol interference (ISI) channel. We remark that this is
not the case for a fiber-optic communication system, which, be-
cause of the presence of the MZ device and the photodetector, is
a nonlinear system. However, the considered example allows to
grasp the basic ideas behind the application of state-complexity
reduction techniques to nonlinear systems, as well.

As an illustrative example, we consider the case of uncoded
transmission over a linear ISI channel. The observable at the
output of the channel can typically be expressed as follows:

(16)

In Fig. 3, a pictorial description of how state reduction works
in a scenario with ISI and triangular channel impulse
response is shown, with both RSSD and brute-force state-com-
plexity reduction techniques.

• In Fig. 3(a), the full-complexity case is depicted. More
precisely, the 5 tap weights of the ISI channel impulse
response are shown. Under each tap weight, the corre-
sponding information symbol, according to (16), is indi-
cated. The full state is and
the full transition is .

• In Fig. 3(b), a pictorial description for RSSD state-com-
plexity reduction is shown, considering
and . The reduced transition is

, and the missing infor-
mation symbols for the construction of the
pseudo transition are recovered through the
survivor history as described in Section IV-B.

• Finally, in Fig. 3(c), a pictorial description for the brute-
force state-complexity reduction is shown. In this case, the
information symbols corresponding to the channel taps
and are selected as described in Section IV-A, assuming

and .1 As one can intuitively understand,
this brute-force state-complexity reduction should lead to
a performance worse than that of RSSD, since the missing
information bits are associated with the reduced state in a
(temporally) fixed fashion. On the contrary, use of RSSD

1Note, however, that the impulse response of the simulated channel, obvi-
ously, remains the 5-tap original one.

allows to dynamically associate the reduced states with the
“best” (i.e., the most reasonable) missing information bits,
i.e., those of the corresponding survivor.

D. Fine-Tuning of State-Complexity Reduction Techniques

The application of state-complexity reduction techniques to
MLSD for transmission over optical fiber systems may lead to
significant complexity savings with limited performance degra-
dation. As previously observed, it is not possible to simply vi-
sualize the response of a nonlinear channel of an optical fiber
transmission system, as done in Fig. 3 in the case of a linear ISI
channel response. However, one can refer to a linear channel to
better understand how to apply state-complexity reduction tech-
niques. In particular, the application of state-complexity reduc-
tion techniques to MLSD assumes a reduced state concentrated
over the precursor taps of the impulse response [11]–[13]: for
instance, in Fig. 3 . In a scenario with a long
nonconstant impulse response (e.g., the triangular response ex-
emplified in these figures), it might happen that the leading tap
weights convey little energy of the channel impulse response.
In this case, it may be more convenient to consider a reduced
state corresponding to the bits with higher energy. This can be
obtained by a proper choice of the parameters and .

In Fig. 4, a linear ISI triangular 7-tap channel
impulse response is considered. The full state

is shown, together with the
reduced state , i.e., with .
As one can see, the tap weights “covered” by the reduced
state (i.e., , , and ) are not the highest-energy
ones. Considering , the resulting reduced state

, referred to as “shift+1,” is
associated with the highest-energy channel impulse response
tap weights (i.e., , , and ). The precursor bits are
then obtained as described in Section IV-A. Intuitively, the
reduced-state trellis based on the latter shifted reduced state
“captures” most of the channel impulse response energy
and the performance of the corresponding VA-based MLSD
receiver is expected to improve.

V. SIMULATION SETUP

In the following sections, we will consider two 10 Gb/s
schemes with OOK and ODBM.

The OOK system setup is as follows. With reference to Fig. 1,
the low-pass modulator electrical filter is a third-order Bessel
filter with bandwidth 9.5 GHz, the modulation index in (1) is
equal to 0.93, corresponding to an extinction ratio of 24.3 dB at
the transmitted side, the optical filter is a third-order Bessel filter
with bandwidth 32.5 GHz, and the electrical filter is a fifth-order
Bessel filter with bandwidth 7.7 GHz.

The ODBM system setup is as follows. With reference to
Fig. 1, the low-pass modulation electrical filter is a fifth-order
Bessel filter with bandwidth 3 GHz, the optical filter is a third-
order Bessel filter with bandwidth 33 GHz, and the electrical
filter is a fifth-order Bessel filter with bandwidth 7.7 GHz.

Unless otherwise stated, the sampling offset is chosen to
minimize the BER of the communication scheme.
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Fig. 3. Pictorial description of state reduction in the case of a linear intersymbol interference (ISI) channel. From top to bottom: (a) full complexity case;
(b) reduced-state case with RSSD; (c) brute-force state-complexity reduction.

Fig. 4. State reduction in the case of a linear ISI channel. The full state
S = (a ; . . . ; a ) is shown, together with the reduced state with
L = 0 w = (a ; a ; a ) and the “shift+1” reduced state
w = (a ; a ; a ), i.e., with L = 1.

VI. IMPACT OF SAMPLING OFFSET

In this section, we investigate the impact of the sampling
offset considering both brute-force state-complexity reduction
and RSSD. As it will be shown in the following, care has to be
taken in selecting the proper sampling offset in order to opti-
mize the performance of the communication systems at hand.

In Fig. 5, the BER is shown, as a function of the sampling
offset within a bit period, in a NRZ-OOK scenario. The optical
signal-to-noise ratio (OSNR) is defined as follows:

where is the average received noiseless optical power,
is the mono-lateral noise power spectral density, and
nm is the 0.1 nm bandwidth, at a carrier wavelength of

1550 nm. The uncompensated CD is 2550 ps/nm, the OSNR
is set to 15 dB, and the sampling rate is 1 samp/symb. The
sampling offset resolution is set to , i.e., we consider 64
possible sampling offset values within a bit period . As one
can see, the sensitivity with respect to the sampling offset is
non-negligible. In fact, one can easily observe the presence of
an absolute minimum which represents an optimized operating
condition. This sensitivity is greatly reduced by using oversam-
pling, i.e., .

In Fig. 6, the impact of the sampling offset on the BER is ana-
lyzed in a scenario with NRZ-OOK and a sampling rate equal to

samples per bit interval. The considered sampling offset
spans over a range which is larger than a bit interval. Adding
an integer value to the sampling offset corresponds to shifting
by bits the state vector (i.e. “shift ”), as described in Sec-
tion IV-D. The offset value corresponds to the optimal
sampling time in back-to-back (B2B) for threshold detection.
Three values for the CD are considered. The MLSD receiver
adopts RSSD and the number of states is reduced from

Authorized licensed use limited to: Universita degli Studi di Parma. Downloaded on February 3, 2009 at 08:07 from IEEE Xplore.  Restrictions apply.



FRANCESCHINI et al.: STATE-COMPLEXITY REDUCTION IN MLSD RECEIVERS FOR OPTICAL COMMUNICATIONS WITH DIRECT PHOTODETECTION 3503

Fig. 5. BER, as a function of the sampling offset � within a bit period, in an
NRZ-OOK scenario. The CD is 2550 ps/nm and the OSNR is set to 15 dB. The
sampling rate is 1 samp/symb.

to . The impact of the sampling offset depends on the
particular CD value.

• At a CD equal to 0 ps/nm (back-to-back, B2B) with OSNR
equal to 10 dB, the lowest possible BER is obtained for a
sampling offset between 0 and 3.5 . In other words, there
is a large range over which the BER is minimized. This is
due to the short memory of the channel in B2B.

• At a CD equal to 3400 ps/nm with OSNR equal to 12 dB,
the optimal sampling offset is around 1.5 . Unlike the
previous case, there is a shorter range over which the BER
is minimized (approximately, between 0.5 and 2 ).
Moreover, one can observe that the curve is not symmet-
rical, i.e., it does not admit any axis of symmetry. This is
due to the use of a state-complexity reduction technique.

• At a CD equal to 6800 ps/nm with OSNR equal to 13 dB,
the optimal sampling offset is around and the region
width is around . One can observe that, like the case with
CD equal to 3400 ps/nm, the BER curve does not admit any
axis of symmetry.

In Fig. 7, an analysis similar to that in Fig. 6 is carried out, the
only difference being the fact that a brute-force state-complexity
reduction to is considered. As one can observe from
the results in Fig. 7, the optimal sampling offset at 3400 ps/nm
and 6800 ps/nm is 0, i.e., as in B2B. In this case, unlike the
case with RSSD, the BER curves have a vertical symmetry axis
at about . This is due to the fact that brute-force
state-complexity reduction treats postcursor and precursor bits
in the same fashion.

The analysis of ODBM schemes yields similar results which,
therefore, are not shown. The general conclusion of the analysis
carried out in this section is that the sampling offset becomes
more important for increasing values of the CD, although, in
general, small mismatches on the sampling offset cause a negli-
gible performance loss. Moreover, if RSSD techniques are used,
the optimized sampling offset significantly differs from that of a
system using brute-force state-complexity reduction or no state-
complexity reduction at all. In fact, as described in Section IV,

Fig. 6. BER, as a function of the sampling offset � , in a scenario with NRZ-
OOK. Various values of CD and OSNR are considered. The sampling rate is
� = 2 samples per bit interval. An RSSD strategy, reducing the number of
states from � = 256 to � = 16 is considered.

Fig. 7. BER, as a function of the sampling offset � , in a scenario with NRZ-
OOK. Various values of CD and OSNR are considered. The sampling rate is
� = 2 samples per bit interval. A brute-force state-complexity reduction to
� = 16 is considered.

while a brute force state-complexity reduction neglects both pre-
cursor bits and postcursor bits in the computation of the metrics,
RSSD enables to accurately select postcursor bits and only ne-
glects precursor bits. This fact is responsible for the asymmetry
of RSSD curves in Fig. 6, as opposed to the marked symmetry
of the brute-force state reduction curves in Fig. 7.

VII. IMPACT OF THE QUANTIZATION RANGE

In this section, we investigate the impact of the quantization
range assuming uniform quantization. The theoretical predic-
tions in [8], based on the computation of the information rate
between the transmitter modulator input and the output of the
electrical filter of the receiver, show that a 3-bit quantization
allows to exploit almost all the information embedded in the
received electrical signal with an OSNR penalty smaller than
1 dB, whereas fewer bits entail higher penalties and more bits

Authorized licensed use limited to: Universita degli Studi di Parma. Downloaded on February 3, 2009 at 08:07 from IEEE Xplore.  Restrictions apply.



3504 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 21, NOVEMBER 1, 2008

Fig. 8. BER, as a function of the quantization range (with uniform quantiza-
tion), in an NRZ-OOK scenario. Various values of dispersion and OSNR are
considered. The sampling rate is equal to 2 samples per bit interval.

enable limited performance improvement. Extensive investiga-
tions based on BER analysis of MLSD receivers (not shown
here, for the sake of conciseness) have substantially confirmed
the results in [8]. In this paper, therefore, we considered 3 bits
per quantized sample. We preliminarily remark that the input
signal is normalized such that the noiseless transmission of the
all-“1” signal corresponds to a received electrical signal ampli-
tude equal to 1. Uniform quantization with equally
spaced thresholds, as shown in Fig. 2 is considered. The first
threshold is placed at and the last one is placed at

, where is the quantization range. Equivalently,
instead of controlling the quantization range, one could control
the front-end gain and perform uniform quantization over a fixed
range.

In Fig. 8, the BER is shown as a function of the quantization
range, in a scenario with NRZ-OOK. Values of CD equal to 0
ps/nm (B2B), 1700 ps/nm, and 3400 ps/nm are considered. The
sampling rate is set to samp/symb. A brute-force state
reduction technique with 16 states is used at the receiver. As
one can see from the results in Fig. 8, it is important to optimize
the quantization range, since too small or too high ranges lead
to unacceptable performance. Nevertheless, from the results in
Fig. 8, one can conclude that there is no need for high accu-
racy in quantization range optimization, i.e., the sensitivity on
quantization range is limited. Moreover, the optimum value
is close to 1. This implies that all the quantization thresholds fall
between 0 and 1. In other words it seems that there is no need
for an accurate representation of observables beyond the value
1, even if such observables are statistically frequent. One can
further observe that in B2B there is an oscillatory behavior of
the BER versus the quantization range. This can be easily un-
derstood since, in B2B, simple threshold detection offers good
performance. The local minima in the BER versus the quantiza-
tion range curve correspond to one of the 7 thresholds passing
the optimum value for threshold detection.

The impact of the quantization range on the performance
of ODBM schemes is similar. Therefore, these results are not
shown here. Interestingly enough, the obtained results suggest
that the quantization thresholds should be concentrated in the

relatively small region corresponding to the region where the
all-“1” and all-“0” pdfs cross. This may be due to the fact that
in order to perform effective detection, it is important to dis-
criminate between different bit sequences (each associated with
a different pdf). Two different bit sequences can be effectively
distinguished if a threshold falls in the proximity of the crossing
point of the corresponding pdfs.

VIII. ROBUSTNESS AGAINST UNCOMPENSATED CD: RSSD
VERSUS BRUTE-FORCE STATE-COMPLEXITY REDUCTION

In this section, we investigate the robustness of the consid-
ered reduced-states MLSD receivers against uncompensated
CD. The system performance will be evaluated in terms of
OSNR, as a function of the CD, required to achieve a desired
BER. As expected, by reducing the number of states (i.e.,
increasing the degree of state-complexity reduction) the per-
formance worsens. However, our results allow to conclude that
simple and “well-tuned” state-complexity reduction techniques
can significantly limit the performance degradation with respect
to full state-complexity cases.

A. NRZ-OOK

In the following, the performance results of NRZ-OOK
schemes with quantization will refer to a quantization range
equal to 1.2, which represents a good compromise according to
the analysis carried out in Section VII. In Fig. 9, the OSNR re-
quired to achieve a BER2 equal to is shown, as a function
of the CD, for various MLSD system configurations, corre-
sponding to different quantization settings and reduced-state
configurations. The sampling rate is samp/symb for all
MLSD receivers (the sampling rate is 1 samp/symb for the
threshold detector). We now comment explicitly on each of the
5 performance curves shown in Fig. 9.

• The first (from the bottom) MLSD curve, namely the one
with best performance, i.e., lowest OSNR, corresponds to
a receiver using a VA with 256 states and no quantization
(denoted “MLSD(256)”). This OSNR curve represents a
bound on the performance of practical receivers using VAs
with a reduced number of states and/or quantization. Com-
paring the results in Fig. 9 with OSNR curves shown in [8]
obtained considering a given information rate, rather than
a target BER, one can observe a substantial agreement in
the overall shape, although the IR analysis in [8] guaran-
tees that an additional gain of more than 2 dB is possible
with a proper coding and detection scheme.

• The second MLSD curve provides the performance ob-
tained with an MLSD receiver whose number of states is
reduced from 256 to 16 (denoted “ ”)
using RSSD techniques, with no input quantization. As one
can observe from Fig. 9, there is basically no performance
loss, with respect to the performance of an MLSD receiver
with 256 states and no quantization, for CD values lower
than 4000 ps/nm. For higher CD values, the OSNR tends
to increase and diverges around 8000 ps/nm.

2The choice of a BER value equal to 10 is motivated by the fact that recent
high performance error correction codes for optical communications, decoded
after the MLSD block, allow to recover almost completely the detection errors
for BER equal to or lower than 10 .
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Fig. 9. OSNR, as a function of the dispersion, in an NRZ-OOK scenario at a
BER equal to 10 . Various receiver structures are considered, with RSSD or
brute-force state reduction, with or without quantization.

• The third MLSD curve is associated with the same RSSD
receiver considered at the previous point, in the presence
of 3-bit quantization of the observables. As one can see
from Fig. 9, the OSNR loss with respect to the second
MLSD curve, i.e., RSSD without quantization, increases
from 0.2 dB (at a CD equal to 0 ps/nm) to approximately
1 dB (at a CD equal to 6000 ps/nm). In particular, the
OSNR loss due to quantization is always smaller than
0.7 dB for CD values lower than 4000 ps/nm.

• The fourth MLSD curve is associated with an MLSD re-
ceiver with brute-force state-complexity reduction to

states and 3-bit quantization (denoted “MLSD(16)”).
For CD values lower than 2550 ps/nm, there is no per-
formance loss with respect to the third MLSD receiver
(RSSD-based, with state reduction from 256 to 16). For
higher values of the CD, the OSNR loss increases: it re-
mains modest (at most 0.3 dB) till 4200 ps/nm, whereas it
becomes significant (higher than 2 dB) at 5000 ps/nm.

• For comparison, the performance of a threshold detector is
also shown. As one can see, the performance of a threshold
detector is very close (within 0.5 dB) to that of MLSD re-
ceivers for CD values lower than 500 ps/nm. The perfor-
mance of the threshold detector, however, degrades rapidly
for larger values of the CD.

Summarizing, our results suggest that below 3 dB penalty with
respect to B2B, brute-force state reduction and RSSD yield sim-
ilar performance, whereas above 3 dB, RSSD has greater robust-
ness against CD. In other words, if a penalty of more than 3 dB
can be tolerated by the system, RSSD outperforms brute-force
state reduction by about 1500 ps/nm.

B. ODBM

In the case of ODBM schemes, by trial and error a good value
of the quantization range was derived as . In Fig. 10,
the OSNR required to achieve a BER equal to is shown, as
a function of the CD, for various MLSD system configurations,
corresponding to different quantization settings and reduced-
state configurations. The sampling rate is samp/symb for

all MLSD receivers, whereas the sampling rate is 1 samp/symb
for the threshold detector. We now comment explicitly on each
of the five OSNR curves shown in Fig. 10.

• The first (from the bottom) MLSD curve corresponds to a
receiver using a VA with 256 states and no quantization. As
for the case with NRZ-OOK, this curve represents a bound
on the OSNR performance of practical receivers using VAs
with a smaller number of states and/or quantization. Un-
like a scenario with NRZ-OOK, where the OSNR curve
is increasing with the CD, in this case the OSNR curve
is first decreasing (from 0 ps/nm to 4250 ps/nm), then in-
creasing (from 4250 ps/nm to 6000 ps/nm), and then de-
creasing again (from 6000 ps/nm to 8200 ps/nm). As in the
NRZ-OOK case, comparing the shape of the just described
MLSD curve in Fig. 10 with the equivalent one in [8], one
can observe a substantial agreement between “practical”
(BER-based) and theoretical (information rate-based) re-
sults.

• The second MLSD curve corresponds to the performance
obtained with an MLSD receiver whose number of states
is reduced from 256 to 16 using RSSD techniques, with no
quantization. As one can observe from Fig. 10, there is a
very limited OSNR loss, with respect to the performance of
an MLSD receiver with 256 states and no quantization, for
CD values lower than 4250 ps/nm. For higher values of the
CD, the OSNR tends to increase. For CD values between
4250 ps/nm and 7600 ps/nm, the OSNR curve is a sort of
up-shifted version of that with 256 states and no quantiza-
tion; the OSNR tends to diverge around 8000 ps/nm.

• The third MLSD curve is associated with the same RSSD
receiver considered at the previous point, in presence
of 3-bit quantization of the observables. As one can see
from Fig. 10, the OSNR loss with respect to the best
MLSD curve remains approximately equal to 0.2 dB in
the CD range from 0 ps/nm to 4250 ps/nm. The OSNR
loss becomes approximately 1.2 dB at CD values between
6000 ps/nm and 7000 ps/nm, and tends to increase for
higher CD values.

• The fourth MLSD curve is relative to an MLSD re-
ceiver with brute-force state-complexity reduction to 16
states and 3-bit quantization. For CD values lower than
4250 ps/nm, there is no performance loss with respect to
the third MLSD receiver (RSSD-based quantized MLSD
receiver, with state reduction from 256 to 16). For higher
values of the CD, the OSNR loss increases, but remains
modest (at most 0.6 dB) till 5000 ps/nm.

• For comparison, the performance of a threshold detector is
also shown. As one can see, the performance of a threshold
detector is identical to that of the 256-state unquantized
MLSD receiver in B2B, i.e., slightly better than that of
quantized 16-state MLSD receivers. The set of quantiza-
tion thresholds, in fact, does not comprise the optimum
value for standard threshold detection, since the quantiza-
tion range was chosen as a good compromise over all con-
sidered CD range. The performance of a threshold detector
starts degrading around 1500 ps/nm.

Similarly to the OOK-NRZ case, the RSSD approach enables
to cope with higher CD values (in the considered ODBM case,
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Fig. 10. OSNR, as a function of the CD, in a scenario with ODBM at a BER
equal to 10 . Various receiver structures are considered, with RSSD or brute-
force state-complexity reduction, with or without quantization.

the difference is about 1000 ps/nm). On the other hand, this
performance improvement can be exploited at high CD values
and relatively high penalty values (i.e., on the order of 2.5 dB
with respect to B2B).

IX. DISCUSSION

The results obtained in Section VI show that, whenever 2
samples per bits interval are considered, there is limited sen-
sitivity on the fractional portion of the sampling offset. The
use of brute-force state-complexity reduction entails an optimal
sampling offset equal to that of a standard threshold detection
system, whereas the use of RSSD techniques calls for ad hoc
sampling offset optimization.

In Section VII, we have investigated the impact of quantiza-
tion range on system performance. Our results confirm that a
quantization strategy with 3 bits per sample allows good perfor-
mance, as predicted by the theoretical investigation of the ulti-
mate performance limits in [8]. Moreover, they suggest that all
the quantization thresholds should be placed in a relatively short
range. This is not obvious, since by placing all thresholds in a
short range one obtains a coarse representation of the signal (in
terms of mean square error). On the other hand, from a detec-
tion-theoretic point of view, the obtained result is intuitive since
the goal of the detection strategy is not to estimate the received
signal but to recover the embedded data sequence.

In Section VIII, we have shown performance results of the
considered MLSD schemes, in terms of OSNR required to
achieve a BER equal to versus CD. Two possible modu-
lation formats have been considered: NRZ-OOK and ODBM.
The obtained results can be summarized as follows.

• Changing the modulation format from NRZ-OOK to
ODBM leads to different and characteristic shapes for the
OSNR curves. More precisely, for NRZ-OOK schemes,
the OSNR is an increasing function of the CD, whereas
for ODBM schemes, there is a relative minimum around
4000 ps/nm followed by a relative maximum around
6000 ps/nm. This is in excellent agreement with the theo-
retical findings presented in [8].

• For a given modulation format, the relative behavior of pos-
sible MLSD schemes (with or without quantization, with
brute-force state-complexity reduction or RSSD) is similar,
regardless of the target BER. For the sake of conciseness,
we have not reported here our performance results relative
to a BER equal to , but the shapes of the obtained
OSNR curves are very similar to those obtained with BER
equal to . Moreover, the performance degradation in-
curred by considering a reduced-state quantized MLSD re-
ceiver, with respect to a full-state unquantized MLSD re-
ceiver, is relatively similar for both modulation formats.

• From a practical viewpoint, using an MLSD receiver, with
3-bit quantization and brute-force state-complexity reduc-
tion to 16 states, is practically optimal for CD values lower
than 4000 ps/nm.

We remark that although the results in this paper are obtained
using a linear optical fiber model, the underlying finite memory
approach does no rely on the system linearity, therefore, a non-
linear optical fiber model should not require a different receiver
structure. Possible system nonlinearities, both deterministic and
nonlinear noise-signal interaction, can be taken into account
using a suitable set of branch metrics.

Furthermore, we remark that the presence of electrical
Gaussian noise can be also taken into account by using proper
branch metrics.

X. CONCLUDING REMARKS

In this paper, we investigated state complexity reduction
for MLSD for direct-photodetection optical communication
schemes affected by uncompensated CD. We considered both
NRZ-OOK and ODBM, optimizing the sampling offset and
the quantization strategy. Simple brute-force state-complexity
reduction and RSSD have been compared, considering a target
number of MLSD states equal to 16, which represents a rea-
sonable number of states for state of the art very high speed VA
implementations. The results show that, if small OSNR penalty
(i.e., lower than 3 dB) is required, a good performance/com-
plexity tradeoff is given by the brute-force state-complexity
reduction solution. If higher penalty values may be tolerated
RSSD enables improved performance and higher CD tolerance
than brute-force state-complexity reduction. The improvement
in CD tolerance is on the order of 1500 ps/nm for NRZ-OOK
and 1000 ps/nm for ODBM.
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