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Detection by Multiple Trellises
M. Franceschini, Member, IEEE, G. Ferrari, Member, IEEE, and R. Raheli, Member, IEEE

Abstract—In this paper, we present a novel pragmatic ap-
proach, referred to as detection by multiple trellises, to perform
trellis-based detection over realistic channels. More precisely,
we consider channels with unknown parameters and apply the
concept of detection by multiple trellises to forward-backward
(FB) algorithms. The key idea of our approach consists, first,
of properly quantizing the channel parameters and, then, con-
sidering replication of coherent FB algorithms operating on
parallel trellises, one per hypothetical quantized value. In order
to make the receiver robust against a possibly time-varying
channel parameters, the proposed soft-output algorithms per-
form a proper “manipulation” of the forward and backward
metrics computed by the parallel FB algorithms at regularly
spaced trellis steps. We consider two significant examples of
application: detection over (i) phase-uncertain channels and (ii)
fading channels. The performance of the proposed algorithms is
investigated considering differentially encoded (DE) quaternary
phase shift keying (QPSK) and iterative detection schemes based
on low-density parity-check (LDPC) codes. Besides having a
low complexity, the proposed soft-output algorithms turn out
to be robust, flexible, blind, in the sense that no knowledge
of the channel parameter statistics is required, and highly
parallelizable, as it is desirable in high-throughput future wireless
communication systems.

Index Terms—Forward backwards algorithm, non-coherent
detection, soft-input soft-output detection, LDPC codes.

I. INTRODUCTION

DETECTION over channels which depend on unknown
parameters, i.e., detection with unknown channel state

information (CSI), has long been an active research field
in the literature. Several signal processing techniques have
been developed in the last decades to overcome possible
impairments of the communication channels. Since the in-
troduction of turbo-codes (TC) more than a decade ago [1],
a great effort has been devoted to develop soft-input soft-
output (SISO) detection algorithms suitable for iterative pro-
cessing [2]. While SISO algorithms were first derived for
the additive white Gaussian noise (AWGN) channel, they
have been extended to more realistic channels, such as those
of interest in wireless communications. In particular, these
channels are often characterized by time-varying parameters,
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either stochastic or deterministic but unknown. In addition, the
statistics of the stochastic parameters may not be available
at the receiver. An example of such channels is the phase-
uncertain channel [3], where the transmitted signal undergoes
an unknown phase rotation and is affected by AWGN. Another
relevant example is a fading channel [4], which arises because
of unresolvable multipath in radio communications.

Two main approaches to perform detection over channels
with parametric uncertainty can be devised:

• separate detection and parameter estimation [3];
• joint detection and parameter estimation. In the case

of phase-uncertain communications, parameter estimation
may be embedded in the detection process, explicitly [5]
or implicitly [6]–[9].

In [10]–[14], linear predictive receivers for fading channels
are proposed, considering the Clarke model for fading chan-
nels [15], [16]: these receivers exploit the correlation charac-
teristics of the fading process to predict its evolution. Another
general approach consists of describing the evolution of the
fading process through a suitable Markov chain [17]–[19], and
then taking this model into account in the receiver design [20]–
[24]. A major issue, in the design of SISO algorithms for
realistic channels, is to obtain good performance together with
high robustness against channel variations and low computa-
tional complexity.

In this paper, we present a class of low-complexity SISO
algorithms, derived from the standard forward-backward (FB)
algorithm1 [25]. These algorithms stem from an optimal
approach to detection for channels affected by block-constant
time-varying unknown parameters. In particular, after a proper
quantization of the channel parameters, the proposed algo-
rithms consist of running a number of coherent standard FB
algorithms in parallel, which exchange information only at a
relatively small number of fixed trellis epochs. As relevant
case studies, we focus on differentially encoded (DE) qua-
ternary phase shift keying (QPSK) over (i) phase-uncertain
and (ii) flat fading channels. We focus our attention on the
performance of the proposed algorithms in the low signal-to-
noise ratio (SNR) region, which is of interest in modern com-
munication systems. As a consequence, our analysis focuses,
besides on a simple DE-QPSK scheme, also on schemes based
on the concatenation of a low-density parity-check (LDPC)
code [26] with DE-QPSK. In both phase-uncertain and fad-
ing channels, the obtained results show that the proposed
algorithms have good robustness and low sensitivity to the
statistics of the channel parameters. In the fading scenario,
we compare the performance of the proposed approach with
that obtained by modeling the fading process by a first-order

1Also widely known as BCJR algorithm from the initials of the original
proposers [25].
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Markov-chain [17]–[19]. Finally, we show that by applying
the principle of detection by multiple trellises, it is possible to
obtain low-complexity soft-output algorithms with negligible
impact on the system performance. In addition, the proposed
algorithms do not rely on any statistical information on the
channel parameters (either phase or fading), i.e., they are
blind. We note that a multiple-trellis approach was previously
proposed to cope with the problem of joint detection and mod-
ulation classification in [27], where the unknown parameter
(modulation format) was inherently static.

This paper is organized as follows. In Section II, we
introduce the idea of detection by multiple trellises. In Sec-
tion III, we apply the multi-trellis SISO algorithms to DE
phase-uncertain communications and analyze, by computer
simulations, the performance of the proposed algorithms. In
Section IV, we extend the derivation proposed in the previous
section to flat fading communications and compare the results
with a Markov chain-based approach. A simple complexity
analysis is presented in Section V, comparing the proposed
algorithm with known solutions. Section VI concludes the
paper. In the Appendix, a formulation of an FB algorithm
for transmission through a Markov chain channel is given.

II. DETECTION BY MULTIPLE TRELLISES: THE IDEA

In order to set the problem under study and present the
mathematical notation, we begin by reviewing a modified
version of the FB algorithm suitable for generic finite-memory
channels affected by time-invariant stochastic parameters.
Afterwards, we will describe the extension to time-varying
parameters and propose two different multi-trellis SISO algo-
rithms.

A. Time-Invariant Parameters

Let us assume that the channel output is observed for
a period of K + 1 symbol intervals. The channel can be
completely described by the following joint probability density
function (PDF)

p(rK
0 , ξ|aK

0 ) (1)

where rK
0 is the vector of the observables (r0, . . . , rK),

ξ ∈ Dξ is a stochastic channel parameter independent of the
transmitted data, Dξ is the domain of the channel parameter,
and aK

0 is the vector of information symbols ak transmitted
through this channel. Note that (1) can take into account
possible coding of the information symbol sequence {ak} into
a code sequence {ck}. We remark that the parameter ξ could
be either a scalar parameter or a vector parameter, i.e., ξ could
represent a whole set of parameters.

The a posteriori probability (APP) of an information sym-
bol ak can be expressed as follows:

P{ak|rK
0 } ∝ p(rK

0 |ak)P{ak}

= P{ak}
∫
Dξ

p(rK
0 |ak, ξ)p(ξ) dξ (2)

where the notation “∝” indicates that the first member is
proportional to the second through a constant independent of
the transmitted information symbol ak. If, conditionally on the
parameter realization ξ, the channel has finite memory [9],

the conditional PDF p(rK
0 |ak, ξ) can be computed via a

standard FB algorithm [2], [25]. This is possible whenever
the transmission system can be modeled as a finite state
machine (FSM) whose input and output are, respectively, the
information symbol ak and a random variable (RV) whose
statistics depend only on the FSM state and the input symbol.

A simple approximation for the computation of the integral
in (2) consists of performing the following finite sum:

P{ak|rK
0 } ∼∝ P{ak}

L∑
i=1

p
(
rK

0 |ak, ξ(i)
)

p(ξ(i)) (3)

where {ξ(1), . . . , ξ(L)} is a set of quantized values for the
channel parameter whose positions and number L are chosen
to obtain the desired accuracy in the numerical integration
in (2). This corresponds to running L standard FB algorithms
(each one associated with a value ξ(i), i = 1, . . . , L) in parallel
and computing a weighted average of their outputs to obtain
a quantity approximately proportional to the APP.2

In the following, we denote the forward state metrics
computed during the forward recursion of an FB algorithm as
{α(i)(sk)}, where the superscript i refers to the FB algorithm
associated with the quantized parameter value ξ(i) and sk

denotes the state of the FSM in the corresponding trellis
diagram. In particular, we assume that sk ∈ {0, . . . , Ξ − 1},
where Ξ is the number of states characterizing each trellis.
Similarly, we denote the backward state metrics associated
with the i-th trellis diagram as {β(i)(sk)}.

Several practical scenarios can be cast within the model
described by (1), (2) and (3). In particular, as useful examples,
we will consider phase-uncertain and flat fading channels.

1) Phase-Uncertain Channel: In a communication scenario
where the channel introduces a time-invariant phase rotation,
the stochastic channel parameter ξ can be equivalently mod-
eled as a phase rotation θ of the transmitted symbol sequence.
The discrete-time equivalent observation can be expressed as

rk = ckejθ + nk (4)

where rk is the received observable, ck is the (possibly coded)
transmitted symbol, and nk is a (noise) sample of a sequence
of independent and identically distributed (i.i.d.) zero mean
Gaussian RVs.

2) Flat Fading Channel: The generic observation model
given by (1) applies directly to a flat fading channel, provided
that ξ has the proper statistical distribution. In particular, in
a scenario with unresolvable multipath, ξ corresponds to a
fading coefficient f and the channel input-output relation can
be expressed as follows:

rk = f ck + nk (5)

where, in the case of Rayleigh fading, f has a complex
circularly-symmetric Gaussian distribution with zero mean.

B. Time-Varying Parameter

The idea of detection by multiple trellises stems from
an extension of the previous static-parameter approach to a
scenario with time-varying channel parameters.

2We implicitly assume that the reader is familiar with the FB algorithm.
More information can be found in [2], [25].
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Fig. 1. Time-varying trellis for detection on block-constant discrete parameter
channel.

In order to obtain insights on the impact of the presence of
a time-varying parameter, let us consider a useful case study
where the channel parameter process {ξk} is discrete and
block constant. Let us assume that ξk is uniformly distributed
over the set {ξ(1), . . . , ξ(L)} and constant over blocks of length
N < K . In other words,

ξlN+i = ξlN+j ∀i, j ∈ {0, . . . , N − 1}

and the realizations {ξk} are i.i.d. from block to block, i.e.,

p(ξlN , ξnN ) = p(ξlN )p(ξnN ) =
1
L2

∀l �= n .

As a consequence, the process {ξk} is a time-varying Markov
chain, characterized by an L×L transition matrix Pk = (p(k)

ij )
at the k-th epoch such that

p
(k)
ij =

{
δij if k �= N − 1 mod N
1
L

if k = N − 1 mod N

where δij denotes the Kronecker delta. We further assume
that the information sequence {ak} is encoded into a code
symbol sequence {ck} by means of an FSM. Considering
that the observed sequence of length K comprises more than
one length-N block with constant channel parameter, the
application of a maximum a posteriori (MAP) strategy to this
scenario leads to a time varying trellis. In the Appendix, a
general formulation of a MAP algorithm for a finite-memory
channel characterized by a generic Markov-chain parameter
is presented. In Fig. 1, a representative time-varying trellis
for this illustrative block-constant discrete parameter channel
is shown. Within a block, i.e., for N − 1 consecutive time
epochs, the trellis structure consists of L “coherent” trellises,
each assuming knowledge of ξ, one for each quantized value of
ξ. In the sections of the various trellis diagrams connecting the
states at the end of a block with the states at the beginning of
the next block, each state in each coherent trellis is connected
with the corresponding state in all the other coherent trellises.
In other words, each coherent trellis is connected with any
other trellis by the non-zero probability of variation of the
parameter value.

Applying the general formulation in the Appendix, the
forward and backward metrics αk(sk, ξk) and βk(sk, ξk) are
functions of the “extended” state σk = (sk, ξk). They can be

computed recursively by running L separate coherent FB algo-
rithms, one for each parameter value. Every N time steps, in
general, αk(sk+1, ξk+1) and βk(sk, ξk) depend on all forward
and backward metrics in all coherent trellises, respectively, i.e.,
a “mix” of the forward and backward metrics in the coherent
FB algorithms is performed. The above considerations can be
equivalently drawn by following the guidelines in [21], where
a Markov-chain model for the channel phase is assumed.

At this point, the idea underlying detection by multiple
trellises can be outlined. As for a constant channel parameter
ξ, several coherent FB algorithms are run independently,
characterized by forward and backward metrics α

(i)
k (sk) =

αk(sk, ξ(i)) and β
(i)
k (sk) = βk(sk, ξ(i)), respectively. The

difference with respect to the time-invariant channel parameter
case is that every N time steps, the forward (backward)
metrics in the different trellises are properly “mixed” to
account for the possible variation of the channel parameter.
In the following, we will refer to N as “inter-mix interval.”

The idea of considering parallel trellises which occasionally
“talk” to each other is appealing, since it is likely to allow
both low-complexity and parallel processing. In Section V,
we will investigate the complexity of the proposed algorithms
and compare them with other existing solutions. In this sense,
performing detection by multiple trellises can be equivalently
interpreted as an instance of the divide et impera approach to
tackle complicated problems with limited complexity.

The “mix strategy,” in general, should be tailored for the
specific communication scenario at hand. Nevertheless, some
general considerations can be drawn:

• If ξ is time-invariant, the quantity p(rK
0 |ak, ξ(i)), com-

puted via a coherent FB algorithm, is expected to be
maximum in correspondence of the value ξ(i) closest
to the true3 channel parameter ξ. In fact, numerical
analysis in several scenarios showed that the forward and
backward state metrics {α(i)

k (sk)} and {β(i)
k (sk)} exhibit

an exponential decay4 as a function of the epoch k. This
is due to the fact that, if α

(i)
k is the vector of the forward

metrics at epoch k in the i-th trellis, the forward recursion
can be equivalently expressed as

α
(i)
k = Γ(i)

k−1α
(i)
k−1 (6)

where Γ(i)
k is a matrix whose elements are the pdfs of the

observable rk conditioned to every possible transitions
in the i-th coherent trellis. In particular, as expected, the
decay exponent is greater in the FB algorithm associated
with the phase value ξ(i) which is closest to the true chan-
nel parameter ξ, leading to state metrics {α(i)

k (sk)} and
{β(i)

k (sk)} relatively much larger than those computed
by the j-th FB algorithm with j �= i.

• If ξ is time-varying, we expect that {α(i)
k (sk)} and

{β(i)
k (sk)} will try to adapt to the parameter changes.

3Depending on the symmetry structure of the modulation code, i.e., the
law encoding the information symbols ak into the transmitted symbols ck,
there can be a set of ξ values which are optimal, in the sense that they are
undistinguishable at the receiver. This may occur, for example, in differential
M -PSK transmitted over a phase uncertain channel, where phase rotations of
the observed sequences by multiples of 2π/M cannot be distinguished [8],
[21].

4In the probability domain.
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This adaptiveness is limited by the fact that state metrics
exhibit a “low-pass filter” behavior, i.e., state metrics
have memory and can change only slowly. This is due
to the recursive structure of the metric computation
algorithm (6). In other words, the FB metric computation
process can be equivalently described as a recursive time-
varying vector filtering.

• While in standard applications an FB algorithm is in-
sensitive to a possible multiplication of all forward or
backward state metrics by a constant, in the algorithm
underlying (3), the relative weights of different trellises
are important. Accordingly, the multi-trellis SISO algo-
rithm turns out to be insensitive to a normalization of
the metrics only if this normalization is carried out, at a
given epoch, over all forward or backward state metrics
of all parallel FB algorithms.

In the following, two possible “mix” strategies are proposed.
These strategies will be analyzed in Section III and IV.

1) Multi-Trellis SISO Algorithm 1: At each length-N in-
terval, i.e., at epochs k = lN , l ∈ N, one could manipulate
the forward metrics {α(i)

k (sk)} (and, similarly, the backward
metrics {β(i)

k (sk)}) according to the following rule:

α
(i)
k (sk) ←−

L∑
j=1

α
(j)
k (sk) i = 1, . . . , L ∀sk (7)

where the notation “←−” represents the assignment of a
new value. This corresponds to averaging, for every given
state sk, the metrics relative to all quantized phase values: in
other words, the metrics associated with a given state in the
various trellises are averaged. We will refer to this algorithm
as Algorithm 1. This is the exact APP computation algorithm
for the channel with block-constant parameter described at the
beginning of Section II-B, if the observables are independent
(conditionally on the parameter and the data sequence).

2) Multi-Trellis SISO Algorithm 2: Assume that the channel
is slowly time-varying, i.e., we assume that ξ can exhibit
small changes in adjacent epochs. If we allow a suitable
manipulation of {α(i)

k (sk)} and {β(i)
k (sk)} only at epoch

k = lN , with l ∈ N, the possible transitions of the parameter
from one quantization interval to another, occurring amid the
block, should be taken into account. Heuristically, we have
discovered that the impact of slow parameter changes within
the block can be limited by performing a normalization of
the forward state metrics {α(i)

k (sk)} (and, similarly, of the
backward state metrics {β(i)

k (sk)}) as follows:

α
(i)
k (sk) ←− α

(i)
k (sk)∑

s′
k

α
(i)
k (s′k)

i = 1, . . . , L ∀sk . (8)

where s′k is a dummy state in the summation, running over
all Ξ states of a coherent trellis. This corresponds to a
normalization of the state metrics within each FB algorithm,
i.e., trellis by trellis, as opposed to a normalization amongst
all trellises (as considered in Algorithm 1). We will refer to
this algorithm as Algorithm 2.

{

{
{

Σ

l-th parameter block (l + 1)-th parameter block

lN − 1 lN lN + 1

ξ(1)

ξ(2)

ξ(L)

Per trellis normalization (Alg. 2)Metric sum (Alg. 1)

Fig. 2. Pictorial exemplification of the metric mixes in the two proposed
algorithms.

3) Metric Mix in the Algorithms: a Comparison: The
manipulations corresponding to (7) and (8) can be interpreted
as a combining or mixing of the metrics {α(i)

k (sk)} (similarly
for the metrics {β(i)

k (sk)}). Fig. 2 gives a pictorial description
of the proposed algorithmic family, highlighting the metric mix
for both Algorithms 1 and 2. Each depicted trellis diagram
is associated with a coherent FB algorithm which assumes a
given channel parameter ξ(i), i = 1, . . . , L. The metric mix
for Algorithm 1 is shown to “manipulate” the metrics of all
trellises summing all metrics on a per-state basis, whereas
the metric mix for Algorithm 2 “manipulates” each trellis
independently of the other trellises, performing a per-trellis
normalization. The mix position lN , i.e., the beginning of the
block, refers to the forward metric computation. The backward
metric computation mix is performed at epochs lN − 1.

In both Algorithms 1 and 2, the value of L, i.e., the
number of quantized values of the channel parameter, must
be chosen considering its impact on both performance and
complexity. In particular, by increasing L one can improve
the performance of the proposed detection algorithms, even
though for sufficiently large value of L the performance
improvement becomes negligible. On the other hand, as will be
shown in Section V, the complexity of the detection algorithms
increases linearly with L.

III. DETECTION BY MULTIPLE TRELLISES FOR

PHASE-UNCERTAIN CHANNELS

In this section, the phase-uncertain channel is considered.
First, the algorithms introduced in Section II are specialized to
this type of channel. Then, these algorithms are analyzed and
numerical results are given to characterize their performance.

A. SISO Detection Algorithms

In Section II-A1, the model for a channel introducing a
time-invariant phase rotation θ is given. In this case, the APP
of an information symbol ak is given by (2). Assuming that
θ is uniformly distributed, i.e., pθ(ϑ) = 1/2π for ϑ ∈ [0, 2π)
(and 0 otherwise), expression (3) specializes to the following:

P{ak|rK
0 } ∼∝ P{ak}

L∑
i=1

p(rK
0 |ak, ϑ(i)) (9)
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where {ϑ(1), . . . , ϑ(L)} is a set of L properly chosen phase
values [28]. This detection approach for channels with a block-
constant random phase was used in [8].

If we assume a slowly varying channel phase (i.e., the band-
width of the channel parameter process is small compared with
the receiver filter bandwidth), the discrete-time observable can
be modeled as in (4) by incorporating a time-varying phase
process {θk}:

rk = ckejθk + nk . (10)

where |ck| = 1 (DE-QPSK is considered) and nk is a discrete-
time complex AWGN process with Var{nk} = (REb/N0)−1,
in which R is the system spectral efficiency in bits per channel
use. By suitably modeling the stochastic process {θk}, one
could try to develop an exact APP algorithm. Since we do not
want to rely on exact channel parameter statistics, we resort
to the multi-trellis SISO algorithms described in Section II-B.

B. Numerical Results

In this section, we assume that transmission over an AWGN
channel is affected by a Wiener phase noise process {θk}
described by the following recursive relation:

θk = θk−1 + wk mod 2π (11)

where {wk} is a sequence of i.i.d zero mean Gaussian
variables. The standard deviation of wk, denoted as σθ , is
representative of the phase noise intensity. As mentioned in
Section I, the chosen modulation format is DE-QPSK.

Both Algorithms 1 and 2 introduced in Section III are
considered. For Algorithm 1, the number of quantized phase
values is L = 32, i.e., 8 values per phase interval between
adjacent QPSK symbols: in other words ϑ(i) = 2πi/32,
i = 0, . . . , 31. For Algorithm 2, L = 8 and ϑ(i) = 2πi/32,
i = 0, . . . , 7, accounting for a phase interval of only π/2. In
fact, it is well known that for a time-invariant channel phase,
the symmetry of DE-QPSK enables to perform detection
accounting only for a phase interval (0, π/2) [8], [21]. The
particular structure of Algorithm 2, i.e., the fact that the
normalization is carried out on a “per-coherent trellis” basis,
allows to perform this complexity reduction at the cost of a
limited penalty also in the presence of a time-varying channel
phase.

In Fig. 3, Algorithms 1 and 2 are investigated for detec-
tion of DE-QPSK without an outer code. The information
symbols are transmitted in blocks. The bit error rate (BER)
performance relative to the first 120 bits in the transmitted
blocks is shown, as a function of the bit position within the
block. The bit SNR Eb/N0 is equal to 6 dB. The inter-mix
interval is N = 15 and the phase noise parameter σθ = 5◦.
One can note that the curves exhibit periodicity 2N , since each
QPSK symbol encodes 2 bits. In particular, for both algorithms
the BER is lowest at the epoch in the middle between two
consecutive metric mixes. Algorithm 1, moreover, exhibits a
floor, since bits corresponding to the metric mix epochs, i.e.,
bits at positions l2N and l2N + 1, are randomly decided.
This floor has little impact in a concatenated coded scheme, as
considered in the following paragraphs, since bits at positions
l2N and l2N + 1 are characterized by APP equal to 0.5, i.e.,
they behave as punctured bits.

Algorithm 1
Algorithm 2

10−3

0 20 40 60 80 100 120
Bit Position

B
E

R

10−1

1

10−2

Fig. 3. BER performance at each codeword position for Algorithms 1 and 2
and DE-QPSK. N = 15 and Eb/N0 = 6.0 dB.

We now assume that the information sequence is encoded
by an outer regular (3,6) LDPC code [26]. The codeword
length is set to 6000 bits. The decoder uses a standard LDPC
decoder as an external SISO module which exchanges extrin-
sic information with the DE-QPSK inner detector, where the
proposed SISO algorithms are used instead of a coherent SISO
algorithm for DE-QPSK. This can obviously be interpreted as
a serially concatenated coding scheme. More details on the
considered concatenated system structure can be found in [28].
The maximum number of iterations is set to 100.

In Fig. 4, the performance of the described schemes is
shown in terms of BER versus SNR. The performance for
transmission over an AWGN channel without phase noise,
considering an ideal coherent FB algorithm as inner detec-
tor, is shown as a reference. The remaining curves show
the performance obtained with the proposed algorithms. In
particular, the curves marked as “Alg1” and “Alg2” correspond
to the performance of the schemes with Algorithms 1 and 2,
respectively. For each algorithm, several values of the phase
noise standard deviation σθ (given in degrees in the figure
legend) are considered. In each case, the inter-mix interval
N is heuristically optimized. The results in Fig. 4 show that,
even in the presence of a significant phase noise (for instance,
σθ = 10◦), it is possible to “blindly” process the metrics of
the trellises while still achieving an SNR loss as limited as
1 dB. Heuristically, the optimum value of N turns out to
be inversely proportional to σθ . The results in Fig. 4 show
that Algorithm 2 entails better performance than Algorithm 1.
In particular, for very strong phase noise, i.e., σθ = 10◦,
Algorithm 1 suffers an SNR penalty larger than 1 dB with
respect to Algorithm 2. This is due to the fact that Algorithm 1
completely erases the phase information every N time steps,
whereas Algorithm 2 performs only a “trellis balancing” as
described in Section II-B2.

In Fig. 5, a direct comparison between the performance (in
terms of BER as a function of the SNR) with Algorithm 1
and Algorithm 2, for a fixed value of the inter-mix distance
N = 15, and several values of σθ , is shown. The value N = 15
optimized the system performance at σθ = 5◦, as shown
in Fig. 4. The remaining system and simulation parameters
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Alg. 2, σθ = 3◦, N = 30
Alg. 2, σθ = 5◦, N = 15
Alg. 2, σθ = 10◦, N = 2

Alg. 2, σθ = 0◦, N = 200

Alg. 1, σθ = 0◦, N = 200
Alg. 1, σθ = 3◦, N = 20
Alg. 1, σθ = 5◦, N = 15

Alg. 1, σθ = 10◦, N = 10
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Fig. 4. BER performance of LDPC-coded DE-QPSK schemes where the
proposed algorithms (both Algorithms 1 and 2) are used.

are those of Fig. 4. The BER curves show clearly that for
values of the phase noise parameter σθ lower than or equal to
5◦, decoding convergence is guaranteed for approximately the
same SNR, whereas if σθ > 5◦ convergence is not guaranteed
any longer, i.e., an error floor may appear. In particular, the
error floor characterizing the BER curve corresponding to
Algorithm 2 with σθ = 10◦ is due to the fact that, in order to
cope with a strong phase noise, Algorithm 2 needs a very small
inter-mix interval N , as clearly shown in Fig. 4. From the
results in Fig. 5, one can conclude that the proposed algorithms
are blind with respect to the phase noise intensity as long as
this intensity is lower than that considered in the algorithm
design.

In Fig. 6, the SNR needed to achieve a BER equal to 10−3

is shown as a function of σθ for both considered algorithms.
The system and the simulation parameters are those of Fig. 4.
One can conclude that the proposed algorithms are blind with
respect to the phase noise intensity σθ , as long as this intensity
is lower than a particular value which is a function of N .
Beyond this critical value, the SNR needed to achieve the
given BER value, i.e., 10−3, diverges rapidly.

From the results in Figures 4, 5 and 6, one can conclude
that, in the considered phase-uncertain channel scenario, Al-
gorithm 2 performs better than Algorithm 1. This can be
attributed to the strong approximations made by Algorithm 1
in “erasing” the phase memory at regular intervals, in an en-
vironment in which the phase varies slowly, yet continuously.
This leads to wrong metrics in the proximity of mix epochs,
where the erase operation is carried out. In other words,
Algorithm 1 periodically enforces the strongest metrics among
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Alg.1 σθ =10◦

Alg.2 σθ =5◦
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Alg.1 σθ =1◦
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Fig. 5. BER performance, as a function of the SNR, of the proposed
Algorithms 1 and 2. Several values of σθ are considered and N = 15.
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Fig. 6. SNR needed to achieve BER= 10−3, as a function of σθ , considering
Algorithms 1 and 2.

the trellises, whereas Algorithm 2 keeps the distribution of
the metrics inside each trellis but periodically erases the
different weightings of the trellises. This enables Algorithm 2
to account for channel phase variations during an N -symbol
block.

IV. DETECTION BY MULTIPLE TRELLISES FOR FLAT

FADING CHANNELS

In this section, the flat fading channel is considered. First,
we derive the FB algorithm assuming a Markov chain model
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for the fading channel. Then, we specialize the algorithm
introduced in Section II to the case of flat fading channel, high-
lighting its similarities with the Markov chain-based approach.
Finally, the algorithms are analyzed and their performance is
characterized through numerical results.

A. FB Algorithm for Fading Channels based on Markov
Chains

The time-invariant flat fading model given in (5) can be ex-
tended to a more realistic model with time-varying flat fading.
Accordingly, the discrete-time observable can be expressed as

rk = fk ck + nk (12)

where {fk} is the fading process.5 In the presence of Rayleigh
fading, each fading realization fk can be modeled as a
zero-mean complex circularly symmetric Gaussian RV. We
assume that the fading process {fk} is modeled according
to Clarke [15], [16], with zero mean, unit variance and
autocorrelation function Rf (n) = J0(2πnfDT ), where J0(·)
is the zero-th order Bessel function and fDT is the maximum
normalized Doppler shift which characterizes the speed of the
fading process.

We now outline the derivation of a simple first-order
Markov chain model which approximately describes the evo-
lution of the complex fading process. Several papers deal
with Markov-chain modeling of the fading process—for more
details, we refer the reader to [18], [29], [30] and references
therein. We first partition the complex plane into Nphase angu-
lar sectors [2π i−1

Nphase
, 2π i

Nphase
), i = 1, . . . , Nphase. Then, we

further split each sector into Nampl “ring-shaped” regions. As
a consequence, the complex plane is split into NphaseNampl

sub-domains {Dij} where Dij denotes the domain corre-
sponding to the i-th phase sector and the j-th ring-shaped
region. In Fig. 7, an illustrative example with Nphase = 8
angular sectors and Nampl = 2 ring-shaped regions is shown.

By associating the fading regions with states, it is possible to
describe the evolution of the fading process through the use of
a Markov chain. In general, considering a first-order Markov
modeling for the fading process,6 the total number of fading
states is L = NamplNphase. The probabilities of transition
through different fading states can be computed through proper
numerical integrations. For example, in order to evaluate the
probability of transition from the region Dij to the region
Dkl, one can follow the method in [29], which is accurate as
long as the first-order Markov chain modeling of the fading
process holds and, in turns, corresponds to a scenario where
the fading process is sufficiently slow [18].

Since the fading process is modeled through a Markov chain
whose state corresponds to the current fading subregion Dij , it
is possible to derive a proper FB algorithm for the computation
of the APPs of the transmitted symbols {ak}. A general
formulation accounting for a finite-memory channel depending

5We remark that this discrete-time model can be obtained from the
continuous-time multiplicative fading model assuming that the fading process
has a bandwidth much smaller than the signal bandwidth.

6We remark that the considered approach can easily be extended to higher-
order Markov models of the fading process, at the expense of an increased
number of fading states.
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D22D32
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D41

D51

D52 D61 D71

D81

D82

D72D62

D12

Fig. 7. Partitioning of the fading complex plane into fading regions.

on a generic process {ξk} modeled by a Markov chain can
be found in the Appendix. In particular, the FB algorithm in
the Appendix assumes a channel whose output observables
are independent conditionally on the data sequence and the
parameter sequence. For instance, this is the case for the
fading model in (12), where the observables are conditionally
independent and Gaussian.

In the following, we will assume that the symbols {ak} are
quaternary and encoded by a DE-QPSK encoder before trans-
mission. The channel parameter ξk corresponds to the fading
region f̂k ∈ {Dij} i = 1, . . . , Nphase, j = 1, . . . , Nampl.
The extended state described in the Appendix here is σk =
(sk, f̃k), where sk is the DE-QPSK encoder state at epoch k,
and the fading region f̃k has been substituted to the generic
parameter ξk.

The two essential ingredients needed for actual implemen-
tation of the Markov chain-based SISO algorithm in a scenario
with fading are the transition probability P{f̃k+1|f̃k} between
the Markov chain states f̃k and f̃k+1, obtained by suitably
modeling the fading Markov chain, and the conditional PDF
of the observable p(rk|ak, f̃k, sk), given by the following

p(rk|ak, f̃k, sk) =
p(rk, f̃k|ak, sk)

p{f̃k}

=

∫
f̃k

p(rk|f, ak, sk)pf (f)df∫
f̃k

pf (f)df

(13)

where the independence between the fading process and the
DE-QPSK coded data sequence ck is exploited, p(rk|f, ak, σk)
is a Gaussian PDF (with mean fck), and pf (f) is the PDF of
the fading coefficient.

B. Multi-Trellis SISO Algorithm for Fading Channel

The concept of detection by multiple trellises can be now
directly applied to a fading channel. In particular, as for the
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phase-uncertain channel, if the channel is characterized by
block-constant fading, Algorithm 1 is an optimum solution.
In order to simplify the metric computation, the integral in
(13) will be approximated by a finite sum of simple Gaussian
metrics. We observed that this can lead to numerical problems
at high SNR, where the noise variance becomes small. To
overcome this problem, one may increase the accuracy of
the numerical integration techniques used to compute (13),
or prevent the variances of the Gaussian pdfs to become too
small and trigger numerical problems.

Observe that every concatenated scheme with a powerful
error correction code is characterized by a bad BER perfor-
mance below a given SNR threshold and an operational BER
performance beyond this threshold.7 If the detection algorithm
assumes a given, fixed, SNR value, one is guaranteed to obtain
the performance of the same detection algorithm using the
correct SNR value only when the actual SNR value and the
fixed one are equal. Even with fixed SNR value assumed by
the detection algorithm the BER as a function of the SNR
is still expected to be monotonically decreasing. Therefore, if
the assumed SNR is fixed to guarantee an operational BER at
that very SNR value, the fixed SNR algorithm will guarantee
operational BER beyond this SNR as well. As a consequence,
we chose to fix the variance of the Gaussian metric, i.e.,
the SNR assumed by the detection algorithm, and to make
it independent of the actual noise variance. This allows to
overcome numerical problems and leads to a completely blind
detection algorithm, which does not need either knowledge of
fading or noise statistics.

C. Numerical Results

Unlike several works in the literature, where the fading
process used in the simulations is generated according to the
considered Markov-chain model, in the following the fading
process used in the simulations is generated according to a
realistic Clarke model.

In order to verify the effectiveness of the proposed detection
by multiple trellises approach, we consider its application
to the cases with uncoded DE-QPSK and with a regular
(3,6) LDPC code with codeword length 32000—this length
is necessary in order to combat long fades. The code should,
in fact, “observe” a received sequence long enough to accu-
rately describe the statistics of the channel, i.e., to exploit its
ergodicity. We performed simulations considering Nampl = 2
and Nphase = 16 and considering Algorithm 1 and the
proposed simplified metric scheme. Algorithm 2, in the case
of fading channel, exhibits unacceptable performance, and,
therefore, is not shown. This is due to the fact that the mix
operation in Algorithm 2 assigns large weights to trellises
characterized by incorrect fading amplitudes. The considered
normalized Doppler rate fDT is equal to 0.01, corresponding
to a moderately fast fading channel. The obtained results are
shown in Fig. 8. The multi-trellis curve is obtained assuming
a noise variance value corresponding to an SNR of about
7 dB. The inter-mix interval is heuristically optimized by trial

7In actual systems, the transition from bad BER performance to operational
BER is not perfectly sharp, i.e., it happens within a small SNR region, usually
referred to as waterfall region.
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Fig. 8. BER performance, as a function of the SNR, in a scenario with
a flat Rayleigh fading channel. Various schemes are considered: (i) BPSK
with perfect CSI, (ii) LDPC-coded QPSK with Markov chain-based FB, (iii)
an LDPC-coded QPSK with multi-trellis SISO, and (iv) LDPC-coded QPSK
with perfect CSI.

and error and set to 20. In every LDPC-coded scheme, 30
decoding iterations are considered at the receiver side. The
Markov chain-based algorithm presented in Section IV-A is
also investigated and its performance is shown. As a reference,
the performance of (i) the described concatenated scheme and
(ii) an uncoded BPSK signaling, both considering perfect CSI,
is also shown. As one can immediately see, the performance
loss incurred by the use of the proposed detection by multiple
trellises can be quantified at about 1 dB in comparison with
the Markov-chain model performance and 1.8 dB compared
with the perfect CSI scenario.

V. COMPLEXITY ANALYSIS AND DISCUSSION

In this section, we investigate the complexity of the pro-
posed multi-trellis SISO algorithms with a simple-minded, yet
meaningful, approach. In order to highlight the advantages of
the proposed algorithms, we compare their complexities with
that of the general finite-memory approach to detection for
channels affected by uncertain parameters described in [9] and
with the Markov chain-based approach. We will evaluate the
computational complexity in terms of elementary operations
(i.e., additions or multiplications) per trellis section during a
single recursion.

We preliminarily denote as Compcoher the complexity of an
FB algorithm used by a coherent detector. It is possible to
show that this complexity is

Compcoher = Θ(ΞM)

where M is the cardinality of the information symbol set and
the notation Θ(·) stands for “on the order of.” For simplicity,
we assume that the complexity of the coherent receiver is the
same in terms of multiplications and additions. Moreover, for
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ease of comparison between different algorithms, we assume
that Compcoher is exactly ΞM .

We first evaluate the complexity of the proposed multi-trellis
SISO algorithms, namely Algorithm 1, described in Subsec-
tion II-B1, and Algorithm 2, described in Subsection II-B2.
For both algorithms, L trellis diagrams (each one equal to
that of the coherent FB algorithm) are used. Therefore, this
increases the complexity of the proposed SISO algorithms to
L Compcoher. At this point, one has to consider the additional
complexity of the mix operations.

• For Algorithm 1, from the updating rule (7) one can
conclude that 1 addition (over L quantized values of the
channel parameter, i.e., phase or fading) for each state has
to be carried out. Therefore, ΞL supplementary additions
have to be considered. Since a mix operation takes place
every N transitions, the complexity increase, in terms of
elementary operations per trellis section, is ΞL/N .

• For Algorithm 2, from the updating rule (8) one can
conclude that 1 addition (over Ξ states) for each com-
ponent trellis diagram has to be performed. At this
point, one division has to be carried out per state and
trellis component. Therefore, a mix operation requires,
overall, LΞ additions and LΞ divisions. The complexity
increase, per trellis section, is therefore, 2LΞ/N in terms
of elementary operations.

The finite-memory FB algorithm described in [9] is char-
acterized by a “trellis expansion,” in order to partially take
into account the channel memory. This memory expansion is
described by a finite-memory parameter Nfm, which character-
izes the number of additional information symbols considered
in the definition of a state in the trellis diagram at the receiver.
The number of states for the computation of the state metrics
in a detector/decoder, where a finite-memory FB algorithm
is used, is ΞMNfm . Therefore, one can conclude that the
complexity increases proportionally to MNfm . Denoting by
Compfm the complexity per trellis section (either in terms of
additions or multiplications/divisions) in each recursion of a
finite-memory FB algorithm, one can write:

Compfm = CompcoherM
Nfm = ΞMNfm+1.

The complexity of the first-order Markov chain model [18]
analyzed in Section IV is proportional to the number of states
of the coherent FB algorithm Ξ, to the cardinality of the input
symbol space M , and to the square of the number of quantized
values of the channel parameter, i.e., L2. In other words, the
complexity of a Markov chain-based FB algorithm is given by

CompMC = CompcoherL
2 = ΞML2.

The complexity of the proposed multi-trellis SISO al-
gorithms, the finite-memory FB algorithm in [9], and the
Markov chain-based FB algorithm are summarized in Table I.
We remark that the complexity computation is, in practice,
implementation-dependent. A noteworthy case is the imple-
mentation of the considered algorithms on a generic purpose
processing unit, which usually leads to the serial computation
of the quantities involved in the FB algorithms. In particular, it
is well known that, due to the negative exponential behavior of

TABLE I
COMPLEXITY PER TRELLIS SECTION, DURING A SINGLE RECURSION, OF

VARIOUS ALGORITHMS.

Algorithm Complexity

SISO Algorithm 1 ΞML +
ΞL

N

SISO Algorithm 2 ΞML +
2ΞL

N

Finite-memory ΞMNfm+1

Markov Chain ΞML2

the forward and backward state metrics, periodic normaliza-
tion of these metrics, carried over all states and all trellises,
is needed. This normalization takes place at arbitrary time
epochs, but usually every 10–100 time steps. This normaliza-
tion could be easily modified in order to implement the metric
mixes described in this paper.

Moreover, the proposed multi-trellis SISO algorithms are
intrinsically highly parallelizable. Exploiting properly this
characteristic in the implementation could lead to significant
increase of the decoding throughput, as desirable in future
high data-rate wireless communication systems.

At this point, a careful reader can observe that since the
finite-memory approach in [9] is very different from the multi-
trellis SISO algorithms proposed in this paper, a meaningful
complexity comparison between these algorithms should be
carried out for a given performance level. To this purpose,
we consider a complexity comparison for the same BER
performance at the same SNR, using the same LDPC-coded
DE-QPSK scheme used in Section III-B, in a scenario with
phase noise. As shown in Fig. 9, the performance obtained
by Algorithm 2 with N = 15 and L = 8, in a phase
noise scenario with σθ = 5◦, is approximately approached
by the finite-memory FB algorithm with Nfm = 3 (within a
small fraction of a dB). The remaining simulation parameters
are set as in Section III-B. The complexity of Algorithm 2
is ΞML + 2LΞ/N � 32Ξ, whereas the complexity of the
finite-memory FB algorithm is ΞM3+1 = 256Ξ. This large
difference is due to the fact that the complexity of the finite-
memory FB algorithm grows exponentially with the memory
length (quantified by Nfm). This exponential increase of the
complexity can be seen as a paradox characterizing the finite-
memory approach, since slower phase processes require larger
values of Nfm. As a consequence, good channels, exhibiting
slow phase variations, need larger complexity than bad chan-
nels, with high phase dynamics. The proposed multi-trellis
SISO algorithms are a pragmatic solution to overcome this
paradox, since high values of N require lower complexity at
the receiver.

In [8], [31], [32], other low complexity approaches to
combat phase noise impairment are proposed, on the basis of
a block-constant phase assumption. The additional strength of
our multi-trellis SISO algorithms consists of their capability to
take into account possible parameter changes within a block,
in conjunction with the complete blindness with respect to the
channel statistics.
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Fig. 9. BER performance of LDPC-coded DE-QPSK schemes where
Algorithm 2 and a finite-memory (f.m.) detection algorithm are used. The
phase noise parameter is σθ = 5◦.

VI. CONCLUSIONS

In this paper, we have introduced a novel approach, referred
to as detection by multiple trellises, suitable for transmission
over channels affected by time-varying parameters. After
introducing the basic idea in an intuitive way, we have
considered two relevant applications: detection for phase-
uncertain and fading communications. The idea of the pro-
posed approach consists of using several parallel trellises,
over which coherent FB algorithms, each associated with a
proper quantized value of the stochastic parameter, run. In
order to cope with time-varying processes, the forward and
backward metrics in the parallel FB algorithms are properly
“mixed” together at regular intervals. For a scenario with phase
noise, two multi-trellis SISO algorithms have been proposed,
considering uncoded and LDPC-coded DE-QPSK transmis-
sion over an AWGN channel with Wiener phase noise. In the
scenario with fading, after deriving an FB algorithm based
on a simple first-order Markov chain model for the fading
process, we have considered its multi-trellis extension. In all
cases, DE-QPSK has been the used modulation format. An
interesting feature of the proposed algorithms is the fact that
they do not require knowledge of the statistics of the stochastic
parameter (either the phase or fading), i.e., they are blind.
Given their low complexity and high parallelizability, the
proposed multi-trellis SISO algorithms are attractive for future
high-throughput wireless communication systems. While the
derivations have been carried out for FB algorithms [25], the
proposed approach extends directly to trellis-based sequence
detection algorithms, such as the Viterbi algorithm [33].

APPENDIX

In this appendix, an extension of the standard FB algorithm
to a channel whose statistics at epoch k are a function of the
state ξk of a Markov chain is described. Let us assume that,
given {ξk}, the modulator-channel pair can be described by an
FSM, in the sense that the observable statistics are functions

of the state σk of an FSM whose input is the information
symbol sequence {ak}. Moreover, let us assume that (i) {ak}
and {ξk} are independent and (ii), given {ak} and {ξk}, the
observables are independent. Following the guidelines in [9],
[20], [21], it can be shown that the a posteriori probability of
the symbol ak can be computed as follows:

P{ak|rK
0 } =

∑
(σk,σk+1):ak

βk+1(σk+1)αk(σk) γk(σk, σk+1, ak)

(14)
where, as before, rK

0 denotes the vector of the observables
and σk = (sk, ξk) is the (extended) state of the system; the
notation (σk, σk+1) : ak denotes “the set of all (σk, σk+1)
pairs compatible with the input symbol ak” and the branch
metric γk(σk, σk+1, ak) is defined as

γk(σk, σk+1, ak) = p(rk|ak, ξk, sk) · P{ak} · P{ξk+1|ξk}
(15)

in which P{ξk+1|ξk} is the transition probability between the
Markov chain states ξk and ξk+1, and p(rk|ak, ξk, sk) is the
channel statistical description, i.e., the observable PDF given
the data sequence and the channel parameter ξk. The forward
and backward metrics αk(σk) and βk(σk) are obtained with
the following recursions:

αk(σk) =
∑

(σk−1,ak−1):σk

αk−1(σk−1) γk−1(σk−1, σk, ak−1)

βk(σk) =
∑

(σk+1,ak):σk

βk+1(σk+1) γk(σk, σk+1, ak) .

The FB algorithm in (14) operates on a trellis whose number of
states is the number Ξ of states of the modulator-channel FSM
times the number L of states of the channel parameter Markov
chain. This can be interpreted as a “super-trellis” comprising
L trellises, each with Ξ states.

As special case, if the Markov chain {ξk} is time-varying
and the transition matrix differs from the identity matrix
only at time epochs k = Nl, with l ∈ N, it can be easily
shown that the forward and backward recursions in the above
extended FB algorithm are equivalent to the computation of
L independent forward and backward recursions in the Ξ-
state trellises for N − 1 time steps. Every N time steps, the
recursions involve, in general, all trellises. This corresponds
to a block-constant discrete parameter ξk, which has been
discussed in Section II-B assuming uniform distribution of
the parameter realization. The corresponding super-trellis is
shown in Fig. 1.
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