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Assigning UPDRS Scores in the Leg Agility Task of
Parkinsonians: Can It Be Done Through
BSN-Based Kinematic Variables?

Matteo Giuberti, Member, IEEE, Gianluigi Ferrari, Senior Member, IEEE, Laura Contin, Veronica Cimolin,
Corrado Azzaro, Giovanni Albani, and Alessandro Mauro

Abstract—In this paper, by characterizing the leg agility (LA)
task, which contributes to the evaluation of the degree of sever-
ity of the Parkinson’s disease (PD), through kinematic variables
(including the angular amplitude and speed of thighs’ motion),
we investigate the link between these variables and unified
Parkinson’s disease rating scale (UPDRS) scores. Our investiga-
tion relies on the use of a few body-worn wireless inertial nodes and
represents a first step in the design of a portable system, amenable
to be integrated in Internet of Things (IoT) scenarios, for auto-
matic detection of the degree of severity (in terms of UPDRS score)
of PD. The experimental investigation is carried out considering 24
PD patients.

Index Terms—Inertial sensors, leg agility (LA), Parkinson’s
disease (PD), unified Parkinson’s disease rating scale (UPDRS)
scores.

I. INTRODUCTION
A. Motivation

ARKINSON'’s disease (PD) is the second most com-
mon neurodegenerative disorder after Alzheimer’s dis-
ease. According to the global declaration for PD, 6.3 million
people suffer from PD worldwide [1]. The prevalence of PD
is about 0.3% of the whole population in industrialized coun-
tries, rising up to 1% over the age of 65 and to 4% over 80.
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The clinical picture of PD is characterized by a progressive
deterioration of the motor performance, with the occurrence of
slowness (bradykinesia) and poverty of voluntary movements,
expressionless face, “resting” tremor, stooped posture, festinat-
ing gait, and axial instability. Asymmetry of motor symptoms
is a typical feature of PD. Although the symptoms can be
improved by dopaminergic drugs, such as L-dopa, over time its
effectiveness worsens and motor fluctuations may occur as well
as dyskynesias and involuntary movements. Furthermore, vari-
ations in the severity of these symptoms are observed during
dosing intervals.

The clinical picture assessed during an outpatient check up
in the medical office poorly represents the real (actual) clin-
ical status, especially in fluctuating patients. Indeed, repeated
daily assessments of motor symptoms would be required and
this is usually done by asking the patient to annotate the num-
ber of hours of OFF (i.e., when drugs are not effective) and ON
condition (i.e., when they are effective), but this is not fully
reliable due to perceptual bias. For this reason, in recent years,
a number of studies on automatic systems to evaluate motor
fluctuations of PD patients have been developed [2]. The most
common approach is leveraging sensing technology to automat-
ically evaluate the performance of specific motor tasks, such
as “sit-to-stand” [3], [4], gait analysis [5], [6], and tremor [7].
The basic idea is to develop a system able to get an evalua-
tion of the motor status of a patient as close as possible to
the evaluation of neurologists when they apply semiquantita-
tive evaluation scales, such as the unified Parkinson’s disease
rating scale (UPDRS) [8].

B. Leg Agility Task

Although several works have appeared focusing on the eval-
uation of the performance of specific motor tasks, such as
“sit-to-stand” [3], [4], gait analysis [5], [6], and tremors [7], to
the best of our knowledge, limited attention has been devoted,
in the literature, to the evaluation of the leg agility (LA) task
[91-[13].

1) Task description: The LA task aims at evaluating the
severity of motion impairments of a PD patient, with specific
focus on the lower limbs. In this exercise, the patient is asked
to sit on a chair provided with rigid backrest and armrests. The
patient must place both his/her feet on the floor in a comfort-
able position. The exercise consists in alternately raising up and
stomping the feet on the ground, as high and as fast as possible.
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TABLE I
UPDRS MAPPING
[ UPDRS | Amplitude | Slowing | Hesitations [ Interruptions | Freezing |
0 Nearly constant No 0 0 0
1 Decrements near the end Slight >1 1,2 0
2 Decrements midway Mild - 34,5 0
3 Decrements after first tap | Moderate - >6 >1
4 Always minimal or null Severe = Always =

Ten repetitions per leg must be performed while sitting on the
chair in order to test each leg separately. The examiner should
first train the patient, showing him/her the correct execution of
the exercise, stopping as soon as the patient starts. The signif-
icant parameters that have to be measured, independently for
each leg, are the speed, the regularity, and the amplitude of the
movement. Moreover, differences can be observed between the
movements performed with the different legs. For this reason,
in the following, we will distinguish between right LA (RLA)
and left LA (LLA) tasks.

2) UPDRS Evaluation: According to the guidelines of the
Movement Disorder Society (MDS), the LA task must be eval-
uated observing the following parameters: amplitude, slowing,
hesitations, interruptions, and freezing. In particular, in Table I,
an attempt at mapping these parameters with an UDPRS eval-
uation is presented. To this end, note that UPDRS scores are
integer values that range from O (no problems) to 4 (worst
conditions). While the first feature (i.e., amplitude) directly cor-
responds to a physical measure, the quantitative evaluation of
the other ones typically relies on the experience of neurologists.
Therefore, inter-neurologist score variations cannot be a priori
excluded.

C. Paper Contribution

In this work, we focus on the characterization of the LA task
in PD patients, devising an approach for quantitative evalua-
tion of relevant kinematic features representative of the UPDRS
score of a patient. This work extends the preliminary results
presented in [12] and [13], including also a novel frequency
domain analysis, which allows to identify more accurately rel-
evant kinematic features representative of the UPDRS level.
After showing, with direct comparison with an optoelectronic
system, that the LA task can be effectively characterized by
analyzing the inclination and angular velocity of the thighs,
we characterize the kinematic variables associated with the
thighs” motion. We first present a “single subject” experimen-
tal characterization the LA task, comparing directly a healthy
patient with a PD patient, highlighting similarities and differ-
ences. Then, we perform a “large-scale” (considering 24 PD
patients) experimental analysis, identifying the most significant
kinematic features associated with the LA task characterization,
by mapping them with the UPDRS scores attributed by expert
neurologists. The encouraging experimental results, suggesting
that the UPDRS score might be concisely characterized (e.g.,
as a decreasing function of the “power” of a movement), moti-
vate the design and implementation of an automatic UPDRS
detection system based on the use of a few body-worn inertial
sensors. Moreover, the use of wireless inertial sensors makes

such a portable system easily integrable in Internet of Things
(IoT) scenarios, allowing directly remote monitoring and data
sharing.

D. Paper Structure

This paper is organized as follows. Section II describes the
experimental setup, detailing the used hardware and the consid-
ered subjects (both Parkinsonians and healthy). In Section III,
the LA task is characterized by, first, showing the equivalence
between heel elevation (as measured with an optoelectronic
system) and thigh inclination (as measured with the wireless
inertial sensor-based system) and then, by extracting relevant
kinematic features, in both time and frequency domains. In
Section IV, the obtained experimental results are presented and
commented. Finally, Section V concludes this paper.

II. EXPERIMENTAL SETUP
A. Hardware Description

The experiments were carried out at the San Giuseppe
Hospital, Istituto Auxologico Italiano, in Piancavallo (Verbania,
Italy), at a fully equipped last generation motion analysis labo-
ratory. In particular, the kinematic analysis was carried out, in a
comparative way, considering 1) an optoelectronic system; and
2) a wireless body sensor network (BSN)-based system, based
on a few nodes (equipped with inertial and magnetic sensors)
placed over the body.

The optoelectronic system (Vicon, Oxford, UK) performs a
real-time processing of images from six fixed infrared cameras
(with sampling rate equal to 100 Hz) to extract the reflectance of
passive markers (with a diameter of 0.015 m), which are posi-
tioned on specific anatomical landmarks of the subject. Prior
to testing, the system was calibrated to assure accuracy and to
allow the computation of each marker’s 3-D coordinates. The
average error on the computation of the difference between
measured and actual distances of two markers fixed at the edges
of a rigid bar was within 0.00021 m (with standard deviation
equal to 0.0001 m). The calibrated volume for this application
had: length equal to 3.5 m (x-axis of the laboratory reference
system); height equal to 2 m (y-axis of the laboratory refer-
ence system); and width equal to 2 m (z-axis of the laboratory
reference system).

The BSN is formed by Shimmer (sensing health with intel-
ligence, modularity, mobility, and experimental reusability)
nodes [14]. A Shimmer node is a small and low-power wire-
less sensing platform that can capture and communicate a wide
range of sensed data in real time. The main module is a compact
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TABLE II
CONSIDERED SUBJECTS FOR A DIRECT (ONE-TO-ONE) COMPARISON BETWEEN PD AND HEALTHY SUBJECTS

[ Subject | Sex [ Age | Weight (kg)| Height (m) [ UPDRS score for LA |  Exercises |
A (healthy) | Female | 40 56 171 0 1xRLA, 1xLLA
B (PD) Male 42 85 1.80 1 (bilaterally) 1xRLA, IxLLA

wearable device (size: 0.053 m x 0.032 m x 0.025 m; weight:
0.022 kg) equipped with: a TI MSP430 microcontroller; a blue-
tooth radio (roving networks RN-42) and an IEEE 802.15.4
compliant radio (TT CC2420); an integrated 2 GB microSD
card slot; a 450 mAh rechargeable Li-ion battery; and a triax-
ial accelerometer (freescale MMA7361). Moreover, the device
is designed so that different external sensing modules can
be easily connected. In particular, the 9DoF kinematic sensor
expansion module, which is supplied with a triaxial gyro-
scope (InvenSense 500 series) and a triaxial magnetometer
(Honeywell HMC5843), has been used.

B. Subjects

1) Single-Subject Analysis: We first evaluated the LA tasks
performed by two individuals: 1) healthy subject (subject A);
and 2) a PD patient (subject B). Subject B has a disease duration
of 4 years and does not present motor fluctuations. His Hoehn &
Yahr score was 2 and the UPDRS score for LA was 1 bilaterally.
The score of 1 was assigned because of the presence of one
hesitation of the movement and a slight slowing during the limb
motion. In Table II, we summarize the data of the considered
subjects, indicating also the performed exercises.

2) Large-Scale Analysis: The large-scale experimental
results carried out for this work refer to a group of 24 PD
patients (17 males and 7 females) with age ranging from 31
years to 79 years (with mean equal to 65.9 years and standard
deviation equal to 12.3 years). The patients have been asked to
perform 10 repetitions of LA per leg, providing them instruc-
tions as described in Section I-B1. A total of 72 LA trials
(which comprise 36 RLA and 36 LLA) have been collected.!
The patients’ UPDRS scores, assigned by neurologists, ranged
from O to 3.5. To this end, note that, unlike what the MDS doc-
ument indicates, noninteger (x.5-type) scores have also been
used in the case of indecision between two consecutive integer
UPDRS values. In particular, the distribution of the 76 UPDRS
scores assigned to the considered LA trials is shown in Fig. 1.

C. Acquisition and Optoelectronic Validation

As anticipated in Section II-A, spatial and temporal parame-
ters, along with the kinematic of the user lower limbs, have been
monitored and evaluated using the considered BSN-based iner-
tial system and a reference optoelectronic system. Specifically,
the optoelectronic system has been used to estimate the 3-D
position of passive markers positioned on specific anatomical
landmarks of the subject. Passive markers data were collected
on all body segments (pelvis, thigh, shank, and foot bilaterally).

Note that, even if only 24 patients have been considered, some patients have
performed the LA task multiple times, at different times and/or for different PD
conditions.

35 T T T T T T T T T

Percentage of occurrence (%)

1.5 2 2.5
UPDRS score

Fig. 1. Distribution of the 76 UPDRS scores assigned to the LA trials consid-
ered in the experimental analysis.

Fig. 2. Overview of the experimental testbed applied to a monitored sub-
ject. (a) Configuration for single-subject optoelectronic validation. (b) Final
configuration for large-scale analysis.

The Davis marker-set was chosen as the protocol of choice
to acquire the motion of lower limbs and trunk based on [15]
and [16].

Concerning the inertial system, a Shimmer node (with sam-
pling rate equal to 102.4 Hz) has been attached to each thigh
of the monitored user with Velcro straps. The Shimmer devices
have been placed trying to align the plane defined by the z- and
y-axes of the device with the frontal plane of the user and trying
to align one of the two axes with the direction of the femur. For
ease of clarity, the placement of Shimmer nodes on the patient
thighs is shown in Fig. 2.

In addition to the markers specified in the Davis protocol,
two groups of three markers are mounted on two frames fixed
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Fig. 3. Three orthogonally positioned reflective markers positioned over a
Shimmer node.

on two Shimmer devices (for a total of six additional markers).
The three reflective markers are fixed on each Shimmer device
through a frame of orthogonal rods of equal lengths (aligned, as
precisely as possible, with the reference system of the Shimmer
device), as shown in Fig. 3. The estimation of the 3-D posi-
tions of the markers of a frame (with the optoelectronic system)
allows to estimate the reference orientation of the device, which
is used as ground truth for the actual Shimmer orientation. We
remark that, because of imperfections in the frame design (i.e.,
the rods could not be perfectly orthogonal or have the same
lengths), a “best-fit” orientation is estimated [17]. Furthermore,
due to a possible misalignment between the Shimmer reference
system and the frame, a calibration step is performed once (at
the beginning of each exercise) in order to estimate the fixed
rotation between the two reference systems. This rotation is
then applied to align the following measurements.

Finally, the inertial and optoelectronic systems (which are
already independently synchronized) are jointly synchronized
by computing the angular velocity of every optical frame
and comparing it with the angular velocity measured by the
corresponding Shimmer. The estimated time shift value is deter-
mined as the one which maximizes the correlation of the two
signals.

III. LEG AGILITY CHARACTERIZATION

A. Equivalence Between Heel Elevation and Thigh Inclination:
Optoelectronic Validation

According to the guidelines of the MDS, the LA task of
the UPDRS should be evaluated by observing specific sig-
nificant variables. As an example, the amplitude of the heel
elevation and the speed of each repetition should be monitored,
specifically focusing on their variations along the duration of
the exercise. Furthermore, hesitations, interruptions, and freez-
ing of the movement should also be evaluated. As shown in
Table I, general rules can be easily constructed in order to
define an unambiguous mapping between observed variables
and UPDRS scores.

These variables can be quite easily extracted from optical
data just observing the estimated 3-D positions of each marker
placed on the subjects’ heels (one per heel) and, in particu-
lar, its “vertical” component, denoted as zy [dimension: (m)],
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which then indicates its elevation. To this end, a segmenta-
tion of the LA data, manually performed upon frame-by-frame
observation of the videos recorded for each session, is neces-
sary. Hesitations, interruptions, and freezing of the movement
are more difficult to define but they can generally be associated
with sudden variations, fluctuations, or pauses in zy and in the
linear “vertical” velocity vy £ dzn /dt [dimension: (m/s)].

First, we show that, in order to analyze the LA task, it is
sufficient to consider the Shimmer nodes positioned over the
thighs. In order to do this, we verify that the analysis of thighs’
kinematic (measured through the inertial system) is actually
equivalent to that of the heels’ kinematic (measured through
the optoelectronic system).

To this end, the 3-D orientation of a Shimmer device is
estimated through an orientation filter, based on a gradient
descent algorithm, which properly weighs the measurements
of the three sensors of the Shimmer (i.e., accelerometer, gyro-
scope, and magnetometer) [18]. The inclination # [dimension:
(deg)] of the thigh is then computed as the angle between the
Shimmer axis (parallel to the femur direction) and the world
vertical axis, reduced by 90°—this is expedient to measure 0°
when the subject is sitting. Moreover, the angular velocity of the
thighs, directly measured through the Shimmer’s gyroscope, is
considered. In particular, we define as w [dimension: (deg/s)]
the component of the angular velocity measured around the
Shimmer axis perpendicular to the femur direction and lying
in the frontal plane of the user.

At this point, 2z is compared to 6 and vy is compared to
w. For both subjects A and B introduced in Section II-B1, the
correlation between zy and 6 is between 0.98 and 0.99 and the
correlation between vy and w is between 0.93 and 0.98, respec-
tively, showing then a strong correlation between heels’ optical
data and thighs’ inertial data—no graph is shown for lack of
space. Therefore, this motivates the use, in the following anal-
ysis, of the signals extracted from the Shimmer nodes of the
thighs, i.e., 8 and w.

In order to highlight the accuracy of the estimation of the
thigh inclination 6 provided by the orientation filter acting on
Shimmer data, a direct comparison between the inclination
estimated through the optoelectronic system (by means of the
orthogonal frame of markers shown in Fig. 3) and that esti-
mated through the inertial sensor has been performed, showing
an average root-mean-square error (RMSE) of 1.75° (with a
standard deviation of 1.32°). For the sake of clarity, in Fig. 4,
the thigh inclination 6, estimated using both the inertial and the
optical systems, is also shown for an illustrative LA trial. It is
easy to see that, even if the subject movement presents a high
dynamicity, the error between the inclination measured with
the two systems is almost negligible. Therefore, the analysis
conducted in the following will be based on inertial data.

B. LA Features in the Time Domain

Upon frame-by-frame observation of the videos recorded for
each session (execution of the LA task by a patient), the inclina-
tion signals have been manually segmented in order to extract
information about single repetitions within the LA task. This
segmentation allows to define three time labels, denoted as
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— Inertial system (Shimmer)
- — Optoelectronic system (Vicon)
10p
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Time (s)

Fig. 4. Direct comparison between the inclinations estimated through opto-
electronic (Vicon) and inertial (Shimmer) systems for an illustrative LA
trial.

ts(r), tg(r), and tp(r), associated, respectively, with the start,
the end, and the epoch of maximal thigh inclination of the rth
LA repetition (r € {1,2,...,10}).

Starting from the previous labels and the inclination signal,
for each repetition r (r € {1,2,...,10}) of the LA (either RLA
or LLA) the following features, relative to the time domain, can
be straightforwardly computed.

1) The angular amplitude O(r) [dimension: (deg)]

s O(r) +6(r)

o) £ =7
where
OA(r) 2 0(tp(r)) - 0lts(r)) M)
On(r) 2 0(tp(r) — O(ts(r)). @

2) The angular speed of execution £2(r) [dimension: (deg/s)]

Q(r) & @A(T)TE?D(’") _

Oa(r) +Op(r)
tp(r) —ts(r)

Furthermore, for each pair of consecutive repetitions, say  and
r+1 (@ e{l,...,9}), of the LA (either RLA or LLA) the
following features can be computed.

1) The rth pause of execution P(r) [dimension: (s)]

P(r) & ts(r+1) —tp(r).
2) The rth regularity of execution R(r) [dimension: (s)]
R(r) £tp(r+1) —tp(r).

For ease of clarity, in Fig. 5, some of the just introduced
kinematic variables are shown for two illustrative consecutive
repetitions of LA, say r and 7 + 1. Finally, if we jointly con-
sider the RLA and the LLA repetitions of the same patient, for
each repetition r (r € {1,2,...,10}) of the LA, the following
features can also be computed.
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I Time

Fig. 5. Graphically intuitive representation of some of the involved kinematic
variables. Two illustrative consecutive repetitions of LA are shown together
with the corresponding segmentation events (red crosses).

1) The relative difference of the angular amplitude between
LLA and RLA Dg 1,r(r) [adimensional: (%)]

Do Lr(r) £ Orra g}lmil)zm(r)

2) The relative difference of the angular speed between LLA
and RLA Dq 1,r(r) [adimensional: (%)]

- 100.

Since a single LA repetition may lead to misleading indica-
tions about the execution of the whole LA task, the following
average features (obtained by averaging, over consecutive rep-
etitions, the features introduced above) are considered in the
following experimental analysis?:

0e XL 00 s X000

- 100.

10 10
pa Z?:l P(r) RA ZE:I R(r)
9 9
10 10
A Zr:l D&LR(T) A Zr:1 DQ,LR(T)

D = —— .
10 LR 10

In addition, the following standard deviations (with the same
dimensions) of some of the previous features are also consid-
ered:

10 10
@SD 2 \/Zr_l(@éT) - @)2 QSD S \/Zr_l(QéT) — Q)2

9 9
P [ TREO PR [T B2

We also introduce the repetition frequency F' [dimension:
(Hz)], defined as follows:
Fa 10
te(10) —ts(1)
2From a notation viewpoint, the symbols used for average features are

the same of those of repetition-based features, but the dependence from 7
disappears.

Deoir =




46

2

N

L

>

[$)

=

[

3

o

o

w

1
0 LA trials (ordered and grouped by UPDRS scores)
(@)-¢

g 154
=4

©
2104
2]

3

£ 5
£

<

Frequency (Hz)

" LA trials (ordered and grouped by UPDRS scores)

(c)-0

IEEE INTERNET OF THINGS JOURNAL, VOL. 2, NO. 1, FEBRUARY 2015

Frequency (Hz)

LA trials (ordered and grouped by UPDRS scores)

(b)-w

0 trials (ordered and grouped by UPDRS scores)

(d)-w

Fig. 6. One-sided amplitude spectra of 0 (i.e., inclination of the thigh) and w (i.e., angular velocity of the thigh) for different LA trials: (a) and (b) 2-D and (c) and
(d) 3-D representations. Magnitudes of the spectra are mapped to a color that ranges from blue (lowest values) to red (highest values). The LA trials are ordered
and grouped by UPDRS scores (from 0 to 3.5). Groups of spectra corresponding to different UPDRS scores are separated either (a) and (b) using a vertical red

line or (c) and (d) skipping a line in the graphs.

Note that, for each LA trial, two values of ©, ), P, R, and F
are computed (namely, one for the RLA and one for the LLA),
whereas only one value of Dg 1,r and Dq 1R is computed.3

C. Leg Agility Features in the Frequency Domain

While the features considered in Section III-B belong to the
time domain, we now focus on the characterization of the LA
task by extracting relevant information on the UPDRS value in
the frequency domain.

For the following frequency analysis, the signals 6(t) (i.e.,
the inclination of the thighs) and w(t) (i.e., the angular veloc-
ity of the thighs), introduced in Section III-A, are consid-
ered. Specifically, the latter is directly measured through the
Shimmer gyroscope and is defined as the component of the
angular velocity measured around the Shimmer axis perpendic-
ular to the femur direction and lying in the frontal plane of the
user. The considered signals § and w are properly segmented in
order to start at the initial instant of the first LA repetition and
to end at the final instant of the last LA repetition.

31n the large-scale analysis considered in Section IV-B, 72 values of ©, €2,
P, R, and F" will be available, whereas 36 values of Dg 1,r, and Dq 1,r will
be available. Finally, a UPDRS score u € {0,0.5,1,1.5,2,2.5,3,3.5,4} will
be assigned to each of the 72 LA trials.

The spectra [namely, the discrete Fourier transforms,
(DFTs)] of 6 and w (properly centered on their means) have
been computed using a fast Fourier transform (FFT) algo-
rithm for every leg of every patient. More formally, denoting
x € {0,w}, the hth component of the spectrum Xppr of the
signal = is computed as follows:

N-1
Xpprp = Y ape PF =0 N-1 ()

n=0

where IV is the length of = (and, consequently, the length of
X¥rT,1). The amplitude spectrum (which we will just con-
sider in the following) is then easily computed by dividing the
absolute value of Xpp by NV

| XFrr|

X = N “)

The obtained spectra have been then grouped and ordered
according to the UPDRS score of the corresponding patient. All
the computed spectra of § and w are shown, using a one-sided
representation, in Fig. 6. For these spectra, both 2-D [(a) and
(b)] and 3-D [(c) and (d)] representations are provided. It may
be observed that the spectra amplitudes for both 6 and w gener-
ally decrease moving from low UPDRS scores to higher ones.
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Fig. 7. Comparison, over ten repetitions, between Subject A (healthy) and
Subject B (PD), in terms of: (a) relative angular amplitude difference (percent-
age) between the two legs and (b) relative angular speed difference (percentage)
between the two legs.

To this end, in our analysis, we will take into account a new fea-
ture, i.e., the spectrum power. More formally, for the spectrum
X, its power Px is computed as follows:
1 Nl
_ 2

h=0

In the following, for ease of understanding when X is the spec-
trum of either 6 or w, the used notation will be Xy or X,
respectively.

IV. RESULTS AND DISCUSSION
A. Single-Subject Analysis

First, we analyze the amplitude and the speed of each rep-
etition, indicated in the MDS’s UPDRS document as the main
variables to be observed in the LA task. In Fig. 7(a), the differ-
ence in angular amplitude, expressed in percentage, is shown
for each repetition (from 1 to 10), comparing directly Subjects
A and B. It can be noticed that Subject A does not present a
biased difference between RLA and LLA, whereas Subject B’s
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RLA angular amplitude is always lower than that of LLA. On
average, it can be observed that the relative difference between
RLA and LLA is around 4% for Subject A and around 6% for
Subject B. Similarly, the difference (expressed in percentage)
between the RLA and LLA angular speeds, shown in Fig, 7(b),
reveals that Subject B’s RLA angular speed is 19% lower than
his LLA angular speed. On the contrary, this is generally not
true for Subject A, for which the relative difference is, on
average, around 4%.

According to the results in Fig. 7, it is worth to highlight
that the difference observed between the RLA and the LLA
of a specific subject, even if not specifically referenced in the
MDS’s document as a significant variable, can instead repre-
sent a clear evidence of a nonzero UPDRS score. Therefore, a
possible extension of the UPDRS can already be envisioned just
by introducing this new variable in the LA analysis.

In order to better investigate and characterize the LA repeti-
tions, a qualitative analysis has been carried out by investigating
the angular velocity w along an entire repetition. In particular,
in Fig. 8, the segmented portions of w, corresponding to each
LA repetition, have been normalized in time and value (so that
time goes from 1 to 100 and —1 < w < +1) and overlapped
for (a) Subject A and (b) Subject B, respectively. Even if both
subjects show some macrohesitations (specifically when raising
up the heels), it is easy to see that Subject B’s angular velocity
presents several microhesitations, not easily observable, with a
naked eye, in recorded videos. This can be then another use-
ful kinematic aspect to be taken into account in order to better
investigate the LA task and predict the presence of PD.

B. Large-Scale Analysis

As anticipated in Section I-C, the aim of the following anal-
ysis is to devise an approach to automatically assign a UPDRS
score to a specific LA task. To this end, it is crucial to determine
if there exists a relationship between the UPDRS score assigned
by neurologists to an LA task and the values of the kinematic
variables introduced in Section III. In particular, our goal is to
determine if there exist UPDRS “trajectories,” in the kinematic
(multidimensional) feature space, which clearly allow to detect
the correct UPDRS value.

In Fig. 9, all the average amplitude-speed pairs
{(©;,9)}2, are represented on the same plane. Each
pair is assigned a color corresponding to the related UPDRS
score. Furthermore, the centroids (denoted by the filled stars)
of each cluster of pairs, corresponding to the same UPDRS
score, are also shown. Finally, the black line links the centroids
from O to 3.5 (in addition, a representative red arrow shows a
smoothed version of this trajectory). It can be observed that
uniform clusters of pairs with same UPDRS scores are highly
distinguishable for very low and very high UPDRS scores.
Furthermore, even if clusters of pairs corresponding to different
UPDRS scores tend to overlap, a clear trend is visible showing
that pairs mainly move from the upper right corner (i.e., the
pairs with UPDRS 0) to the bottom part (i.e., the pair with
UPDRS 3.5) of the plane. This also supports the intuition that
amplitude and speed of motion are mostly correlated.
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Fig. 8. Juxtaposed normalized (between £1) angular velocities w of 10 rep-
etitions, normalized over time (between 1 and 100) for: (a) Subject A and
(b) Subject B.

Focusing now on the joint analysis of the RLA and the
LLA, in Fig. 10, the average relative differences of amplitude-
speed pairs between LLA and RLA {(De Lr.i, DaLri)}22,
are drawn on the same plane. As before, a clear trend is visible
in the graph. Furthermore, it can be observed that low UPDRS
scores are associated with pairs placed around (0,0). On the
other hand, the highest differences in UPDRS scores corre-
spond to pairs, which are distant from the (0,0) point, i.e., to
LA tasks where significant differences between RLA and LLA
emerge.

So far, it has been shown that there is a relationship between
the UPDRS scores and the measured values of the kine-
matic variables. However, for ease of visualization, we have
considered just pairs of variables. In order to overcome this
limitation and consider all kinematic variables simultaneously,
in [13], a principal component analysis (PCA) can be consid-
ered, in order to reduce the dimensionality of the measured data
while still retaining most of the variance of the original data
[19]. In [13], PCA is used to map the input five-dimensional
(5-D) points {(0;, 2, P;, R;, F;)}72, into a lower-dimensional
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Fig. 9. Representation of average amplitude-speed pairs {(©;,Q;)}72, on the
same plane. Pairs are colored according to the corresponding UPDRS scores.
Centroids of each cluster of pairs (drawn as filled stars), corresponding to the
same UPDRS score, are shown and are linked in UPDRS-wise order from 0 to
3.5. For ease of clarity, a representative red arrow shows a smoothed version of

this trajectory.
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Fig. 10. Representation of average relative differences of amplitude-speed
pairs between LLA and RLA {(Dg,LR,i, Do,Lr,i)}52, on the same plane.
Pairs are colored according to the corresponding difference of UPDRS scores
between the left and right legs. Centroids of each cluster of pairs (drawn as filled
stars), corresponding to the same UPDRS score difference, are shown and are
linked in ascending order from —1 to 1. For ease of clarity, a representative red
arrow shows a smoothed version of this trajectory.

space.* According to the results of the considered PCA, 87.8%
of the original variance is retained by just using the first two
components, whereas its 92.7% is retained by adding the third
component. This shows, as expected, the presence of redun-
dancy in the measured data. Such redundancy can be signifi-
cantly reduced by just considering the original data projected
onto 2-D or 3-D spaces, as determined by the PCA.

In order to evaluate the performance of an automatic detec-
tion system able to associate a measured set of kinematic values

4Note that, since different kinematic variable values have different magni-
tudes and ranges, before applying PCA, the original data are first centered at
their means (which are set equal to 0) and rescaled to have a unit standard
deviation.
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to a specific UPDRS score, three methods have been consid-
ered: 1) nearest centroid classifier (NCC); k nearest neighbors
(kNN); and (linear) support vector machine (SVM) [19]. For
ease of clarity, though simple and standard implementations of
the previous algorithms have been adopted,’ a brief overview of
the operational principles of these algorithms is now presented.
In particular, given a new (unknown) sample point, the three
considered classification methods act as follows.

1) The NCC method assigns the new point to the class with
the nearest centroid—Euclidean distances between pairs
of points are considered. To this end, centroids must be
computed for all training samples of each class.

2) The kNN method assigns the new point to the class,
which includes the majority of the kNN of the sample
point—as for NCC, Euclidean distances between pairs
of points are considered. Nearest neighbors are searched
among all training samples. In the case of tie-breaks (i.e.,
when two or more classes contain the same number of
samples among the kNN), the closest point is used to
break the tie and its class is then chosen. Even if dif-
ferent values of k have been considered and evaluated,
in the following, we will just consider the case with
k = 4 (which, heuristically, appears to optimize the sys-
tem performance).

3) The (linear) SVM method assigns the new point to the
class associated with the decision region where the point
lies. In order to define the decision regions, during a train-
ing phase, two classes at a time are considered and the
hyperplanes, which maximize the separation between the
training samples of the two classes are computed. Since,
in this work, we deal with more than two classes, mul-
tiple training steps are performed. At each step, training
samples of a given class are compared to the joint set of
the training samples of the remaining classes: different
hyperplanes and, consequently, multiple decision regions
are then identified.

In order not to bias the performance of the classifiers, a leave-
one-out cross-validation method is considered. This means
that each point of the original dataset is used, in turn, as the
new (unknown) point and the remaining points are used as a
training dataset. The performance is then evaluated by averag-
ing together the single observed performance results. We also
define the absolute UPDRS error e as follows:

A~
e=|u—ul

where w is the actual UPDRS score and u is the estimated one
(using NCC, kNN, or SVM).

In Fig. 11, all the pairs {(Px, i, Px,:)}2;, which take
into account the powers of the spectra of the frequency fea-
tures introduced in Section III-C, are represented on the same
plane. As for the previous figures, each pair is assigned a
color corresponding to the related UPDRS score. Furthermore,
the centroids (denoted by the filled stars) of each cluster of
pairs, corresponding to the same UPDRS score, are also shown.

Finally, the black line links the centroids from O to 3.5. Note

3To this end, note that standard MATLAB implementations of the listed algo-
rithms have been used, and unless otherwise stated and default parameters have
been considered.
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Fig. 11. Representation of pairs {(Px, i, Px,,)}/2; on the same plane.
Pairs are colored according to the corresponding UPDRS scores. Centroids of
each cluster of pairs (drawn as filled stars), corresponding to the same UPDRS
score, are shown and are linked in UPDRS-wise order from O to 3.5.

that, even if clusters of pairs corresponding to different UPDRS
scores tend to overlap, a clear trend is visible showing that pairs
mainly move from the upper right corner (i.e., the pairs with
UPDRS 0) to the bottom part (i.e., the pair with UPDRS 3.5) of
the plane.

In order to investigate the best performance achievable with
the proposed system and with the considered features, an
exhaustive performance analysis has been carried out, by test-
ing: the system performance for all possible combinations of
features; possible values of k£ (when the kNN method, which
will turn out to be the best, is used); and the number of consid-
ered principal components (when PCA data are used, instead of
original data). In particular,

1) the following 11 features, among those presented earlier,

are selected: ©, 2, P, R, Osp, Qsp, Psp, Rsp, F, PXW,

and Px,;
2) when using the kNN method, the following values of &
are considered: 1,2, ...,10;

3) upto 11 principal components (as the number of features)
are used when considering PCA data.

The three presented classifiers (namely, NCC, kNN, and SVM)
have been run on both original data and “PCA-projected” data.
In Fig. 12, a direct comparison of the cumulative distribution
functions (cdfs) of e with NCC, kNN, and SVM is carried
out. In particular, in Fig. 12(a), the cdfs for all possible com-
binations of parameters and features are shown using different
colors for each classifier. It can be observed that the choice of
the classifier, more than the choice of the features and param-
eters, is crucial in order to achieve good performance. Indeed,
groups of cdfs for each classifier tend to lie in the same por-
tion of the plane even for different features and parameters.
To this end, in Fig. 12(b) the average cdfs (over all possible
combinations of features and parameters) for each classifier
are also shown. It is easy to observe that best performance
can be achieved using kNN, followed by SVM and, eventu-
ally, NCC. Note also that performing the analysis on PCA data,
rather than on original data, does not significantly improve the
classifiers’ performance. The best combination of features and
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Fig. 12. CDFs of the absolute UPDRS error e using NCC, kNN, and SVM. The
previous classifiers are used on both the original data and the PCA-projected
data. In (a), the cdfs for all possible combinations of parameters and features are
shown, whereas in (b), the average cdfs for every classifier are shown. The black
solid line is the cdf of the best case (i.e., KNN with & = 3, using (@,R,PXB)
as features).
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Fig. 13. Representation of 3-D points {O;, R;, wa}gl on the same
space. 3-D points are colored according to the corresponding UPDRS scores.
Centroids of each cluster of points (drawn as filled stars), corresponding to
the same UPDRS score, are shown and are linked in UPDRS-wise order from
0to 3.5.

parameters, chosen as the one which maximize the area under
the curve (AuC) of the cdfs, is resulted to be that which uses
kNN with k£ = 3 and (O,R,Px,) as features. In the previous
figures, the black solid line represents the corresponding cdf.

IEEE INTERNET OF THINGS JOURNAL, VOL. 2, NO. 1, FEBRUARY 2015

For completeness, in Fig. 13, a trajectory, similar to the ones
shown in Figs. 9-11, is drawn in the kinematic space of the
best features. As for the previous bidimensional figures, in this
case, as well a clear trajectory can be identified. This further
confirms the feasibility of the design and implementation of an
automatic UPDRS detection system.

V. CONCLUSION

In this paper, we have investigated how kinematic vari-
ables, collected through a simple BSN during the LA task, can
be representative of the UPDRS value assigned by neurolo-
gists. We have first considered a “single-subject” perspective,
trying to highlight similarities and differences between charac-
teristic kinematic variables of a healthy subject and of a PD
patient. Then, we have carried out a “large-scale” experimen-
tal investigation considering 24 PD patients. Many kinematic
features, in both time and frequency domains, have been inves-
tigated, considering various classification methods (NCC, kNN,
and SVM). The most representative ones have been character-
ized considering 2-D (amplitude-speed and amplitude power-
speed power) and 3-D feature spaces (amplitude-amplitude
power-regularity). In order to highlight the presence of corre-
lation between the considered kinematic variables, a PCA has
been carried out. However, our results show that using PCA-
processed data, rather than original data, does not significantly
improve the classifiers’ performance. The best system configu-
ration, chosen as the one which maximize the AuC of the cdfs
of the decision error, turned out to be the one based on kNN
with k£ = 3 and (©,R,Px,) as features. In particular, character-
istic “trajectories” (from low to high UPDRS scores) emerge in
the considered multidimensional kinematic spaces, which is a
promising result for the design of an automated UPDRS detec-
tion system, which could rely on the introduction of proper
“UPDRS decision regions” in the considered kinematic spaces.
Last, but not least, the use of a wireless BSN makes the pro-
posed system directly integrable into IoT systems, paving the
way to telerehabilitation applications and cloud computing-
based processing of a large amount of heterogeneous data.
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