Journal of Ambient Intelligence and Smart Environments 8 (2016) 681-695 681
DOI 10.3233/AIS-160406
10S Press

A low-complexity activity classification
algorithm with optimized selection of
accelerometric features

Matteo Giuberti **** and Gianluigi Ferrari®

a4 Xsens Technologies B.V., Pantheon 6a, 7521 PR, Enschede, The Netherlands

E-mail: matteo.giuberti@xsens.com

b Department of Information Engineering, University of Parma, Parco Area delle Scienze, I-43123, Parma, Italy
E-mail: gianluigi.ferrari@unipr.it

Abstract. Activity classification consists in detecting and classifying a sequence of activities, choosing from a limited set of
known activities, by observing the outputs generated by (typically) inertial sensor devices placed over the body of a user. To
this end, machine learning techniques can be effectively used to detect meaningful patterns from data without explicitly defining
classification rules. In this paper, we present a novel Body Sensor Network (BSN)-based low complexity activity classification
algorithm, which can effectively detect activities performed by the user just analyzing the accelerometric signals generated by
the BSN. A preliminary (computationally intensive) training phase, performed once, is run to automatically optimize the key
parameters of the algorithm used in the following (computationally light) online phase for activity classification. In particular,
during the training phase, optimized subsets of nodes are selected in order to minimize the number of relevant features and
keep a good compromise between performance and time complexity. Our results show that the proposed algorithm outperforms
other known activity classification algorithms, especially when using a limited number of nodes, and lends itself to real-time

implementation.

Keywords: Activity classification, machine learning, Body Sensor Networks, accelerometers, automatic feature selection

1. Introduction

Wireless Sensor Networks (WSNs) are attracting
a relevant interest in many applications, typically as-
sociated with monitoring of particular environments.
Body Sensor Networks (BSNs) are a special class of
WSNs, where wireless nodes are applied to a user
body in order to monitor and detect some activities,
e.g., activities of daily living (ADL), performed by the
user. Relevant applications of these systems include
long-term remote monitoring (e.g., at home) of the ac-
tivities performed by a user (e.g., elderly people or

*Corresponding author. E-mail: matteo.giuberti @xsens.com.

“*Matteo Giuberti is with Xsens Technologies B.V. since April
2014. This work was performed while he was at the University of
Parma.

post-rehabilitation patients), typically for medical pur-
poses [15].

Past work on BSN activity classification algorithms
has relied on accelerometers placed in multiple loca-
tions over the body [2,10]. A performance improve-
ment can be observed using multiple types of sen-
sors [1,11,16,21]. Since the involved data are charac-
terized by a high dimensionality and large variability,
there is an inherent difficulty in determining exact clas-
sification rules. For such reason, machine learning and
data mining techniques have gained an increasing in-
terest due to their strength in “learning” ad-hoc rules
and detecting significant patterns, provided that some
data are given to the algorithm for “training” purposes.
Regardless of the considered type of sensor, an activity
classification algorithm is indeed generally composed
of two phases: a fraining phase, typically used for cal-

1876-1364/16/$35.00 © 2016 — 10S Press and the authors. All rights reserved

mailto:matteo.giuberti@xsens.com
mailto:gianluigi.ferrari@unipr.it
mailto:matteo.giuberti@xsens.com

682 M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm

ibration and parameters estimation purposes; and an
online (classification) phase, possibly executed in real
time. The training phase aims at identifying activity-
specific features from the signals generated at each
sensor, after manual [11] or automatic [9,20,22] sig-
nal segmentation. Regarding classification, most of the
works in the literature tend to adopt thresholding or to
use k-Nearest Neighbors (k-NN) algorithms, because
of their simplicity and applicability on low-cost mo-
bile devices [10,16]. However, more sophisticated ma-
chine learning techniques have also been considered,
such as those based on the use of decision trees [2],
support vector machines [6], or hidden Markov mod-
els [13,21]. Furthermore, machine learning techniques
for activity classification typically require also the de-
velopment of robust methods to address issues such as
feature selection and classification [17], decision fu-
sion and fault-tolerance [3,19,23].

In this work, we design a novel low-complexity au-
tomatic BSN-based activity classification algorithm,
which aims at detecting and classifying a sequence
of activities, choosing from a list of known activities,
by observing accelerometric data. A preliminary train-
ing phase is used to automatically optimize key pa-
rameters of the algorithm. The goal of the training
phase is that of selecting a proper subset of nodes
in order to minimize the number of relevant features,
yet guaranteeing an accurate activity classification de-
gree. The classification performance of the proposed
algorithm is analyzed using publicly available exper-
imental data [14] (in part generated in the context
of the Opportunity Challenge [4,18]), thus provid-
ing a valid and unbiased benchmark for comparisons
with other algorithms. In particular, the classification
algorithm is tested on four activities, which corre-
spond to different locomotion modes: stand, walk, sit,
and lie. The proposed algorithm outperforms, espe-
cially when using a limited number of nodes, other
known low-complexity algorithms, such as the k-NN,
the Nearest Centroid Classifier (NCC), the Linear Dis-
criminant Analysis (LDA), and the Quadratic Dis-
criminant Analysis (QDA) [4,5,12]. The obtained re-
sults are very promising, making the proposed algo-
rithm suitable for real-time activity monitoring appli-
cations.

The rest of this paper is structured as follows. In
Section 2, the experimental setup and the performance
metric are preliminary introduced, followed by the
derivation of the proposed algorithm. Section 3 is ded-
icated to performance analysis. Finally, in Section 4
concluding remarks are given.

(Front)

Fig. 1. Opportunity Challenge setup [4,18]. The position of ac-
celerometers (@) and inertial measurement units (M) is highlighted.

2. Method
2.1. Experimental setup and performance metrics

As anticipated in Section 1, the experimental data
used to test our algorithm are shared data collected in
the context of the European project Opportunity and
provided for the so-called Opportunity Challenge [4,
14,18]. Figure 1 shows the experimental configuration
of the sensor nodes in the considered BSN. The out-
put of the BSN consists of mainly accelerometric data,
integrated, for some nodes, with gyroscopic and mag-
netometric data — in this work, in order to guarantee
a low hardware complexity (and, consequently, a low
cost and large battery life of the whole activity classifi-
cation system), only accelerometric data will be used.
For data collection, different users were asked to per-
form sequences of consecutive predefined movements
and naturally executed daily activities. This allowed to
generate highly realistic data upon which robust and
flexible algorithms could be developed and trained.
Data were recorded with a sampling rate fomp =
30 Hz.

Given a discrete set of predefined activities A =
{ai, an, ..., aa} (with cardinality |A| = A), the met-
ric which will be used to evaluate the performance of

ITo this end, note that the cost of a gyroscope (or of a magne-
tometer) chip is typically at least twice that of an accelerometer chip.
Similar considerations hold for power consumption requirements, as
accelerometers require indeed much less power than gyroscopes and
magnetometers do. This has obviously a strong impact on the battery
lifetime.

M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm 683

the proposed classification algorithm is the weighted
f1 score [4], denoted as F'1V and evaluated as follows:

A
FI" =32+ ("N“) «Fl,
a=1

_ XA:Z* (n_a) . (preca * recq)
o N prec, + rec,

where: a is the considered activity; n, is the number
of samples of the inertial data sequence in correspon-
dence to which a user is performing activity a; N is
the total number of samples of the collected inertial
data sequence; F'1, is the fl score computed for activ-
ity a; and prec, and rec, are, respectively, the preci-
sion (defined as TP/(TP + FP), where TP and FP are
the numbers of true positives and false positives) and
the recall (defined as TP/(TP + FN), where FN is the
number of false negatives) evaluated for activity a. In
practice, F'1V is the average f1 score over all activities.
Note that, beside these metrics, in the refinement step
of the proposed algorithm (which is described in Sec-
tion 2.2.4) two other metrics will also be considered,
namely: the accuracy, defined as (TP + TN)/(P + N),
where TP, TN, P, and N are, respectively, the numbers
of true positives, true negatives, positives, and nega-
tives; and the specificity, defined as TN/(FP 4+ TN),
where TN and FP are the numbers of true negatives
and false positives. For reproducibility purposes, the
performance of the proposed algorithm is evaluated for
multiple datasets collected from different subjects. To
this end, in the Opportunity dataset, for each subject,
golden labels are provided, containing a single stream
of (manually) labeled activities.” In the proposed algo-
rithm, which is described in the following subsections,
we will only make use of accelerometric data.

2.2. Algorithm description

Generally, an activity classification problem leads to
the design of an algorithm that can estimate the se-
quence of occurrences of specific activities choosing

2Note that, while evaluating the algorithm performance, the sam-
ples containing “undefined” activities (e.g., transitions between clas-
sifiable activities), because of the temporal continuity of the col-
lected data, are not taken into account for the evaluation of F1%. For
the sake of completeness, we remark that this does not mean that the
algorithm is not dealing with data coming from “unknown” classes.
In fact, the algorithm is not forced to always choose at least one of
the considered classes and it may actually happen that for some time
epoch no activities are detected at all. This will be clearer by reading
the algorithm description in Section 2.2.

from a discrete set of predefined activities .A, directly
working on (typically) inertial signals (e.g., accelero-
metric and gyroscopic signals). The proposed algo-
rithm tries to concentrate most of its complexity in a
(offline) training phase, which is performed once and
aims at selecting the smallest subset of nodes to extract
the smallest, yet sufficient, number of accelerometric
time features to guarantee a good performance (high
F1%). Then, upon optimized setting of proper thresh-
olds, the online phase is relatively light (in terms of
time complexity), making real-time activity classifica-
tion applications feasible.

In the following, a detailed description of the oper-
ational steps of the proposed algorithm are presented.
After preliminaries on data preprocessing, the online
and training phases are presented. In order to run prop-
erly, the online activity classification algorithm needs
some parameters that have to be estimated and opti-
mized during the training phase. Even though, prac-
tically, the training phase precedes the online phase,
in the remainder of this subsection, after preliminar-
ies on data processing and feature extraction, we first
describe in detail, for ease of presentation, the online
phase. In the training phase, the same steps of the on-
line phase are considered, with the only difference that
known (labeled) data are used to tune the key param-
eters of the algorithm, which are then kept constant in
the (following) online phase.

2.2.1. Preliminaries on data preprocessing and
feature extraction

At each node, an accelerometer outputs a stream
of three-dimensional data, which corresponds to the
accelerations measured by the sensor in its three ref-
erence axes. More formally, let us define the three-
dimensional acceleration vector, measured at the i-th
epoch, as

&i = (axiaa}*ivazi) ie{l,2,....N}

where N is the number of samples in the stream.
For the sake of simplicity, let us assume that the ac-
celerometer is already calibrated and, thus, &@y;, @y;, and
a; are expressed in g units. Furthermore, the accelero-
metric data are low-pass filtered in order to deal with
smoother data in both training and online phases. To
this end, the recursive low-pass filtering used for each
accelerometric data stream is the same used in [7] and
characterized by the following equation:

X1 i=1
yi = . (H
0.8-yi—14+0.1-(xj+xi—1) 2<i<N

684 M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm

where x; is the i-th sample of the data stream (x €
{oix, @y, a;}), yi is the i-th sample of the filtered data
stream (y € {ay, oy, a;}). The cut-off frequency f¢, of

the low-pass filter defined in (1) is fco & fs o~ = 1 Hz.
Therefore, we denote the filtered signal as

o = (O{xi,Oly,',Olzl‘) i € {1,2, ,N}

and the norm of a; as

5:=|ai|=,/a§i+a§i+a§i ie{l,2,...,N}.

Starting from the filtered signal, at the i-th epoch,
two types of simple features are of interest and can
be extracted. The first one, denoted as p-feature

€9

(where “p” stands for “parallel”) and indicated with

P
cc;”, is a properly chosen component of the nor-

malized® (to unity) acceleration vector, i.e., acc?p) €

{oxi/loei |, ayi/ e], oz /e |}. In particular, the chosen
component is the one parallel to the “main” axis of
the related body segment. For instance, considering

Fig. 1: for node 1, acc(p) is the acceleration value
measured along the femur direction; for node 7, the
one measured along the tibia. Observe that, due to the
normalization, acc(p)
[—1, +1].

The second considered feature, denoted as dev-
feature and indicated with o;(s), is the standard devi-
ation of the norm of the acceleration computed on a
sliding window (with fixed length L = 2 - s 4 1 and
centered at the i-th sample*) that runs over all the ac-
celeration samples. Neglecting border effects (the ex-
tension is straightforward, as shown in [8]), o;(s) can
be expressed as follows:

can only assume real values in

i+s _ 2
01(5) _\/Zk Zislon Mk(S)])

where

e
ix(5) & iz O 3)
L b B

3Note that, by normalizing the acceleration vector (for the p-
feature), we are implicitly assuming that no linear acceleration is
present (i.e., the device is still) and only the gravity acceleration con-
tribution (i.e., 1 g) is measured by the accelerometer. Note that, al-
though this assumption is not always true, in the majority of human
movements it is true that the magnitude of the linear acceleration is
rather lower than that of the gravity component.

4More details about the definition of the window, especially at the
borders of the acceleration signal, are given in [8].

It can be observed that o;(s) is always larger than or
equal to 0 — typically, it is not considerably larger than
1 (due to the expression of the accelerometric data in g
units). While evaluating the classification performance
of the proposed algorithm, s is set to 7 samples and,
therefore, the dev-features are computed on a window
of length L = 15 samples (i.e., 0.5 s).

2.2.2. The general idea

Considering a single activity a € A, the output of
an activity classification algorithm is given by a binary
sequence w(a) = (wi(a), wa(a), ..., wy(a)) where
wi(a) = 0 if a is not detected at epoch i (the index
i runs over the samples of the collected acceleromet-
ric data sequence) or w;(a) = 1 if a is detected. In
particular, w(a) contains “activity windows” (disjoint
groups of consecutive “1”’s), within which the activity
a has been detected. The length of each activity win-
dow is recursively determined — using three parame-
ters €1, €, and £3, optimized independently for each
activity. This process will be described later.

For each considered activity, the proposed activity
classification algorithm aims at automatically selecting
the best nodes in the BSN and the corresponding most
significant feature types, that can best discriminate the
occurrence of the considered activity (e.g., the thigh
node is intuitively one of the best nodes to estimate a
“sit” activity, whereas the feet nodes give relevant in-
formation about the “walk™ activity). More formally,
let us define as F = {f1, fa, ..., fr} (with cardinality
|F| = F) a set of features where the generic feature
f € F corresponds to a feature “type” (p-feature or
dev-feature) associated with a specific node. As an ex-
ample, referring to Fig. 1, f = 1p is the p-feature ex-
tracted from the thigh node (i.e., node 1) and f = 7d
is the dev-feature extracted from the tibia node (i.e.,
node 7). In the following, when referring to the value
of a feature, we will implicitly refer to the value of the
“embedded” feature type. Furthermore, given a spe-
cific activity a, C; C JF represents the subset of the
most significant features used to classify activity a.

The proposed algorithm identifies activities by prop-
erly thresholding the selected features. In particular,
referring to a given feature f, an activity a is consid-

SNote that, throughout this paper, the term “optimal” and the su-
perscript “*” are equivalently used with reference to the tunable pa-
rameters considered in the proposed algorithm. Furthermore, if not
stated otherwise, the optimality is always intended in terms of clas-
sification performance through the f1 score (when activities are in-
dependently considered) and the weighted f1 score (when activities
are combined together).

M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm 685

ered as detected at the samples in correspondence to
which the feature (type) is between the (lower and up-
per) thresholds #1 (a, f) and #2(a, f), which are specif-
ically derived and optimized independently for each
activity a and for each feature f. The optimal values
{tik(aa f)}ae.A,feC; and {t;(aa f)}ae.A,feCj; are deter-
mined in the training phase, as will be described later.

In order for the activity classification algorithm
to output a single sequence w = (wi, wy, ..., WyN)
(where w; = 0 if no activities are detected and
w; = a if activity a is detected, i.e., w;(a) = 1),
since w;(a;) = w;i(ax) = 1 may happen for some
i € {1,2,..., N} and for some j # k, with j, k €
{1,2,..., A}, different priorities need to be assigned
to the activities. The priorities are denoted as ¢ =
(g(a1), q(az), ..., q(aas)), where each element (which
indicates the priority of each considered activity) can
assume real values in [0, 1]. The priorities’ list ¢ must
be interpreted as follows: if g(a;) > g(a;), with
i,j e {l,2,..., A}, activity a; has a higher priority
than activity a;. The priority assigned to an activity is
strongly related to the confidence in correctly detecting
that activity and is based on the evaluation of specific
performance metrics, which are evaluated in the train-
ing phase, as will be described later. In this way, the
output sequence w is an (A + 1)-ary sequence of activ-
ity labels, where the label of the activity with highest
priority is selected in the cases where more than one
activity is detected at the same epoch. The optimal pri-
orities’ list ¢* is determined in the training phase, as
described later.

2.2.3. Activity classification

The online phase of the proposed algorithm is based
on three main steps: (i) a first coarse classification
step; (i) a refinement step; (iii) and a final priority-
based activity combination step.

Concerning the first coarse classification step, which
is executed independently for each activity to be clas-
sified, a specific activity a is detected at epoch i (i.e.,
w; (a) = 1) if all the features belonging to C} are com-
prised between the corresponding optimal thresholds
{t{(a, P} recx and {t3(a,)} ecs-

In the first coarse classification step, a single occur-
rence of an activity can be missed (because of little
pauses or random movements). This can be avoided,
or at least mitigated, by applying to the detected ac-
tivity windows a refinement step which takes into ac-
count the length of the estimated activity windows.
More specifically, given a specific activity a, in our im-
plementation the refinement step is based on the fol-

lowing sequential operations: (1) every “null window”
(a group of consecutive “0”’s), with a length (in terms
of number of samples) shorter than £7, is switched to
an activity window (and incorporated in the preceding
and following activity windows, which are then fused
together); (2) every activity window with a length
shorter than £3 is turned into a null window; (3) step 1
is repeated considering now every null window with a
length shorter than £3.

Finally, the priority-based activity combination step
consists in combining the sequences w(ap), w(az), .. .,
and w(a,) into a single sequence w of activity labels,
on the basis of the optimal priorities ¢* assigned to the
activities.

2.2.4. Algorithm training

In order to work effectively, the proposed algorithm
needs to be properly trained by exploiting the part of
collected data for which the occurrences of the activity
of interest are correctly (manually) labeled. The train-
ing phase aims at estimating the optimal values of the
key parameters that will be used in the online phase.
In particular, for each activity a the following parame-
ters need to be estimated: (i) the optimal subset of fea-
tures C};, along with the corresponding optimal thresh-
olds {t{'(a, f)} recx and {t;(a,)} recy; (ii) the opti-
mal thresholds £7, £5, and £3, used to refine the es-
timated activity windows; (iii) the optimal activities’
priorities list g*, over all activities.

A detailed flow diagram of the implementation steps
of the training phase of the proposed algorithm is
shown in Figs 2, 3, and 4 and will be now described,
distinguishing between its three component blocks (the
same of the online phase): (i) the first coarse classifi-
cation step; (ii) the refinement step; and (iii) the final
priority-based activity combination step.

Coarse classification At the beginning of the coarse
classification step, shown in Fig. 2 and executed for
each activity a, the set F = {f1, f2,..., fr}, whose
elements are all the initial features, must be (manually)
defined. Similarly, the set S (with cardinality |S| = §)
accounts for different ways (each way is identified by
a partition s = (St/Sp)) of separating the (train-
ing) dataset into the two subsets St and Sgp (s will
be denoted as “separation”). Finally, R (with cardinal-
ity |R| = R) accounts for possible values of “confi-
dence,” which will be given in terms of a given per-
centage of the Probability Mass Function (PMF) char-
acterizing the values of the selected feature for the ac-
tivity of interest, considered to derive the thresholds

{t1(a,)}laea, reF and {t2(a, f)}aecA, feF — more de-

686 M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm

For each activity a € A: Training Data

|

|111itialize seS, feF,andr € R|

| Initialize f and r |—>| Increment s I—-l Split data into St/So (s) li

So

St

|chmcnt activity a |

Initialize r |—>| Increment f|—>|Select, feature f |

YES

Estimate thresholds
Estimate and store

t1, ta(a, f,r,) activity windows
T
I
v
w(a, f.r.s)
§ = Sg |
I
I
|
|
Initialize G, and s !
I— a |
I
|
Initialize s |—’| Increment G, |—>|Select combination G, :
|
y

| T I_,| Sel . Fuse and store activity
ncrement s elect separation s I—» windows W, (gm S)

\
w(a, G, 5)
No Compute and store
f1 score
1
YES i
1
A (over S) N
Average (over e _ Pl .
and store F'1,(Gq, s) N a(Gas 8)

T
|
|
\4

G* = argmaxF1,(G,)
Ga

- - - - FL.(G.)

Optimal G}
for activity a

Fig. 2. Detailed flow diagram of the implementation steps of the proposed algorithm’s training phase: the first coarse classification step.

tails about confidence are provided below with an ex- performance of the algorithm, i.e., to assess how the
ample. Note that the separation into the two subsets St algorithm’s performance will generalize with an inde-
and So is done in order to cross-validate the statistical pendent dataset. In the machine learning field, this is a

M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm

For each activity a € A:

Optimal G}
for activity a

Select optimal G
for activity a

Initialize s € Sr {1 € L1, l3 € Lo, and l3 € L3

| Initialize s, ¢3, and ¢y |—>| Increment ¢, |—>| Select threshold ¢, |

|_Initializo s and (3 |—>| Increment £, |_’| Select threshold £2|

| Initialize s |—>| Increment €3|—>| Select threshold /3 |

| Increment s I—'IScloct separation s |

w(a, Gy, 3)
Select activity :
windows w(a, G5, s) [* 77777~
Refine and store activity
windows (¢1,02,¢3) |~~~ = 7 7 ¢

Compute and store
f1 score |

\
F1,(G:, 8,01, 0o, l5)

NO

|
I
I
I
|
|
YES !
I

Y
Average (over S)
and store F'1,(G¥, s, 1, la, l3)
T
|

A\

Ly = (6, 03,05) = argmaxF1o(Gy, 1, b, €3) fa= = = = F1,(G5, 1, 0, £3)

£1,62,03

common practice used to derive unbiased performance
of an algorithm, especially when only training data are
available [5].

Optimal £ = (¢3,05,05)
for activity a

Fig. 3. Detailed flow diagram of the implementation steps of the proposed algorithm’s training phase: the refinement step.

The goal of the first part of the coarse classifica-
tion step is to estimate and store the activity win-
dows {w(a. f.7. $)lac A feF.reR.ses- As already ex-

688 M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm

| Initialize s€ S, a € A, and m € M |

l

Initialize @ and m |—>| Increment 5|—>|Sclcct separation s |

Initialize m

Increment a

Optimal G*
for activity a

Optimal £}
for activity a

Increment m

Select activity a

Select optimal G and L}
for activity a

Select metric m

wrer(a, G}, s, L7)

NO NO
I
YES YES Compute and store o _ J
s = sg? a=au? performance (m) | _ _
|
v
YES 2711((1“, S)
I
Average (over S) |
and store Zp,(a,s) [~ """ 7T 7~
v
Zm(a)
Initialize m and s :
I
|
|
Initialize s I_.| Increment m I—’| Sclect metric m | I
I
I
I
R a
I
I
—1
Compute and store N
Oripuie anc SO L - - -~ > ===~
activity priorities (m) \ \
| I
NO NO Y |
() Fuse activity windows !
w(s,m A o X I
= YES Compute and store wllﬁll“({a}f‘a_ga: L)
? M weighted f1 score with priority g I
? T I
I |
v I
YES Wi 1
Average (over S) Fl, (s,m) I
and store F'ly(s,m) = = = = = I
T I
I
l | |
m* = argmaxF'1V(m)j«- — = F1V(m) I
|

m

Fig. 4. Detailed flow diagram of the implementation steps of the proposed algorithm’s training phase: the final priority-based activity combination

step.

plained in Section 2.2.3, the activity windows are de-
rived, for a given activity a, by applying to each fea-
ture f € F (considering the dataset Sp associated
with the selected s) the (properly estimated) thresholds

ti(a, f,r,s) and t>(a, f,r,s) — unlike in the online
phase, #; and #, depend not only on a and f, but also
on s (as, obviously, the thresholds depend on the used
data-set) and r (as the “width” between the thresh-

M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm 689

olds depend on the desired confidence — the larger, the
higher the required confidence).

In order to clarify the process which leads to the
identification of the thresholds for activity classifica-
tion, we consider an example relative to the acceler-
ation signals produced at the thigh node (i.e., node 1
in Fig. 1) and used to detect the “sit” activity. An il-
lustrative description of the thresholds estimation step
is shown in Fig. 5: the p-feature (i.e., f = lp) and
the dev-feature (i.e., f = 1d), shown in Fig. 5(b),
are first extracted from the acceleration signals (shown
in Fig. 5(a), in the x, y, and z axes) and evaluated
discretely in the “sit” intervals (assuming that a =
sit and for a given s € &) in order to obtain their
PMFs in such intervals (the PMFs of the p-feature
and the dev-feature are shown in Figs 5(c) and 5(d),
respectively). Given a, f, s, for each value of r €
R, the thresholds t{(a, f,r,s) and t2(a, f,r,s) are
then chosen as the extremes of the shortest interval
(t1, 1) which comprises at least r% of the probability
mass.

The second part of the coarse classification step, still
performed independently for each a € A, is based on
the fusion of different combinations of the previously
stored activity windows {w(a, f,7,5)} feF reR, seS-
The goal is to find, for each activity, the optimal com-
bination G (among the G possible combinations),
where the generic combination G, is associated with
a possible subset of features C, C F and two val-
ues of r, i.e., rp and rqey, from which the thresholds
ti(a, f,r,s) and tr(a, f,r,s) can be estimated when
the considered f is, respectively, a p-feature or a dev-
feature. An example, a possible instance of G, could
be (C, = {1d, 1p, 4p}, rp = 93%, rdev = 97%).

Given a combination G, and a separation s €
S, the set W,(G,, s) is defined as the subset of
{w(a, f,r.9)}reFrer with (f,r) € G,. The se-
quences of activity windows in W,(G,, s) are then
fused together (and stored for future use) into a sin-
gle sequence of activity windows w(a, G4, s), ob-
tained from the “logical AND” of all the consid-
ered sequences of activity window. The fl score of
w(a, Gy, s), denoted as F1,(G,, s), is then computed
and stored. By averaging { F1,(Gg, 5)}ses over all pos-
sible separations in S and denoting this average as
F1,(Gs) = Y5 F1a(Ga, $)/S, the optimal G is
selected as follows:

G} = argmax F14(Gy).)

a

acceleration [g]

7 r

(a) 0 J J vt\ilil)egamples]
i [”\ [

X

sit sit sit

- -1 =

features
|

1

ORFEEE G S5 N S
, ﬁﬁ/ﬁ/ o time [samples]
_devfeature
1L
; sit ; sit sit
PMF p—feature
100 +
65
©
718 255435 features
0 +1
PMF dev—feature
100
(d)

features

0 +1

Fig. 5. Description of the thresholds estimation step, which appears
in Fig. 2, for an illustrative acceleration signal produced at the thigh
node: (a) acceleration signal (the x, y, and z components are high-
lighted); (b) p-feature (straight line) and dev-feature (dashed line)
extracted from the previous acceleration signal; PMFs of (c) p-fea-
ture and (d) dev-feature evaluated in the “sit” intervals.

690 M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm

Refinement The next refinement step, shown in Fig. 3
and executed for each activity a, retraces the oper-
ations of the previous step in order to estimate the
optimal thresholds £} = (€7, {5, £3) used to refine
the previously estimated activity windows, but con-
sidering now just the optimal combination G. To this
end, three sets £; C N, £, € N, £3 C N are de-
fined.® Given a separation s € S, all possible com-
binations of £; € Ly, €, € L5, and ¢35 € L3 are
used to refine the previously estimated sequence of
activity windows w(a, G, s) as already described in
Section 2.2.3. For every considered combination of
L1 € Ly, €r € L7, and £3 € L3, the refined sequences
of activity windows {wrgr(a, G}, s, £1, {2, £3)}ses
are then stored (for future use) and their f1 scores
{F14(G}, 5,41, €2, £3)}5es are computed and stored.
By averaging {F1,(G}, s, £1, £2, £3)}5es over all pos-
sible separations in & and denoting this average as
Fla(Gy, 61,62, 03) = 3 s Fla(Gg, s, L1, €2, 63) /S,
the optimal thresholds £ are selected as follows:

L= (07,65, 05) = argmax F1,(G}, €1, €2, £3).
(£1.€2,€3)

(&)

Priority-based activity combination During the fi-
nal step, shown in Fig. 4, the optimal list of activi-
ties’ priorities ¢* is estimated. To this end, a set of
performance metrics M = {m, my, ..., my} (Where
IM] = M) is considered. Specifically, in this work
we consider the following performance metrics (de-
fined as in Section 2.1): (i) fl score, (ii) precision,
(iii) recall, (iv) specificity, and (v) accuracy. First,
given an activity a and a separation s, every per-
formance metric m € M is used to evaluate the
performance associated with the sequence of activ-
ity windows wrgr(a, G, s, L) and the correspond-
ing value z,(a,s) is stored. For given activity a
and metric m, the obtained values {z,,(a, s)}ses are
then properly averaged over all possible separations
s € S and the resulting Z,,(a) = Y ;.s2m(a,s)/S
is used to compose (and store) a priority-based list
of activities q,, = (gm(a1), gm(az), ..., qm(aa)) £
(zm(ai), - ..,zm(aa)). Specifically, the priorities’ lists
{q,m}mer defines the priorities assigned to every ac-
tivity according to the specific performance metric m.

OThese values should be properly chosen in the order of at most a
few seconds in order to filter out just the windows of samples which
correspond to little pauses or random movements.

At this point, for given s € S and m € M, the A se-
quences of activity windows {wrgr(a, G, s, L) }ae
are combined together, on the basis of the priori-
ties’ list q,,, resulting in a single sequence of activ-
ity windows w(s, m) and the corresponding weighted
f1 score, denoted as F1%¥(s,m), is computed and
stored. By averaging {F 1% (s, m)};cs over all pos-
sible separations in & and denoting this average as
F1%(m) = Y, g F1¥(s,m)/S, the optimal ¢* =
(g*(a1), q*(a2), ..., q*(as)) is then estimated as the
list ¢, where the metric m* is selected as follows:

m* = argmax F1%(m). 6)
m

At the end of the training phase, for each activity a,
the optimal G is used to further estimate the optimal
thresholds {t(a, f)}recx and {t3(a, f)}recs, which
will be actually used in the online phase, with the only
difference that the entire training dataset is now con-
sidered to derive them. Therefore, for each activity a,
the following optimal parameters have to be stored for
future use in the online phase: C;; {t (a, f)} fecr and
{t5(a, PYrecy; L = (€7, £5, £3). Finally, the optimal
list of priorities ¢* = (¢*(a1), ¢*(az), ..., q*(aa)),
over all possible activities, is also stored.

3. Results and discussion

The performance of the proposed algorithm has
been evaluated for the classification of activities re-
lated to modes of user locomotion. In particular,
A = 4 activities are considered: stand, walk, sit,
and lie (i.e., A = {stand, walk, sit, lie}). In Sec-
tion 3.1, we outline the considered configurations of
nodes and features for the proposed algorithm and
the following existing classification algorithms (as
anticipated in Section 1): the k-NN (with £ = 1
and £k = 3), the NCC, the LDA, and the QDA —
more details about their practical implementation are
given in [4,5,12]. All the algorithms (for all possi-
ble configurations) are tested on the same dataset,
which, for the purpose of repeatability, takes into ac-
count four different subjects [14]. In all cases, R =
{90,91,92,...,100}, £; = {0,1,2,...,60}, Ly =
{0,5,10,...,200}, L3 = {0,5,10,...,200}, M =
{f1 score, precision, recall, specificity, accuracy}, and
S = 4 different separations of the training dataset are
considered. The obtained classification performance
results are presented in Section 3.2. In Section 3.3, the

M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm 691

time complexity of all considered algorithms is sum-
marized. Finally, in Section 3.4 the robustness of the
proposed algorithm against rotational noise is investi-
gated, as this is particularly meaningful for BSN-based
activity classification applications.

3.1. Configurations of nodes and features

Overall, we consider 38 different configurations of
nodes (and feature types): configurations 1-31 (with at
most 7 nodes) apply to the proposed algorithms and
the four considered existing classification algorithms
(k-NN, NCC, LDA, and QDA) and rely on the use of
accelerometric data; configurations 32—-38 (with more
than 7 nodes) apply only to the four considered ex-
isting classification algorithms and rely on the use of
other (besides accelerometers) inertial sensors (e.g.,
magnetometers). Each configuration involves a spe-
cific nodes’ configuration, explicitly shown in the x
axis of Fig. 6 (which will be described in the next sub-
section) with reference to the node number in Fig. 1.

Note that, given a set of activities that need to be
classified, the number and placement of the devices
could be preliminary devised and used by determin-
ing which devices may provide the most different sig-
nal patterns in correspondence to different activities.
However, in this work we take advantage of the fact
that an exhaustive dataset was provided in the Oppor-
tunity Challenge [4,14,18], since the BSN used to ac-
quire the given dataset was composed by a large num-
ber of sensor devices placed all over the users’ body.
The automatic selection of the best devices and fea-
tures is then left to the “artificial intelligence” of the al-
gorithm (specifically, during the training phase). In this
way, some sensor devices, which could have appeared
to be intuitively useless at classifying some activities,
may be instead selected as good candidates. Further-
more, once the best set of devices is determined, the
proposed approach also allows to automatically deter-
mine the best subset of devices and features for each
activity that has to be classified and such subset may
likely change from activity to activity.

The choice of the nodes’ feature types for each clas-
sification algorithm can be summarized as follows.

— Configurations 1-31; proposed algorithm. On-
ly p-features and dev-features are considered.
Specifically: for nodes 7, 1, 2, and 6 (namely,
the nodes of the main vertical segment of the hu-
man body) both types of features are extracted;
for nodes 13, 19, and 21 (feet nodes and a second

|+-proposed ——LDA QDA —=-1-NN-=-3-NN-=-NCC|

0.85 T T
R oo

FFFFFFFFFFFFFFFFFFFFF P DM~ DO
SRR R 2T 2N ANRANNINNNNNNN 2822 SN NNNNNNN

FIFFFIINNI B I P IS FFIFFFFAT AN SN S SIS
S TNTNRS

{1,2,6,7,13,18,1
7
7
7
1

33=
35=(1
36=
37=

Configurations of Nodes

Fig. 6. Average (over 4 subjects) classification performance (i.e.,
weighted f1 score) as a function of the considered configurations
of nodes. The performance of the proposed algorithm is compared
with that of some existing algorithms, averaging the performance of
the four considered subjects. For every configuration, the considered
subsets of BSN nodes (numbered as in Fig. 1) are highlighted. The
features per configuration and per algorithm are properly selected as
summarized in Section 3.1.

node for the back) only the d-feature is extracted.
In particular, at most F' = 11 features are consid-
ered (for instance, the set of features of Config-
uration 1 is F = {lp, 2p, 6p, 7p, 1d, 2d, 6d, 7d,
13d, 19d, 21d}).

— Configurations 1-31; k-NN, NCC, LDA, and
QDA algorithms. For all the nodes, the mean
of every acceleration component within a sliding
window is considered, leading to 3 features ex-
tracted at each node. Therefore, at most F = 21
features are considered.

— Configurations 32-38; k-NN, NCC, LDA, and
QDA algorithms. For all the nodes, the mean
of every acceleration component within a slid-
ing window is still considered (as in the previous
case). In addition, for configurations from 34 to
38, the mean within a sliding window is also com-
puted for the 3 components of the gyroscope and
magnetometer signals, or some combinations of
them, as summarized below:

+ for configuration 34: every node equipped with
gyroscope and magnetometer (i.e., nodes from
13 to 21) produces 6 additional features (3
from gyroscope and 3 from magnetometer);

for configuration 35: 6 additional features (3
from gyroscope and 3 from magnetometer) are
extracted at node 13;

692

0.8r pa
0.75
H
T 07
0.65
0.6r
‘Qproposed —LDA QDA -©-1-NN-&-3-NNANCC

4 6 8 10 12 14 16 18 20

Number of Nodes
(a)

22

M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm

0.85

|[<0-proposed +LDA QDA -©-1-NN-E-3-NNANCC

foy - I I | I I I I I
0.85 10 20 30 40 50 60 70 80 90

Number of Features

(b)

| I
100 110

Fig. 7. Average (over 4 subjects) classification performance (i.e., weighted f1 score) as a function of the considered (a) number of nodes and
(b) number of features. For each considered algorithm, the configurations which use the same number of (a) nodes or (b) features have been

averaged together.

* for configuration 36: 3 additional gyroscopic
features are extracted at node 13;

x for configurations 37 and 38: 3 additional mag-
netometric features are extracted at node 13.

3.2. Classification performance

The performance of the proposed algorithm has
been evaluated for 31 different configurations of nodes
in order to determine the optimal subset of BSN nodes
(and, thus, of features) useful for the activity classifica-
tion. In particular, in Fig. 6, the performance of our al-
gorithm (in terms of F'1V) is shown as a function of the
configurations of nodes, averaging over the considered
four subjects. A comparison with the performance ob-
tained with the other considered algorithms, run with
the same configurations of nodes, is also shown. Note
that the performance of these algorithms is also eval-
uated for more complex configurations of nodes (for
a total of 38 configurations), which consider the use
of a larger number of nodes and features. It is easy to
observe that, in most of the considered configurations
of nodes, our algorithm outperforms the other ones.
It can also be seen that some of the reference algo-
rithms (in particular, k-NN and QDA) have similar per-
formance to ours, but only when considering, in their
cases, more complex configurations with larger num-
bers of nodes and features. Note also that the central
“hole” in Fig. 1 is associated with those configurations
of nodes (namely, 15, 16, 17, 18, and 21 in Fig. 6)
which do not use node 1 (the thigh node) in Fig. 1,
i.e., a key node in discriminating between sit and stand
activities. A similar observation can be made for con-

figuration 31 (as denoted in Fig. 6), which hardly dis-
criminates between stand and walk due to the absence
of both feet nodes (namely, nodes 19 and 21 in Fig. 1).

In order to better investigate the impact of the num-
ber of nodes on the performance of the considered al-
gorithms, in Fig. 7(a) the performance of the consid-
ered algorithms is properly averaged over all configu-
rations with the same number of nodes. It can be ob-
served that, for a given number of nodes in the BSN,
our algorithm, making use of configurations with at
most 7 nodes, outperforms the others. Moreover, with
only 7 nodes, our algorithm outperforms all existing
algorithms, including the k-NN and QDA, run with a
much larger number of nodes (e.g., 21).

Another aspect to take into account is the number
of features used in the algorithms. Unlike the existing
algorithms, where each node generates at least three
features,” our algorithm is such that a maximum of
two features (i.e., the p-feature and the dev-feature)
can be extracted at each node. In Fig. 7(b), it is then
shown how the algorithms’ performance changes with
respect to the considered overall number of features
(over all nodes). It can be concluded that our algorithm
provides the same, or even better, performance, with
respect to the other algorithms, using a significantly
smaller number of features. The number of used fea-
tures has a significant impact on the time complexity

TThe typical features computed at each node are the mean of every
acceleration component within a sliding window. In addition, other
six features are considered for nodes provided with gyroscopes and
magnetometers. A standard deviation-related feature has been also
used giving however poor performance.

M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm 693

of a classification algorithm, as it will be explained
in Section 3.3, allowing a better real-time applicabil-
ity of our algorithm with respect to the others. As pre-
viously observed, k-NN and QDA are the only algo-
rithms which can achieve, for a very large number of
features (over 110), a performance similar to that of
our algorithm (using only 11 features).

For the sake of completeness, we want to highlight
that, if the previously cited configurations 15, 16, 17,
18, 21 in Fig. 6 (which do not use node 1 in Fig. 1) are
not taken into account for the evaluation of the curves
in Fig. 7, the performance of our algorithm improves
significantly more (in relative terms) than those of the
other algorithms.

Finally, on the basis of the previous results, config-
uration 22 (as denoted in Fig. 6) can be identified as
the best configuration of nodes for our algorithm. In
particular, it needs 5 nodes (namely, nodes {1, 2, 13,
19, 21} in Fig. 1) and generates F = 7 features (5
dev-features, one per node, and 2 p-features, associ-
ated with nodes 1 and 2 in Fig. 1). Using this config-
uration, our algorithm obtains a value of F 1V around
85%. The second best algorithm, i.e., the k-NN (with
k = 3), reaches a value of F1¥ around 77% using
15 features (more than twice the number in our al-
gorithm) and more sensors (indeed, gyroscopes and
magnetometers are available in nodes {13, 19, 21} in
Fig. 1). Furthermore, the best among the other algo-
rithms (again, the k-NN with k = 3) obtains its highest
F1V score (namely, F 1V = 84%) using a significantly
more complex configuration (namely, configuration 34
in Fig. 6), which comprises a total of 21 nodes and
F = 113 features.

3.3. Time complexity

The time complexity of the proposed algorithm has
been evaluated and compared with those of the clas-
sification algorithms previously considered for per-
formance comparison.® In particular, it is possible to
prove that the time complexity of the online phase of
our algorithm is a linear function of the number of fea-
tures F' and the number of activities A. In Table 1,
the time complexity of our algorithm is reported along
with those of the other considered algorithms [5,12].

8Recall that, we here consider the time complexity of the online
phase due to its impact on real-time applicability of the algorithm
and due to the fact that the training phase should be performed just
once (offline), provided that the BSN configuration does not change
over time.

Table 1
Time complexity of the online phase for the considered algorithms

Algorithm Time Complexity
proposed, NCC, LDA, and QDA O(F-A)
k-NN O(F - D)

It can be observed that the time complexity of all al-
gorithms is a linear function of the number of fea-
tures F. In addition, our algorithm, the NCC, LDA,
and QDA algorithms have a complexity linearly de-
pendent on the number of activities A, but independent
of the training dataset size D, whereas the time com-
plexity of the k-NN algorithm depends linearly on D
and is independent of A. Two considerations can now
be made about A, D, and F':

— the number of activities is typically quite larger
than the size of the training dataset (i.e., A < D);

— the classification performance of the proposed al-
gorithm, when considering a few features (i.e.,
for small values of F), is far better than those of
the NCC, the LDA, and the QDA algorithms (and
also slightly better than that of the k-NN algo-
rithm).

For these reasons, it can be concluded that our al-
gorithm (i) guarantees the best compromise between
classification performance and time complexity and
(ii) outperforms, for a given number of features, the
other algorithms.

3.4. Robustness to noise of the proposed algorithm

A typical problem of a real BSN scenario consists
of unwanted rotations in the displacement of the BSN
nodes, that can differ between the training and the
online phases. It is then of interest to investigate the
robustness of BSN-based activity classification algo-
rithm to rotational noise. To this end, artificial ro-
tational noise has been added to the accelerometric
data, simulating possible rotations of a device around
its three reference axes. We remark that modeling
rotations around the accelerometer axes, rather than
around the body axes, is just an assumption, which is
made to avoid taking devices position shifts also into
account. It is, however, a reasonable assumption, since
the position shifts would be rather limited.

Two considerations can be preliminary made: the
dev-feature is actually insensitive to rotational noise,
due to its definition; the p-feature is invariant to rota-
tional noise around the axis about which the feature
is measured (i.e., the one parallel to the related body

694

90

O Noisy x
O Noisy z

-20 -10 0 10 20 30 40
Simulated rotational noise [deg]

(@)

Admissible range of rotations [deg]

M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm

:
O Noisy x| |
O Noisy z| |

85 90

-40t i i | | \ E|
60 65 70 75 80 85 90
40F T T
20E H
0 ;
~20) e
-40t i | ; ; | E|
60 65 70 75 80 85 90
FY
(b)

Fig. 8. Average (over 4 subjects) classification performance (i.e., weighted f1 score) of the proposed algorithm in the presence of simulated
rotational noise: (a) the weighted f1 score as a function of the intensity of the simulated rotational noise; (b) the admissible range of rotations
as a function of the weighted f1 score. The previously estimated optimal configuration of nodes (i.e., configuration 22, as denoted in Fig. 6) is
considered. Indicative thresholds (dashed lines), corresponding to an admissible minimum performance of F1¥ = 70%, are also shown in two

subfigures.

segment, which we assume to be the y axis for every
device). For such reasons, the rotational noise is then
being only added to p-features and the device rotations
have been simulated only around its other two axes,
namely (due to the previous assumption) the x and z
axes. More specifically, from now on, we assume that
the x axis is directed from the front to the back of the
user, whereas the z axis is directed from his/her right
side to his/her left side. For ease of simplicity, we only
simulate rotations around one axis at a time.

In Fig. 8(a), the average performance of our al-
gorithm (averaged over the 4 considered subjects) is
shown as a function of the intensity of the simulated
rotational noise (in terms of degrees of rotation with re-
spect to the initial orientation), for the previously esti-
mated (at the end of Section 3.2) optimal configuration
of nodes (i.e., configuration 22, as denoted in Fig. 6).
In Fig. 8(b), for the same configuration 22 (as denoted
in Fig. 6) and averaging over the same 4 subjects, the
curves show the range of rotations that can be applied
to the nodes in order to keep a user-defined admissible
minimum performance (in terms of weighted f1 score).
The results in Fig. 8 show that our algorithm, possi-
bly due to the nature of the activities that we want to
classify, suffers less from rotations around the z axis
than those around the x axis. As an example, if one
accepts as a minimum acceptable performance a F 1V
equal to 70%, a system using the proposed algorithm
can tolerate rotations in the range of [—10°, 10°].

We also remark that, due to the realistic data collec-
tion (often operated in different times with respect to

the training acquisition), the testing data (used in the
online phase) implicitly presents real rotational noise.
Therefore, the results previously presented implicitly
assume that the proposed algorithm has to combat
some rotational noise.

4. Conclusion

In this work, a simple, yet effective, activity classi-
fication algorithm has been presented. Its performance
has been evaluated and compared with that of exist-
ing algorithms. The data used to test the algorithms
are publicly available and, thus, represent a valid and
unbiased benchmark for the evaluation of the perfor-
mance of different algorithms. The proposed algorithm
is based on simple comparisons of properly selected
features with thresholds that are automatically opti-
mized during a preliminary training phase performed
once (offline). In order to simplify the operations of
the online phase of the algorithm, the training phase is
also used to automatically select the optimal subset of
nodes and features to be used.

The time complexity of the proposed algorithm has
also been evaluated. Our results show that its complex-
ity is on the order of that of existing algorithms, but
its performance is better. On the other hand, some of
the existing algorithms show a performance similar to
that of ours at the cost of higher complexity. In partic-
ular, our algorithm significantly outperforms the oth-
ers when using a small numbers of nodes and features.

M. Giuberti and G. Ferrari/ A low-complexity activity classification algorithm 695

Taking also into account its robustness against rota-
tional noise, it can be concluded that the proposed al-
gorithm can be used effectively for real-time activity
classification, especially when some constraints on the
number of BSN nodes are introduced.

References

[1] R. Aylward and J. Paradiso, A compact, high-speed, wearable
sensor network for biomotion capture and interactive media,
in: Proc. of the 6th International Conference on Information

Processing in Sensor Networks (IPSN), Cambridge, MA, USA,

April 2007, pp. 380-389. doi:10.1145/1236360.1236408.

L. Bao and S. Intille, Activity recognition from user annotated

acceleration data, in: Pervasive Computing, April 2004, pp. 1-

17. doi:10.1007/978-3-540-24646-6_1.

[3] R. Chavarriaga, H. Bayati and J.d.R. Milldn, Unsupervised
adaptation for acceleration-based activity recognition: Robust-
ness to sensor displacement and rotation, Personal and Ubig-
uitous Computing 17(3) (March 2013), 479—490. doi:10.1007/
s00779-011-0493-y.

[4] R. Chavarriaga, H. Sagha, A. Calatroni, S.T. Digumarti,
G. Troster, J.d.R. Millan and D. Roggen, The opportunity chal-
lenge: A benchmark database for on-body sensor-based activ-
ity recognition, Pattern Recognition Letters 34(15) (November
2013), 2033-2042. doi:10.1016/j.patrec.2012.12.014.

[5] R.O. Duda, PE. Hart and D.G. Stork, Pattern Classification

and Scene Analysis, 2nd edn, Wiley-Interscience, New York,

NY, USA, 2000.

A. Fleury, M. Vacher and N. Noury, SVM-based multimodal

classification of activities of daily living in health smart

homes: Sensors, algorithms, and first experimental results,

IEEE Trans. on Information Technology in Biomedicine 14(2)

(March 2010), 274-283. doi:10.1109/TITB.2009.2037317.

[7] M. Giuberti and G. Ferrari, Simple and robust BSN-based ac-
tivity classification: Winning the first BSN contest, in: Proc.
4th International Symposium on Applied Sciences in Biomed-
ical and Communication Technologies (ISABEL), Barcelona,
Spain, October 2011.

[8] M. Giuberti and G. Ferrari, BSN-based activity classification:

A low complexity windowing-&-classification approach, Ad-

vances in Science and Technology 85 (2013), 53-58. doi:10.

4028/www.scientific.net/AST.85.53.

E. Guenterberg, S. Ostadabbas, H. Ghasemzadeh and R. Jafari,

An automatic segmentation technique in body sensor networks

based on signal energy, in: Fourth International Conference

on Body Area Networks (BodyNets), Los Angeles, CA, USA,

April 2009, pp. 1-7.

[10] T. Huynh and B. Schiele, Analyzing features for activity recog-
nition, in: Proc. of the 2005 Joint Conference on Smart Objects
and Ambient Intelligence: Innovative Context-Aware Services:
Usages and Technologies, Grenoble, France, 2005, pp. 159—
163.

[11] R.Jafari, W. Li, R. Bajcsy, S. Glaser and S. Sastry, Physical ac-
tivity monitoring for assisted living at home, in: Proc. of Inter-
national Workshop on Wearable and Implantable Body Sensor
Networks (BSN), Aachen, Germany, March 2007, pp. 213-219.
doi:10.1007/978-3-540-70994-7_317.

[2

—

[6

=

[9

—

[12] A.K. Jain, R.P.W. Duin and J. Mao, Statistical pattern recog-
nition: A review, IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence 22(1) (January 2000), 4-37. doi:10.1109/34.
824819.

[13] A. Mannini and A.M. Sabatini, Machine learning methods for
classifying human physical activity from on-body accelerome-
ters, Sensors 10(2) (February 2010), 1154-1175. doi:10.3390/
$100201154.

[14] Opportunity Dataset, http://archive.ics.uci.edu/ml/datasets/
OPPORTUNITY+Activity+Recognition.

[15] S. Patel, H. Park, P. Bonato, L. Chan and M. Rodgers, A review
of wearable sensors and systems with application in rehabili-
tation, Journal of NeuroEngineering and Rehabilitation 9(21)
(April 2012), 1-17.

[16] S. Pirttikangas, K. Fujinami and T. Nakajima, Feature se-
lection and activity recognition from wearable sensors, in:
International Symposium on Ubiquitous Computing Systems,
Seoul, Korea, October 2006, pp. 516-527. doi:10.1007/
11890348_39.

[17] SJ. Preece, J.Y. Goulermas, L.P.J. Kenney, D. Howard,
K. Meijer and R. Crompton, Activity identification using body-
mounted sensors — A review of classification techniques, Phys-
iological Measurement 30(4) (April 2009), R1. doi:10.1088/
0967-3334/30/4/RO1.

[18] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Forster,
G. Troster, P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha,
J. Doppler, C. Holzmann, M. Kurz, G. Holl, R. Chavar-
riaga, H. Sagha, H. Bayati, M. Creatura and J.d.R. Mil-
lan, Collecting complex activity datasets in highly rich net-
worked sensor environments, in: 2010 7th International
Conference on Networked Sensing Systems (INSS), Kassel,
Germany, June 2010, pp. 233-240. doi:10.1109/INSS.2010.
5573462.

[19] H. Sagha, J.d.R. Milldn and R. Chavarriaga, Detecting anoma-
lies to improve classification performance in opportunistic sen-
sor networks, in: Proc. of 2011 IEEE International Confer-
ence on Pervasive Computing and Communications Work-
shops (PERCOM Workshops), Seattle, WA, USA, March 2011,
pp. 154-159. doi:10.1109/PERCOMW.2011.5766860.

[20] D.M. Sherrill, M.L. Moy, J.J. Reilly and P. Bonato, Us-
ing hierarchical clustering methods to classify motor activi-
ties of copd patients from wearable sensor data, Journal of
NeuroEngineering and Rehabilitation 2(1) (June 2005), 1-14.
doi:10.1186/1743-0003-2-16.

[21] J.A. Ward, P. Lukowicz, G. Troster and T.E. Starner, Activity
recognition of assembly tasks using body-worn microphones
and accelerometers, IEEE Transactions on Pattern Analysis
and Machine Intelligence 28(10) (October 2006), 1553-1567.
doi:10.1109/TPAMI.2006.197.

[22] A. Yang, S. Iyengar, S.S. Sastry, R. Bajcsy, P. Kuryloski and
R. Jafari, Distributed segmentation and classification of human
actions using a wearable motion sensor network, in: Proc. of
the Computer Vision and Pattern Recognition Workshops on
Human Communicative Behavior Analysis (CVPRW), Anchor-
age, AK, USA, June 2008, pp. 1-8.

[23] P. Zappi, T. Stiefmeier, E. Farella, D. Roggen, L. Benini and
G. Troster, Activity recognition from on-body sensors by clas-
sifier fusion: Sensor scalability and robustness, in: Proc. of 3rd
International Conference on Intelligent Sensors, Sensor Net-
works and Information Processing (ISSNIP), Melbourne, Aus-
tralia, December 2007, pp. 281-286.

http://dx.doi.org/10.1145/1236360.1236408
http://dx.doi.org/10.1007/978-3-540-24646-6_1
http://dx.doi.org/10.1007/s00779-011-0493-y
http://dx.doi.org/10.1007/s00779-011-0493-y
http://dx.doi.org/10.1016/j.patrec.2012.12.014
http://dx.doi.org/10.1109/TITB.2009.2037317
http://dx.doi.org/10.4028/www.scientific.net/AST.85.53
http://dx.doi.org/10.4028/www.scientific.net/AST.85.53
http://dx.doi.org/10.1007/978-3-540-70994-7_37
http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.1109/34.824819
http://dx.doi.org/10.3390/s100201154
http://dx.doi.org/10.3390/s100201154
http://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition
http://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition
http://dx.doi.org/10.1007/11890348_39
http://dx.doi.org/10.1007/11890348_39
http://dx.doi.org/10.1088/0967-3334/30/4/R01
http://dx.doi.org/10.1088/0967-3334/30/4/R01
http://dx.doi.org/10.1109/INSS.2010.5573462
http://dx.doi.org/10.1109/INSS.2010.5573462
http://dx.doi.org/10.1109/PERCOMW.2011.5766860
http://dx.doi.org/10.1186/1743-0003-2-16
http://dx.doi.org/10.1109/TPAMI.2006.197

	Introduction
	Method
	Experimental setup and performance metrics
	Algorithm description
	Preliminaries on data preprocessing and feature extraction
	The general idea
	Activity classification
	Algorithm training

	Results and discussion
	Configurations of nodes and features
	Classification performance
	Time complexity
	Robustness to noise of the proposed algorithm

	Conclusion
	References

