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Abstract. In this paper, we investigate the feasibility of a hybrid radio/accelerometric approach to perform arm posture recogni-
tion. A radio fingerprinting-based approach, through measurements of the Received radio Signal Strengths (RSSs) from anchor
nodes, is first used to localize the positions (among a set determined during a training phase) of target nodes properly placed
on a user arm. Accelerometric signals generated by the target nodes are then used to estimate the pitch of every device in order
to refine the radio fingerprinting results and perform posture recognition, i.e., “continuous” estimation of the positions of the
target nodes. We experimentally investigate, through a SunSPOT wireless sensor network testbed, different fingerprinting-based
localization algorithms, namely deterministic and probabilistic. In each case, the system parameters are optimized by minimizing
a properly defined Position Error (PE). Finally, a comparison between the performance of the proposed system and that of a
low-cost optical arm posture recognition system (namely, Kinect) is presented.
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1. Introduction

Localization systems are becoming more and more
important in pervasive wireless technologies for their
roles in location-aware services. The Global Position-
ing System (GPS) has been one of the milestones for
outdoor localization [1]. However, its use for indoor
localization is often impaired by phenomena typical
of indoor scenarios, such as reflections, multipath, and
fading. Therefore, indoor localization systems, which
do not rely on the use of GPS, have been developed. In
particular, recent research has been devoted to the so-
called “fingerprinting” technique [2–4]. Fingerprinting
is a localization technique where target nodes’ posi-
tions are estimated on the basis of measurements, by
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reference nodes (anchor nodes), of the Received ra-
dio Signal Strengths (RSSs) from target nodes. In par-
ticular, a radio map of the environment is first con-
structed through a specific offline training phase and
is then used to estimate the target nodes’ positions by
best matching newly collected RSS values with those
saved in the radio map. This technique implicitly takes
into account the presence of reflections and multipath
and is then particularly effective in indoor scenarios.
Nevertheless, despite the appeal of fingerprinting for
indoor localization applications, a few works have so
far appeared in the literature.

Unlike existing works where fingerprinting is used
to localize subjects in large (indoor) areas, in this work
fingerprinting-based radio localization is exploited to
perform arm posture recognition by estimating the po-
sitions of (i.e., localizing) target wireless sensor nodes
properly placed on a user arm (i.e., body area lo-
calization). Different fingerprinting-based localization
algorithms, either deterministic or probabilistic, are
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considered to estimate targets’ positions. Furthermore,
the proposed radio-based posture recognition system
is extended to integrate the use of inertial measure-
ments. More precisely, measurements obtained from
accelerometers (available on the target nodes) are used
to estimate the pitch of every node in order to refine
the accuracy of the position estimation provided by the
fingerprinting-based radio localization.

We remark that the key contribution of this work
mainly consists in experimentally investigating the
feasibility of a hybrid approach which combines radio
localization and inertial signals.1 In particular, to the
best of our knowledge, besides the novelty of the use
of a radio localization technique (i.e., fingerprinting)
for posture recognition applications, no work on the
joint use of radio and inertial signals for these types
of applications has appeared in the literature. More-
over, while in the literature inertial posture recogni-
tion approaches tend to use inertial devices equipped
with accelerometers, gyroscopes, and/or magnetome-
ters [7–9], our low-complexity approach relies only
on acceleration measurements. The proposed system
is extensively studied (optimizing key parameters) and
its performance is also compared with that of a low-
cost optical system (namely, Kinect). Finally, even if
the proposed system is conceived to recognize simple
postures of a static (not walking) user, the design and
implementation of a fully portable ambulatory posture
recognition system is an appealing research extension.

The rest of this paper is structured as follows. Sec-
tion 2 is dedicated to related work. In Section 3,
the proposed radio/accelerometric hybrid approach is
presented and described, specifically focusing on the
problem of arm posture recognition. In Section 4, the
considered experimental set-up is presented and the
performance metrics of interest are then introduced.
In Section 5, the system performance, after parametric
optimization, is analyzed. Finally, in Section 6, advan-
tages, disadvantages, and possible future extensions of
the proposed system are discussed.

2. Related work

In the literature, two main approaches have been
proposed for posture recognition: optical and inertial.

Concerning optical posture recognition, the widely
used technology is optoelectronic (e.g., Vicon sys-

1Preliminary results obtained with radio fingerprinting (without
using inertial signals) can be found in [5,6].

tem [10]). Optoelectronic systems require the user to
wear reflective markers and to move in a space com-
pletely visible by a set of cameras. Because of their
accuracy, these systems are typically used as ground
truth reference for other posture recognition systems.
On the other hand, their use is typically limited to clin-
ical environments or specialized laboratories, due to
their large cost and complexity.

Other optical posture recognition systems comprise
the class of markerless systems. Kinect [11], which
features an RGB camera and a depth sensor (composed
by an infrared camera and projector), can be consid-
ered one of the most significant example of markerless
systems. Its low cost (with respect to systems like Vi-
con), along with its still quite good performance, has
made it a widely used solution. Nevertheless, it also
has some spatial and temporal limitations, which could
be critical in the context of some applications. More
specifically, concerning spatial limitations, it is gen-
erally known that the z axis of Kinect, which is re-
lated to the direction perpendicular to its sensor cam-
era, has poorer resolution with respect to those of its x

and y axes, which instead define the frontal plane [12].
Moreover, Kinect’s sampling rate, which is typically
around 30 frames per second (fps), can be a limiting
factor when monitoring fast movements.

Typically, optical systems suffer from problems re-
lated to different lighting conditions and markers’ oc-
clusion. Moreover, the user movements must be lim-
ited to the area captured by the cameras. The reader
is referred to [13,14] for accurate surveys on optical
posture recognition.

Concerning inertial posture recognition, inertial
sensors are typically used to estimate the orientation
of rigid body segments and, thus, to recognize the pos-
tures of a user. One of the most successful and com-
plete commercial products is the Xsens Moven [15],
which comprises 17 inertial sensors (equipped with tri-
axial accelerometers, gyroscopes, and magnetometers)
attached to the body of the user by a lycra suit. The ma-
jor advantage of this technology, with respect to optical
systems, is that the user is completely free to move ev-
erywhere because no camera is needed. Moreover, the
visibility of the nodes placed on the user body is not an
issue. However, the accuracy of these systems is typ-
ically lower than that of optical systems and the cost,
particularly for systems which rely on a large number
of nodes and types of sensors (such as Xsens Moven),
is not significantly lower than that of optoelectronic
systems. Finally, especially when used for a long time,
a significant drift in the sensors’ measurements can
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be typically observed, leading to a performance degra-
dation. It should also be observed that, unlike optical
systems, inertial systems cannot directly provide infor-
mation about the sensor nodes’ positions. Instead, es-
timated sensor devices’ orientations are used together
with properly defined biomechanical models, compris-
ing the lengths of all body segments, to reconstruct
the full body posture of the user through forward kine-
matics techniques [16]. The user position is estimated
using advanced contact detection techniques.

Finally, solutions based on the joint use of differ-
ent technologies, designed in order to tackle and over-
come the limitations which characterize component
technologies considered independently, have also been
widely investigated. For instance, inertial/GPS, iner-
tial/optical, and inertial/acoustic joint measurements
are considered in [17], in [18], and in [19], respec-
tively. In particular: in the inertial/GPS approach, iner-
tial nodes equipped also with GPS receivers are used
to track the user, providing better performance (es-
pecially) in outdoor scenarios (e.g., sport sessions as
skiing); in the inertial/optical approach, inertial sen-
sor nodes and cameras are jointly used, leading to a
decreased freedom of movement of the user but also
to an improved robustness to occlusions; in the in-
ertial/acoustic approach, nodes equipped with micro-
phones and speakers are used in addition to inertial
sensor nodes, providing better performance (thanks to
the estimation of relative distances between nodes) but
suffering from “acoustic occlusions.”

Unlike the above approaches, our solution repre-
sents the first attempt (to the best of our knowledge)
of investigating the effectiveness of the joint use of ra-
dio and inertial (specifically, accelerometric) measure-
ments. To this end, an arm posture recognition system
is developed in order to evaluate the feasibility of the
use of such hybrid approach for posture recognition.
Advantages and disadvantages are inherited from the
considered technologies and our solution compares to
existing ones as follows.

– Optoelectronic systems (e.g., Vicon) provide a
better accuracy than that of our approach, at the
price of (i) a much higher cost and (ii) problems
related to different lighting conditions and mark-
ers’ occlusion.

– Markerless systems (e.g., Kinect) suffer from
problems similar to optoelectronic systems (i.e.,
related to different lighting conditions and mark-
ers’ occlusion). They have a cost and a perfor-
mance in the order of those of our approach.
However, unlike our approach, a benefit of these

systems is that no specific hardware has to be
placed on the user body.

– Inertial systems have a performance which highly
depends on the used inertial sensors. However,
standard inertial systems (i.e., which use de-
vices with accelerometers, gyroscopes, and mag-
netometers) provide better performance than that
of ours and allow the user a higher freedom of
movement, at the price of a higher cost.

– Inertial/GPS hybrid solutions have the same ad-
vantages/disadvantages of inertial systems, but
requires necessarily to be outdoor. Of course, they
are very suitable for outdoor posture recognition
sessions (i.e., improved freedom of movement).

– Inertial/optical hybrid solutions, when consider-
ing devices with costs comparable to that of our
system, are almost similar (in terms of advan-
tages/disadvantages) to our approach.

– Inertial/acoustic hybrid solutions are also very
similar to our approach. However, even if they
suffer from problems related to “acoustic occlu-
sions,” they allow improved portability and free-
dom of movement.

Unlike our solution, all other systems do not need a
training phase – more precisely, the radio-based com-
ponent of our approach relies on a (short) training
phase. However, preliminary calibration phases must
be typically taken into account.

To summarize, the proposed radio/inertial hybrid
approach is conceived as a low-cost and low-complexi-
ty approach which overcomes typical limitations of ex-
isting systems, such as those related to different light-
ing condition and occlusions. On the other hand, the
proposed posture recognition system requires that the
user does not walk (i.e., allows a limited freedom of
movement to the user). To overcome these limitations,
the design of an entirely portable posture recognition
system will be discussed.

3. Arm posture recognition

In this work, “arm posture recognition” refers to the
continuous estimation of the three-dimensional posi-
tions of sensor devices placed on the user arm and,
therefore, to the continuous estimation of the arm ori-
entation – this differs from “arm posture classifica-
tion,” where arm postures must be detected choosing
from a discrete set of predefined postures. Indeed, even
if our hybrid approach uses a localization technique
(i.e., radio fingerprinting) to classify “known” (trained)
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arm postures (posture classification), it then properly
interpolates these postures in order to estimate whole
transitional movements of the arm (and not just “still
postures”) between two or more of the previous trained
postures (posture recognition). Further considerations
of the actual suitability and applicability of the pro-
posed system for arm posture recognition (and classi-
fication) will be presented in Section 6.

3.1. Fingerprinting-based radio localization

As anticipated in Section 1, fingerprinting is a robust
localization technique for indoor scenarios, which are
typically characterized by reflections, multipath, and
fading. We now provide some intuition on the finger-
printing technique – the interested user can find more
details in [5,6]. Fingerprinting requires three kinds of
nodes: target nodes, anchor nodes, and a base station.
Target nodes have to be localized, whereas anchors
nodes have fixed known positions and are used to gen-
erate a reference system. Finally, the base station is the
processing center. Two phases are considered: a train-
ing phase, during which a radio map of fingerprints is
generated, and an online phase, during which localiza-
tion is performed.

During the training phase, the target node continu-
ously broadcasts packets to be received by the anchor
nodes. The latter, upon reception of the packets sent by
the target, measure the RSSs and relay this informa-
tion to the base station. The base station collects the
RSS values and groups them into “fingerprint vectors.”
Finally, the base station generates a “fingerprint,” i.e.,
a vector containing the arithmetic average of the re-
ceived fingerprint vectors (i.e., the vector whose ele-
ments are the average RSSs measured by the anchors).
Different physical positions of the target (i.e., “finger-
print positions”) in the monitored area (properly cho-
sen depending on the considered application) corre-
spond and lead to different fingerprints. The entire set
of fingerprints created in the training phase represents
the “radio map” of the environment.2 This radio map
can be then used to run deterministic (i.e., based on
simple comparisons between newly measured finger-
print vectors and the fingerprints of the radio map) lo-

2The major strength of fingerprinting consists of the fact that the
fingerprints implicitly take into account the impact of reflections and
multipath on the RSSs, i.e., this technique is “tailored” to the specific
indoor environment. This makes fingerprinting virtually insensitive
to indoor propagation limitations – provided that the propagation
environment remains quasi-static.

calization algorithms. Furthermore, if one wants to use
probabilistic versions of these algorithms (i.e., based
on a more accurate statistical characterization of the
RSS), during the training phase the entire Probabil-
ity Mass Functions (PMFs) of the RSSs from all an-
chors need to be also computed and stored. Even if in
the context of indoor localization a log-normal distri-
bution of the RSS seems to be widely accepted [3],
this is generally not our case, especially due to the fact
that sensor nodes are placed on a human body. There-
fore, the PMFs will be experimentally evaluated us-
ing the so-called histogram method, where the normal-
ized histogram of the actual RSS measurements (dur-
ing the training phase) for each fingerprint position are
used [20].

After the training phase is completed, the online
phase starts (following the same operations of the
training phase, but now building a so-called “online
vector,” i.e., a single fingerprint vector containing a
time snapshot of newly measured RSS values). In par-
ticular, in the online phase the radio map (determinis-
tic approach) or the PMFs (probabilistic approach) cre-
ated in the training phase are used to localize the tar-
get. Note that, once the training phase is over (i.e., the
online phase starts), the target node can move freely
and should not necessarily be placed in the previously
trained fingerprint positions.

Given the measured online vectors, different algo-
rithms can be used to estimate the positions of the tar-
get node. One of the simplest deterministic fingerprint-
ing algorithm is the Nearest Neighbor (NN) algorithm,
whose generalization is known as kNN3 [21] – we re-
mark that “neighbors” here refer to fingerprints and
are thus associated with specific fingerprint positions.
The kNN algorithm estimates the target positions by
computing a specific distance metric between the on-
line vector and every fingerprint contained in the ra-
dio map. By applying the Shepard method [22] in or-
der to compute a weighed interpolation of the closest
neighbors, the estimated target position ŝ = (x, y, z)

is given by

ŝ =
k∑

i=1

wi∑k
j=1 wj

· ŝi (1)

3Note that the term kNN, in the context of radio fingerprinting, is
used to indicate the identification of the k closest fingerprints. There-
fore, unlike in typical machine learning scenarios, the NN search
is performed in a database of a very limited size (i.e., the number
of rows is equal to the number of trained fingerprint positions) and,
therefore, is not computationally intense.
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where {̂si}ki=1 are the fingerprint positions (i.e., phys-
ical positions) of the k closest neighbors (i.e., the fin-
gerprints with shortest distances from the online vec-
tor) and

wi �
1

d
ps
i + 0.0001

(2)

where: di is the distance computed between the ith
closest neighbor and the online vector (defined in the
space of RSS vectors); and ps is an integer larger than
0. The term 0.0001 at the denominator of Eq. (2) is
used to prevent a division by zero if the online vector is
equal to one of the fingerprints. In our system, we will
consider only two definitions of distance: Euclidean
and Manhattan [21]. Other distance definitions can be
applied to the kNN algorithm, e.g., the Mahalanobis
distance, which takes also into account the contribu-
tion of covariance matrix computed for every finger-
print [21] – little performance differences are, how-
ever, observed. Observe that, when k = 1 (i.e., with
the NN algorithm), Eq. (1) reduces to the coordinates
of the closest fingerprint position and, then, ps has no
influence on the system. Finally, note that, due to the
interpolation between fingerprint positions in Eq. (1),
the estimated position ŝ may (likely) differ from any of
the considered fingerprint positions.

Unlike the deterministic approach, in the proba-
bilistic approach (straightforwardly called p-kNN) the
RSSs measured at the anchor nodes are character-
ized, using the samples received in the training phase,
through their entire PMFs. In this case, the estimated
target position can be expressed as follows:

ŝ =
k∑

i=1

P (̂si |r)∑k
j=1 P (̂sj |r)

ŝi , (3)

where: r is the “online” vector; P (̂si |r) is the a-
posteriori probability of the ith (out of k) closest
neighbor; and the k closest neighbors are chosen so
that the corresponding a-posteriori probability is max-
imized. More specifically, using Bayes theorem, the a-
posteriori probability that the target node is in the ith
fingerprint position, given that the online vector r is
received, can be expressed as

P (̂si |r) = P(r |̂si )P (̂si )

P (r)
= P(r |̂si )P (̂si )∑L

�=1 P(r |̂s�)P (̂s�)

(4)

where: L is the number of trained fingerprint positions;
P(r |̂si ) is computed (as anticipated earlier in this sub-
section) using the histogram method (with a bin reso-
lution of 1 dBm); and P (̂si ) is the a-priori probabil-
ity of being in the ith fingerprint position. Since, with
no movement restriction, all fingerprint positions are
equally likely, it holds that P (̂si ) = 1/L. Note again
that, when k = 1 (and thus reducing to a so-called
p-NN), Eq. (3) returns exactly the coordinates of the
closest fingerprint position.

Concerning arm posture recognition, fingerprinting
can be used to estimate the positions of (i.e., localize)
multiple target nodes, properly placed on a user arm
(e.g., one on the upper arm and one on the forearm),
and straightforwardly derive the arm posture. To this
end, the reference system origin must be properly cho-
sen (e.g., the shoulder) and the user must try to keep
this origin fixed during the evaluation. In this applica-
tion scenario, the fingerprint positions correspond to
targets’ physical positions related to predefined arm
postures that must be held by the user during the train-
ing phase. During the following online phase, the user
can instead move his/her arm freely (always recalling
not to move the reference system origin, i.e., his/her
shoulder).

3.2. Accelerometer-based pitch estimation

The radio fingerprinting-based posture recognition
system described in Section 3.1 may introduce errors,
especially when a target node is in a position that dif-
fers from the trained fingerprint positions (i.e., when
the arm is in an untrained posture). A possible way
to improve the system performance is to estimate the
arm orientation by making use of other inertial sensors
(e.g., accelerometers, gyroscopes, and/or magnetome-
ters), which the target nodes can be equipped with. In
particular, considering proper combinations of these
sensors (e.g., an accelerometer and a gyroscope), the
orientation of a device (and, thus, of the arm) can be
estimated [7].

The orientation of a device can be described by three
parameters: yaw (or heading), pitch (or elevation), and
roll (or bank) [23]. Specifically, it is known that a
rigid body can be arbitrarily rotated by first rotating it
around its z axis by an angle ψ (the yaw), then around
its y axis by an angle θ (the pitch), and finally around
its x axis by an angle φ (the roll) [23]. Observing that
the acceleration measured by a still device is only due
to the gravity acceleration, it can be shown that, using
just an accelerometer (in order to minimize the cost of



AUTHOR  C
OPY

568 M. Giuberti et al. / A hybrid radio/accelerometric approach to arm posture recognition

Fig. 1. Measured acceleration when the device is rotated around its
y axis (i.e., its pitch θ is different than 0). Both Earth (E subscript of
axes) and device (S subscript of axes) coordinate systems are shown.

the system), the pitch of a still device (i.e., following
the previous notation, the angle between its x axis and
the horizontal plane perpendicular to the gravity direc-
tion) can be determined by observing how the gravity
vector is rotated with respect to the x axis of the device.
More precisely, by exploiting acceleration measure-
ments and following simple trigonometric equations,
the device pitch θ can be computed as follows [24]:

θ = arcsin
ax

g
= arcsin ax (5)

where ax is the acceleration (in g units) measured
along the x axis and g is the gravity acceleration (ob-
viously, equal to 1 g). For ease of clarity, in Fig. 1 a
graphically intuitive representation of the geometrical
meaning of Eq. (5) is provided. Note that Eq. (5) holds
since the device is still and, therefore, the measured ac-
celeration vector a has the same direction and norm of
the gravity vector g.

As the above approach is valid only if the device
is still, static (constant force of gravity) and dynamic
(movements or vibrations of the accelerometer itself)
accelerations need to be discriminated in the case
the device is moving. This problem cannot be easily
solved, but it can be at least mitigated by taking into
account only acceleration measurements with ampli-
tudes in [g − ξ , g + ξ ], where g is the gravity acceler-
ation (i.e., 9.81 m/s2) and ξ needs to be properly cho-
sen with respect to the application context. This can be
carried out by considering only data portions in which
the user is not moving (and, thus, ξ ∼= 0 m/s2) or by
simply applying a low-pass filter to the output acceler-
ation signals.

When the device is moving, since it is no longer
true that |a| = g = 1 g and since the arcsin function

accepts only values whose norm is equal to or lower
than 1, Eq. (5) should be properly rearranged. To this
end, the estimated pitch of the device can be estimated
as follows:

θ = arcsin ax = arcsin
ax

|a| (6)

where ax is the normalized acceleration (in g units)
measured along the x axis.

Similarly, when the sensor device is attached to a
rigid body segment of the user (e.g., the arm), the pitch
(i.e., the inclination) of the considered body segment
can be computed as

θ = arcsin abs (7)

where abs is now the normalized acceleration (in g
units) measured along the device axis aligned with that
of the considered body segment. Note that, according
to Eqs (5), (6), and (7), the pitch always belongs to
[−π/2, π/2].

Since the estimated inclination of a body segment
is not sufficient alone to provide information about its
position, a proper human biomechanical model, which
assumes to know the involved body segments’ lengths
and how they are linked together, should be consid-
ered.

3.3. Recursive estimation process

Referring to the posture recognition of a user arm,
it will be now described how estimates obtained from
(i) radio fingerprinting and (ii) pitch estimation should
be properly combined. In particular:

– The pitch θ of each device (and, thus, of the
corresponding body segment) is computed using
Eq. (7). This will lead to the estimation of the z

coordinate of the target node.
– Estimates of the (x, y, z) coordinates of the

devices are available from radio localization
(through fingerprinting).

Furthermore, we preliminary introduce a few geomet-
ric assumptions.

– A (properly defined) fixed origin O is chosen.
– One device is attached to each adjacent rigid body

segment between the previously chosen origin O
and the farthest distal point Z of the body part
whose posture needs to be estimated. More pre-
cisely, for arm posture recognition, O could be the
shoulder and Z could be the wrist. Therefore, two
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Fig. 2. Pictorial description of the considered scenario. The points
of interest used in the algorithm are highlighted. In particular: O and
Z are the 3D coordinates of the origin point and the farthest distal
point that needs to be estimated, respectively; D1 and D2 are the
3D coordinates of target 1 and target 2, respectively; d is the actual
length of the arm segment considered at the first step (in this case,
the upper arm); d ′ is the distance between the considered sensor
device (with coordinates D1) and the corresponding body segment’s
joint proximal to the fixed origin (in this case, the origin point with
coordinates O, i.e., the shoulder); and θ is the pitch of the considered
sensor device and, thus, of the corresponding body segment (in this
case, the upper arm).

devices should be used, attached, respectively, to
the upper arm and to the forearm.

– The length d of each body segment on which the
devices are mounted is known (e.g., the lengths of
the upper arm and of the forearm).

– The distance d ′ between each device and the cor-
responding body segment’s joint proximal to the
fixed origin is known (e.g., the distance between
the shoulder and the device attached to the upper
arm).

In Fig. 2, a pictorial description of the scenario, with
highlighted points of interest, is shown.

In the following, we introduce a recursive estima-
tion process, according to which adjacent body seg-
ments are considered at consecutive steps. Specifically,
all adjacent body segments comprised between O and
Z are considered, starting from the body segment start-
ing in O and ending with the body segment ending in
Z. Furthermore, for each considered body segment, the
positions of its two extremes (i.e., the body segment
joints) are chosen as reference points: the position of
the proximal joint (i.e., the joint closest to the body) is
denoted as point A = (xA, yA, zA) and the position of
the distal joint (i.e., the joint farthest from the body) as
point B = (xB, yB, zB). In the specific case of the arm
shown in Fig. 2, at the first step A corresponds to O,
whereas at the last step B corresponds to Z.

In order to estimate the posture of the user arm, the
postures of the upper arm and of the forearm have to

be estimated (or, in other words, the positions of the
elbow and the wrist, with respect to the shoulder, need
to be identified). In this case, the proposed recursive
estimation strategy involves two steps. To this end, two
target nodes need to be used: the first on the upper arm
and the second on the forearm – more details on the
experimental set-up will be given in Section 4.1. For
ease of clarity, let us denote their physical positions
as {Di}2

i=1, where Di = (xDi
, yDi

, zDi
).4 The origin

O = (0, 0, 0) will be the shoulder, whereas the farthest
distal point Z will be the wrist.

As shown in Fig. 2, at the first step, since we are fo-
cusing on the upper arm, A corresponds to the shoul-
der (i.e., the origin O), whereas B corresponds to the
elbow (whose physical position is currently unknown).
We then consider the first device, denoted as point D1
and (in our scenario) positioned in the middle of the
upper arm, i.e., between A and B. Its initial position
estimate, denoted as D̂1, is recovered through radio lo-
calization, whereas its pitch θ (which corresponds to
the inclination of the upper arm) is estimated using
Eq. (7). Finally, d is the distance between A and D1,
whereas d ′ is the length of the upper arm (i.e., the dis-
tance between A and B).

Taking into account a polar coordinates framework,
the arm posture is then estimated through the compu-
tation of the pitch and the heading of all the body seg-
ments of the arm. In particular, the main idea is to use
the initial position estimate D̂1 (recovered from radio
localization) to infer information about the heading ψ

of the considered body segment. The heading informa-
tion is then combined with that of the pitch θ of the
same body segment (estimated using the accelerome-
ter) in order to refine and correct D̂1 (taking also into
account a proper biomechanical model). Therefore, the
hybrid approach consists in using the (i) radio finger-
printing to estimate the heading of each arm segment
and the (ii) inertial signals to estimate the inclination.

More precisely, the heading ψ of the considered
body segment can be computed as

ψ = arctan 2(yD̂1
− yA, xD̂1

− xA) (8)

where the function arctan 2 behaves as the standard
arctan function but, in addition, provides information

4Note that we assume that the z axis of the reference system is
in the vertical direction (i.e., that of the gravity vector). The x and
y axes may be instead conveniently chosen as perpendicular axes in
the horizontal plane. In particular, we will chose the y axis as the
forward direction and the x axis as the direction normal to the user
sagittal plane.
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Fig. 3. Graphical intuition of Eq. (9) in the specific case of the first
considered body segment (i.e., the upper arm). The heading (i.e., ψ)
and the pitch (i.e., θ ) of the segment are highlighted. For ease of
clarity, the device D1 is pictured along segment AB and the projec-
tion of the segment on the horizontal plane is also shown. Note that,
for the case of the upper arm, A and B correspond, respectively, the
shoulder and the elbow of the user.

about the quadrant of the computed angle, so that the
heading ψ belongs to [0, 2π ].

Finally, considering the estimated pitch (θ ) and
heading (ψ), the adjusted estimated coordinates of the
first device, denoted as D1, can be expressed as

D
T

1 =
⎛
⎝xD1

yD1

zD1

⎞
⎠ =

⎛
⎝xA + d ′ · cos θ · cos ψ

yA + d ′ · cos θ · sin ψ

zA + d ′ sin θ

⎞
⎠ (9)

where (·)T is the transpose operator. A graphical in-
tuition of Eq. (9) is given in Fig. 3. Furthermore, the
estimated coordinates of B (namely, the elbow) can be
similarly expressed as follows:

BT =
⎛
⎝xA + d · cos θ · cos ψ

yA + d · cos θ · sin ψ

zA + d sin θ

⎞
⎠ . (10)

The above estimation process can be repeated to es-
timate the position of the second device D2, positioned
in the middle of the forearm (as shown in Fig. 2),
and of the wrist. To this end, A and B should be up-
dated (i.e., A would correspond to the elbow, whereas
B would correspond to the wrist) and Eqs (9) and (10)
can be used again considering proper values of θ , ψ ,
d ′, and d (namely, the ones related to the arm segment
between the updated points A and B, i.e., the forearm).
Finally, since after this second step the updated point
B (i.e., the wrist) corresponds to Z, the recursive pro-

cess ends and the arm posture is estimated.5 Note that
as the position of B is estimated and, therefore, may
have errors, it is likely that the estimated coordinates
of D2 will be less accurate than those of D1.

Finally, we remark that the integration of the ac-
celerometers into our system does not have any impact
on the fingerprinting training phase. Indeed, all the ac-
celeration measurements are taken into account only
during the online phase.

4. Experimental set-up

4.1. Experimental testbed

SunSPOT devices have been used for the experi-
mental testbed. SunSPOTs are wireless devices
equipped with a triaxial accelerometer and an IEEE
802.15.4 compliant radio interface with an on-board
antenna and up to 100 m transmission range [25].

In the current paper, we consider a testbed which
extends the one proposed in [5]. In particular, a Body
Area Network (BAN) with target nodes on the user
arm is still considered, but now the anchor nodes are in
part placed (and fixed) in the surroundings of the user
and in part attached on his/her body – in [5], all an-
chors are fixed and outside the body. This is obtained
through the use of (i) a home-made t-shirt with fold-
ers where anchors can be placed and (ii) a hat with an
anchor attached to it. Although the presence of some
anchor nodes at fixed (outside the body) positions still
forces the user to remain in its initial position in the
room (in order to make the fingerprinting technique
work consistently), the proposed testbed is a first step
toward a fully portable arm posture recognition sys-
tem – this extension is the subject of our current re-
search activity. Furthermore, a noisier (and, thus, more
realistic) environment is here taken into account (e.g.,
with more than one people moving in the room while
testing the system and in the presence of multiple ac-
tive WiFi networks), whereas in [5,6] the system per-
formance is analyzed in more controlled (interference-
free) scenarios. Therefore, the presented results are al-
ready reflecting the performance of a system in a quite
adverse (but realistic) home scenario.

In the present experimental testbed, 2 SunSPOTs,
acting as targets (i.e., target 1 and target 2), are placed
on the right arm of the user, as shown in Fig. 4(a)

5Observe that this process can be recursively repeated, should
more consecutive body segments be considered (e.g., by adding a
device for the hand in our testbed).
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Fig. 4. Considered experimental posture recognition set-up: (a) plot
of on-body set-up; (b) scheme of the overall set-up. The positions
of the anchor nodes (i.e., A1 to A7) and of the target nodes (i.e., T1
and T2) are highlighted. Note that A2, A3, and A5 are fixed in the
surroundings of the user, whereas A1, A4, A6, and A7 are attached
on his/her body.

Table 1

Fingerprint positions coordinates (considered during the training
phase) with respect to the user shoulder. Every fingerprint position
corresponds to a specific arm posture

Fingerprint
Positions

Target 1 Target 2

x [cm] y [cm] z [cm] x [cm] y [cm] z [cm]

P1 0 0 −15 0 0 −42.5

P2 0 0 15 0 0 42.5

P3 0 15 0 0 42.5 0

P4 15 0 0 42.5 0 0

P5 −11 11 0 −34 21 0

(where it is also possible to see the home-made t-shirt):
the first node (i.e., target 1) is on the upper arm and
the second (i.e., target 2) is on the forearm. N = 7
anchor nodes are considered: 4 of them are placed on
the user body, whereas the remaining 3 are placed in
its proximity.6 For ease of clarity, an illustrative repre-
sentation of the overall experimental set-up is shown
in Fig. 4(b), where a map of the positions of the nodes
is shown. Fixing the origin of our new reference sys-
tem on the shoulder (and thus forcing the user to move
the arm and keep the shoulder still), 5 fingerprint po-
sitions per target node (i.e., P1, P2, P3, P4, and P5),
whose coordinates are defined in Table 1 and shown in
Fig. 5, are considered, corresponding to 5 simple arm
postures. The choice of the 5 arm postures (and, thus,

6We remark that, in the presented experimental analysis, the user
is forced to keep his/her body still. Therefore, the anchor nodes at-
tached on his/her body can be actually considered as fixed (still)
nodes. The choice of attaching them directly on the user body will
be further discussed and motivated in Section 6.

Fig. 5. Transitional movements, performed by the user during the
online phase, between the 5 trained arm postures (used to train the
corresponding 5 fingerprint positions, i.e., P1, P2, P3, P4, and P5)
considered in the training phase.

of the 5 fingerprint positions) is expedient to cover as
uniformly as possible the surroundings of the user arm.

The packet transmission rate of target nodes is
around 30 pck/s. The acceleration, locally (at each
target node) sampled at 100 Hz, is also consistently
down-sampled to the same rate (i.e., 30 Hz). Therefore,
every second, the base station receives, for each tar-
get, around 30 new fingerprint vectors (containing new
RSS measurements at anchor nodes) and new accel-
eration measurements. The synchronization between
the sensor nodes in the system is performed by align-
ing the internal clocks of every sensor node to that of
the base station, at application deployment stage, and
by inserting a timestamp field inside each transmitted
packet.7

In the training phase, the user has been asked to
keep each of the 5 arm postures for about 30 s. As
shown in [6], the time interval, during which each arm
posture should be kept fixed to train each correspond-
ing fingerprint position (i.e., 30 s), has been chosen in
order to collect a number of fingerprint vectors (i.e.,

7Note that, even if for the purpose of our experimental analysis
this is sufficient to guarantee a fair synchronization for a few hours,
a future system should try to define specific communication proto-
cols/mechanisms able to achieve, e.g., through a sparse exchange of
synchronization packets, a long-lasting synchronization of system
devices.
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about 1000 for each target node) sufficient for the con-
vergence of the evaluated fingerprints. During these
30 s, the considered fingerprint position is trained as
explained in Section 3.1 and the related fingerprint is
generated.8 Once the training phase has terminated, the
online phase is split into two parts in order to properly
test the system performance. In particular: the user is
first asked to replicate the 5 trained arm postures (in
order to test the system in static conditions); further-
more, a few transitional movements, which start and
end at two of the trained arm postures, are also exe-
cuted (in order to test the system in dynamic condi-
tions). Note that, for the purpose of localization, fin-
gerprinting is performed independently for each target
node. With reference to Table 1, this means that: P1
corresponds to a specific posture of the arm but, ob-
viously, to two fingerprint positions (i.e., one for each
target node) and, therefore, to two fingerprints; P2–
P5 can be interpreted likewise. The transitional move-
ments that the user is asked to perform are shown in
Fig. 5 and can be summarized as follows:

– lower the arm from position P2 to position P1,
passing through position P3 (Fig. 5(a));

– move horizontally the arm from position P4 to po-
sition P5, passing through position P3 (Fig. 5(b));

– raise the arm from position P1 to position P3
(Fig. 5(c));

– move horizontally the arm from position P3 to po-
sition P4 (Fig. 5(d)).

The previous sequence of transitional movements is
repeated by the user twice, resulting in a total of 8
movements. The user is asked to perform each transi-
tional movement at constant speed (typically leading
to movements with duration of 2÷4 s). Since the seg-
mentation of the time portions containing each transi-
tional movement is only expedient to the performance
analysis (and not to the correct system behavior), it has
been performed manually. During the online phase,
each new fingerprint vector (i.e., the online vector) is
used to evaluate the current arm posture.

Finally, for the purpose of a trend-wise compari-
son, we run at the same time an arm posture recogni-
tion session performed through the Kinect system [11].
In particular, we put the Kinect device in front of the

8Note that, even if some slight variations of the kept arm pos-
tures are unavoidable, the measured fingerprint vectors should be
relatively close to each other (in the RSS space). Therefore, the error
introduced in the computation of the fingerprints is typically negli-
gible.

user (at a distance of about 3 m) and run the Skele-
tal Viewer demo application (included in the Kinect
libraries). Thank to this application, we were able to
save the coordinates of the joints of the user arm for
each time sample and, therefore, the coordinates of the
target nodes, which have been compared with the ones
estimated with our system. Given that Kinect samples
video frames at around 30 fps, a direct comparison
with our system is straightforward. Five users have
been considered for the experimental analysis.

4.2. Performance metrics

Typically, the performance of an arm posture recog-
nition system is evaluated by comparing the estimated
arm position with that estimated with optoelectronic
systems (e.g., Vicon) and considered as “ground truth.”
For ease of clarity, we remark that our goal is not
to derive the exact performance of the proposed sys-
tem, but, rather, to have a rough idea of its achiev-
able performance, in a comparative way with respect
to Kinect. Since we do not have access to any opto-
electronic system and since we are interested on trend-
wise meaningful results, the performance of our sys-
tem has been evaluated with respect to predefined arm
postures and trajectories of the considered body seg-
ments, where true target positions have been manu-
ally derived – we believe that this is reasonable, as the
considered postures and transitions (described in Sec-
tion 4.1) are very regular. Due to the geometry of the
human body (and, specifically, the arm model) and the
simplicity of the chosen and tested transitional move-
ments (described in Section 4.1), the considered trajec-
tories are simple horizontal/vertical arcs in the three-
dimensional space (as shown in Fig. 5). Each consid-
ered transitional movement starts and ends in corre-
spondence to two fingerprint positions. Since the phys-
ical coordinates of the fingerprint positions are known,
it is easy to also determine, with high accuracy, the co-
ordinates of points lying on the arcs (namely, the con-
tinuous positions of the targets during the transitional
movements). Furthermore, the users are asked to try to
perform these movements at constant speed and, there-
fore, physical positions of intermediate points along
the trajectories can be computed by sampling at con-
stant rate the arcs’ points. Due to the simplicity of the
considered movements, these trajectories can be accu-
rately reproduced by a careful user. Even if, in this
way, some errors are certainly introduced in the mea-
surements, due to the simplicity of the chosen postures
and movements these errors tend to be limited to a few
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centimeters. As introduced at the beginning of this sub-
section, we refer to our results as “trend-wise mean-
ingful” to advise the reader that the use of a more pre-
cise ground truth (e.g., based on the use of an opto-
electronic system) might lead to slight differences in
the results. However, this limited discrepancy does not
hinder the validity of the proposed framework and of
the considered feasibility prototype. The performance
of Kinect is evaluated by following the same experi-
mental approach considered for the proposed system.

The performance of a localization algorithm can be
characterized in terms of accuracy and precision [26].
In particular: accuracy is defined as the distance be-
tween the estimated position and the true target posi-
tion; precision is the percentage of successful position
estimates within a given accuracy. For instance, a pre-
cision of 60% with an accuracy of 10 cm means that
60% of the estimation errors made by the system are
lower than or equal to 10 cm. The performance of a
localization algorithm can be then fully described by
evaluating the precision as a function of the accuracy,
i.e., through a curve. Note that the best achievable per-
formance corresponds to the (0, 1) point in the pre-
cision/accuracy graph, whereas the performance de-
creases as much as the distance between the preci-
sion/accuracy curve and this point increases.

Though the accuracy/precision curve provides sig-
nificant insights on the system performance, in order to
provide a more concise (yet insightful) system perfor-
mance metric, the position error (PE), averaged along
the duration of the considered arm movements, is also
evaluated. Practically, given a movement of duration T

and starting at t0, PE is computed as follows:

PE �
∑t0+T −1

t=t0
dE(ŝt , st )

T

=
∑t0+T −1

t=t0

√
(x̂t − xt )2 + (ŷt − yt )2 + (ẑt − zt )2

T
(11)

where: ŝt = (x̂t , ŷt , ẑt ) and st = (xt , yt , zt ) are the
estimated and the “true” target positions, respectively,
at the t th epoch; and dE stands for Euclidean distance.

5. Results

The performance of the proposed posture recog-
nition system has been evaluated in both static and
dynamic conditions. Concerning the system perfor-

mance in static conditions (not reported here for lack
of space), our results show that the deterministic ap-
proach performs slightly better than the probabilistic
one: the average PEs are 3 cm and 4.8 cm for the deter-
ministic and the probabilistic approaches, respectively.
This confirms previous results in [5,6].

We now focus on the performance of our system
in dynamic conditions (i.e., when the user arm moves
over time). To this end, each user is asked to perform
the sequence of the four transitional movements de-
fined in Section 4.1 and shown in Fig. 5. Moreover,
for repeatability purposes, the same sequence is re-
peated twice (leading to a total of 8 transitional move-
ments).

In order to evaluate the system performance, the
system parameters used in Eqs (1) and (3) (i.e., the
number of anchors N and the related optimal subset,
the values of k and ps, and the distance metrics) are
optimized in order to minimize the PE between the
real targets’ positions and their estimates. In particu-
lar, the optimal system parameters are determined both
(i) considering independently each distinct transitional
movement (i.e., determining 8 set of optimal param-
eters, one per movement) and (ii) considering jointly
all transitional movements (i.e., determining a unique
set of optimal parameters to be used for every possi-
ble movement).9 Note that the presented results are av-
eraged over the five users. Therefore, the optimal pa-
rameters are chosen as the ones which jointly maxi-
mize the average performance of all the users (i.e., they
are not optimized independently for each user). Both
deterministic and probabilistic approaches are consid-
ered. Finally, the performance of Kinect is also evalu-
ated.

The system performance obtained by optimizing
independently each distinct transitional movement is
shown in Table 2.10 It is easy to see that the posture
recognition system works at its best when the user

9Note that, for a practical implementation of the system, a unique
set of optimal parameters must be considered. Nevertheless, the op-
timization of the system parameters performed considering indepen-
dently each transitional movement allows to evaluate an insightful
lower bound of the performance of our system.

10Observe that, given that the user performs twice the same se-
quence of 4 movements, the movements from 5 to 8 (as referred to in
the “Transitional Movements” column) are repetitions of the same
movements that are identified by the labels from 1 to 4. Therefore,
it is expected that the performance (and optimized parameters) in
correspondence to movement 1 will be quite similar to that in corre-
spondence to movement 5 – the same comment applies to the pairs
of movements 2–6, 3–7, and 4–8.
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Table 2

Posture recognition performance (optimized independently for each distinct transitional movement)

Target
Nodes

Transitional
Movements

Deterministic Approach Probabilistic Approach Kinect
PE [cm]PE [cm] N anchors subset distance k ps PE [cm] N anchors subset k

Target 1

1 1.2 3 {1, 5, 6} Manhattan 5 1 2.6 1 {5} 3 8.4

2 4 3 {5, 6, 7} Euclidean 2 2 6.7 2 {6, 7} 3 7.1

3 1.3 4 {2, 4, 5, 6} Manhattan 1 – 1.3 1 {1} 3 7.5

4 4.5 4 {3, 4, 5, 7} Manhattan 4 6 7.4 1 {4} 4 11.4

5 1.3 3 {1, 5, 6} Manhattan 5 1 3.4 1 {1} 3 8.1

6 4.2 3 {5, 6, 7} Euclidean 3 2 6.3 2 {6, 7} 3 6.9

7 0.4 2 {2, 4} Manhattan 1 – 0.4 1 { 1} 3 7.8

8 4.4 4 {1, 4, 5, 7} Euclidean 3 2 6.3 2 {6, 7} 2 7.7

Target 2

1 3.3 2 {2, 3} Manhattan 1 – 10.7 2 {2, 7} 1 18.1

2 15 4 {1, 2, 3, 6} Manhattan 1 – 21.9 2 {3, 4} 1 12

3 3.6 3 {3, 4, 7} Euclidean 5 4 4.5 2 {4, 7} 1 15.6

4 12.5 6 {1, 2, 3, 4, 5, 6} Euclidean 2 6 19.9 4 {1, 2, 3, 4} 2 25.9

5 3.6 2 {2, 3} Euclidean 1 – 9.4 3 { 2, 3, 7} 1 17.2

6 13.9 3 {2, 3, 6} Euclidean 1 – 22.8 4 {2, 5, 6, 7} 1 12.5

7 1.2 3 {3, 4, 7} Euclidean 1 – 2.4 3 {3, 4, 7} 3 17.1

8 12.7 5 {3, 4, 5, 6, 7} Manhattan 2 4 15.1 4 {2, 4, 6, 7} 2 17.6

Target 1
+
Target 2

1÷8 average PE = 5.4 cm average PE = 8.8 cm average
PE =
12.6 cm

performs movements 1 (or 5) and 3 (or 7). This pro-
vides insightful information about the system behav-
ior which can be easily understood by observing the
nature of these movements. Indeed, these movements
are all “vertical” movements (i.e., the majority of the
movements of the arm is concentrated on a vertical
plane), whereas the others are all “horizontal” move-
ments (i.e., the majority of the movements of the arm
is concentrated on a horizontal plane). Taking into ac-
count our system, it is easy to notice that the “vertical”
movements benefit more from pitch estimation (per-
formed through the accelerometers) than from head-
ing estimation (which derives entirely from the radio
localization). On the other hand, the opposite com-
ment stands for the “horizontal” movements, where
the heading of the arm varies typically more than its
pitch. This is then a strong symptom of the impor-
tance of the role of the accelerometers in our system.11

As expected, in Table 2, it can also be observed that
the nature of the movements (i.e., “vertical” or “hor-
izontal”) has no influence on the Kinect performance
(which is reported in the last column of the table). Fi-
nally, in order to provide a general and concise indi-

11In order to improve the accuracy of estimation of “horizontal”
movements the use of a gyroscope and/or a magnetometer is expe-
dient.

cation of the system performance, the last row of the
table reports the average PE (over all movements). It
can be noticed that, in terms of average PE, our sys-
tem slightly outperforms Kinect. Nevertheless, we re-
mark that the comparison with Kinect is only trend-
wise meaningful and, thus, a limited effort has been
dedicated to arrange the best acquisition conditions
(for example, considering more favorable light condi-
tions or optimized user’s distance for Kinect). How-
ever, no significant performance improvement is ex-
pected with Kinect. In fact, previous investigations on
the purpose of Kinect, in similar application scenarios,
have also shown the presence of significant error peaks
(even higher than 10÷15 cm) associated with similar
arm movements [12,27]. As already anticipated, since
it is impractical to tune the system differently for each
movement, we remark that the average results in Ta-
ble 2 are not directly applicable. Nevertheless, they can
be used as “best-case” benchmark values and, there-
fore, to lower bound the performance of the posture
recognition system.

Considering now a global (more practical) optimiza-
tion computed upon the whole sequence of move-
ments (i.e., by selecting a single set of parameters
for all movements), the obtained system performance
is shown in Table 3. As expected, the average PE is
higher than in the previous case. In particular, it can be
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Table 3

Posture recognition performance (optimized on the whole sequence of movements)

Target
Nodes

Deterministic Approach Probabilistic Approach Kinect
PE [cm]PE [cm] N anchors subset distance k ps PE [cm] N anchors subset k

Target 1 4.2 4 {3, 5, 6, 7} Euclidean 4 2 6.1 2 {6, 7} 5 8.1

Target 2 14 3 {2, 3, 6} Euclidean 1 – 17.9 4 {2, 3, 4, 7} 1 17.1

Target 1
+
Target 2

average PE = 9.1 cm average PE = 12 cm average
PE =
12.6 cm

seen that the proposed arm posture recognition system
guarantees an average PE around 10 cm. Specifically,
the deterministic approach (with average PE equal to
9.1 cm) performs better than the probabilistic approach
(whose corresponding average PE is 12 cm). As be-
fore, our system slightly outperforms the Kinect sys-
tem (whose performance is again indicated in the last
column of the table). The fact that the deterministic ap-
proach outperforms the probabilistic one (even if the
opposite is intuitively expected) is likely due to the
fact that the probabilistic version of the proposed sys-
tem may need a longer training time or, at least, a
larger number of training samples. In fact, we have ob-
served that some RSS PMFs (determined during the
training phase) have almost zero variance, which im-
plies a lower flexibility (in the online phase) to handle
small variations and noise in the measured RSS values.
To this end, other solutions relying on more sophis-
ticated methods, such as non-parametric estimation
(e.g., Parzen-window density estimation [21]) or gen-
erative models (e.g., Gaussian Mixture Models [20]),
which are more effective in the presence of data with
small variance and correlation, may be also taken into
account.

For ease of clarity, note that the optimal parameters
indicated in Table 2 and Table 3 often differ, especially
when considering different target nodes. From a prac-
tical applicability point of view (i.e., in terms of a fi-
nal complete prototype), this does not mean that differ-
ent configurations of anchor nodes have to be used for
each target node. In fact, one should consider a single
configuration given by the union of all anchor nodes
present in all configurations, i.e., one should use the
smallest set of anchor nodes which contains, as sub-
sets, the optimal configurations for each movement of
each target (e.g., {2, 3, 5, 6, 7} for the deterministic ap-
proach in Table 3). It is then the base station that, upon
collection of all RSS data, in order to estimate the po-
sition of a target node, needs to consider only the RSS
measurements obtained from the anchor nodes asso-
ciated with the corresponding optimal subset. In fact,

the use of an original (redundant) configuration of an-
chor nodes was just expedient to the investigation of
the most suitable positions (and numbers) of anchor
nodes in the surroundings of the user.

In order to better investigate the behavior of the pro-
posed system, in Fig. 6 we finally evaluate the ac-
curacy/precision performance of the proposed system.
Both deterministic and probabilistic approaches are
considered. The Kinect performance is also shown for
comparison purposes. In Fig. 6(a) (which is related to
results shown in Table 2), the parameters are optimized
independently for each distinct transitional movement
and, therefore, the obtained performance corresponds
to a best-case scenario, whereas, in Fig. 6(b) (which
is related to results shown in Table 3), the parame-
ters are optimized considering jointly all possible tran-
sitional movements. As already observed in Tables 2
and 3, it can be observed that, in both cases (a) and
(b), the deterministic approach slightly outperforms
the probabilistic one and the Kinect system. Note that,
in case (b), the Kinect system outperforms the prob-
abilistic version of our system for accuracy values
higher than 15 cm (in other words: if a position er-
ror larger than 15 cm is tolerable the Kinect system
is more suitable than the probabilistic approach of our
system).

6. Discussion and conclusion

As already anticipated throughout the paper, the
main goal of this work is to investigate the feasibil-
ity of the combination of two known technologies, i.e.,
radio (fingerprinting-based) localization and inertial
(accelerometric) measurements. Specifically, the effi-
cacy of the considered hybrid radio/inertial approach
in recognizing arm postures and movements has been
evaluated. Our experimental analysis has been carried
out using a SunSPOT testbed. Nevertheless, the pro-
posed approach is more general and can be applied to
any “node” equipped with an accelerometer and a ra-
dio interface.
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Fig. 6. Precision, as a function of the accuracy, for the arm posture
recognition experimental testbed, considering both deterministic and
probabilistic approaches. The optimal configuration of the param-
eters is considered for every curve. In particular, in (a) every dis-
tinct transitional movement is optimized independently, whereas in
(b) the optimization is carried out for the whole sequence of tran-
sitional movements. A comparison with the Kinect performance is
also offered.

As previously discussed in Section 2, most of cur-
rent state-of-the-art solutions for arm posture recog-
nition rely on optical and/or inertial approaches. In
particular, optical approaches, by using costly systems
composed by a set of cameras and reflective mark-
ers placed on the user, allow to obtain an exceptional
accuracy, but suffer from problems related to differ-
ent lighting conditions and markers occlusions. On the
other hand, these limitations are effectively tackled by
inertial systems, which do not depend on cameras and,
thus, allow an improved freedom of movement and
portability, at the price of a lower accuracy. Inertial
posture recognition is typically based on the estimation

of the orientations of wireless devices placed on the
body of a user, carried out by a proper fusion of mea-
surements from different sensors (i.e., accelerometers,
gyroscopes, and magnetometers). The performance of
inertial systems is good when all types of sensors are
used but the cost tends to increase when using a large
number of sensors.12 However, if one attempts to re-
duce system costs (related to the use of multiple sen-
sors per device) by using only partial subsets of the
previous sensors, the performance of inertial systems
decreases because of implicit limitations in determin-
ing a stable and complete orientation of the devices
when using independently each considered sensor. For
instance: accelerometers cannot provide information
about the devices’ heading; magnetometers suffer from
magnetic fields disturbance; and gyroscopes present a
bias drift.

The idea behind our work is that of reducing the
cost (and complexity) of standard inertial systems by
designing a BAN-based system where devices are
equipped with only an accelerometer (and a radio in-
terface). To this end, note that the proposed system
does not require computationally intensive operations.
Indeed, the operations involved in the algorithms can
be executed at most in polynomial time complexity
(mostly due to the trigonometric operations on the in-
ertial measurements). Note also that the proposed sys-
tem “as-is,” when deployed on SunSPOTs, is already
able to run with a time delay of few tens of millisec-
onds (i.e., almost real-time), even with a not com-
pletely optimized code implementation.

The proposed system would be suitable to estimate
the arm inclination but cannot provide information
about its heading. To this end, radio localization is also
used in order to localize (upon proper training of the
system) the devices and, then, to estimate the corre-
sponding arm segment heading. The proposed hybrid
approach allows to inherit the advantages of inertial
systems (in terms of robustness against typical limita-
tions of optical systems) but, on the other hand, intro-
duces a major limitation. Indeed, due to the fact that ra-
dio localization relies on a preliminary training phase
and anchor nodes are fixed in the surroundings, the
user is forced to keep his/her body (with the exception

12Note, for instance, that the cost of the majority of commercial
devices used for motion capture purposes (i.e., typically equipped
with an accelerometer, a gyroscope, and a magnetometer) is at least
twice (or even three times) that of a simpler device equipped just
with an accelerometer. In fact, the cost of a gyroscope (or of a mag-
netometer) alone is already twice that of an accelerometer.



AUTHOR  C
OPY

M. Giuberti et al. / A hybrid radio/accelerometric approach to arm posture recognition 577

of the arm) still during the arm posture recognition ses-
sion (or, at least, he/she is forced to keep the shoulder,
corresponding to the system origin, still).

Even if the requirement of still users would not be
a true limitation for several rehabilitation applications
(where users are not supposed to move around when
performing specific exercises), some applications may
require that the user moves while performing an exer-
cise. Therefore, an appealing extension of the proposed
system should aim at allowing the user to move freely
while performing the exercises. As a first step in this
direction, in this paper we have also considered anchor
nodes placed directly on the user body and verified that
they can be effectively used as reference nodes. Fur-
thermore, a future design of the proposed system could
exploit radio localization to directly estimate distances
between (mobile) nodes placed only on the user body,
possibly removing the distinction between anchor and
target nodes (i.e., every node could be at the same time
an anchor and a target node). This could have a direct
relevance to rehabilitation engineering and is currently
under investigation.

Another possible limitation of the proposed system,
especially if the application scenario involves evaluat-
ing elderly people movements, is the required training
phase, which could be sometimes hard to be correctly
performed by the user. To this end, a possible solution
may consist in allowing an impaired user to perform it
and then rely on techniques able to “map” the training
output in order to be used with the actual patient (simi-
lar techniques have already been taken into account for
Kinect). In general, since this work represents a feasi-
bility study on the hybrid integration of radio and iner-
tial signals, the system “as-is” is not intended to be di-
rectly applied in real scenarios (e.g., rehabilitation ap-
plications) and, therefore, further extensions and meth-
ods should be considered in order to improve its ro-
bustness.

Our results show that the proposed system, in its
current design, can provide a performance similar to
that of Kinect (which is a concurrent low-cost pos-
ture recognition system). In addition, simple localiza-
tion algorithms, namely deterministic (the kNN algo-
rithm) and probabilistic (p-kNN), have been consid-
ered to recognize arm postures – due to their low com-
putational complexity, these algorithms can be imple-
mented on the majority of current low-cost devices.
The system parameters have been optimized in order
to minimize the average PE and values around 10 cm
have been obtained. A PE around 10 cm can surely be
sufficient for the majority of posture classification ap-

plications. The system performance has also been eval-
uated in terms of precision and accuracy. In particu-
lar, the deterministic version of the proposed hybrid lo-
calization algorithm outperforms the probabilistic one
and slightly outperforms an optical Kinect system.

Since the aim of posture classification applications
is just to determine the posture of a user choosing
among a discrete set of previously trained postures
(and, thus, to discriminate between known postures),
our system works properly if the considered postures
are sufficiently spatially distinct (i.e., the distance, for
each pair of different postures, of at least two corre-
sponding body segments equipped with sensor nodes
is higher than 10 cm). Concerning posture recognition
(where one is not interested on the discrimination be-
tween priorly known discrete and well-distinguished
postures but, rather, on the recognition of generic pos-
tures), the performance of our system highly depends
on the application requirements. In particular, it could
be used to monitor the recovery improvement after an
arm surgery, in the cases where it is relevant to discrim-
inate a few cases (e.g., the arm can be raised half-way
or all the way). For applications where it is necessary
to discriminate between very close positions, then the
accuracy needs to be improved. To this end, possible
ways to improve the system performance may reside,
for instance, in the use of an outlier rejection technique
to handle misleading RSS measurements and/or in the
use of advanced filtering techniques (which should
give adaptive weights to every different measurement)
in order to properly fuse together inertial and radio sig-
nals [28].
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