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A novel approach for energy- and
memory-efficient data loss prevention
to support Internet of Things networks
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Abstract
Internet of Things integrates various technologies, including wireless sensor networks, edge computing, and cloud com-
puting, to support a wide range of applications such as environmental monitoring and disaster surveillance. In these types
of applications, IoT devices operate using limited resources in terms of battery, communication bandwidth, processing,
and memory capacities. In this context, load balancing, fault tolerance, and energy and memory efficiency are among the
most important issues related to data dissemination in IoT networks. In order to successfully cope with the abovemen-
tioned issues, two main approaches—data-centric storage and distributed data storage—have been proposed in the liter-
ature. Both approaches suffer from data loss due to memory and/or energy depletion in the storage nodes. Even though
several techniques have been proposed so far to overcome the abovementioned problems, the proposed solutions typi-
cally focus on one issue at a time. In this article, we propose a cross-layer optimization approach to increase memory
and energy efficiency as well as support load balancing. The optimization problem is a mixed-integer nonlinear program-
ming problem, and we solve it using a genetic algorithm. Moreover, we integrate the data-centric storage features into
distributed data storage mechanisms and present a novel heuristic approach, denoted as Collaborative Memory and
Energy Management, to solve the underlying optimization problem. We also propose analytical and simulation frame-
works for performance evaluation. Our results show that the proposed method outperforms the existing approaches in
various IoT scenarios.
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Introduction

With the advent of Internet of Things (IoT) technolo-
gies, smart systems—such as smart cars, cyber-physical,
intelligent transport systems, vehicle-to everything
(V2X), transportation safety, remote medical surgery,
smart grids, public protection and disaster relief, wire-
less control of industrial manufacturing, and smart
agriculture—can now be connected to the Internet.1

IoT comprises wireless sensor networks (WSNs) for
data collection and dissemination and communication
platforms to move the sensed data to the edge or the

cloud for energy-efficient task execution and long-term
data storage and analysis.
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A WSN is a collection of small sensing devices with
limited bandwidth, power, and computational capabil-
ities. The main goal of a WSN is to gather information
from a specific environment for applications such as
remote monitoring and target tracking. The design of a
WSN depends significantly on the application and
must consider factors such as the deployment environ-
ment, the application’s design objectives, the maximum
cost, the available hardware, and various system con-
straints.2 Fault tolerance, load balancing, and energy
and memory efficiency are among the most challenging
issues of a WSN. Therefore, many approaches have
been proposed in the literature to handle the above-
mentioned issues in order to make a WSN reliable and
scalable. In particular, data storage plays a key role in
making a WSN effective.

Data storage approaches can be categorized into
two groups: distributed data storage (DDS) and data-
centric storage (DCS). To cope with energy efficiency,
DDS approaches concentrate on local data storage in
sensing nodes. This makes the data storage process
very energy-efficient. However, in order to collect spe-
cific information stored in the network, all sensors have
to be queried by means of a flooding mechanism; there-
fore, the data retrieval process requires a large amount
of traffic and decreases the network lifetime. On the
other hand, DCS approaches focus on data-centric
mechanisms for storage and retrieval by means of
Geographic Hash Tables (GHTs)3 and geometric rout-
ing algorithms such as greedy perimeter stateless rout-
ing (GPSR)4 Although DCS is more energy-consuming
than DDS in the storage process, its query process is
based on directed dissemination of queries to a specific
node, denoted as storage node, so that it reduces the
query traffic and increases the efficiency of the retrieval
process.

Data replication over multiple storage nodes is the
mechanism which both groups of data storage tech-
niques use to handle fault tolerance and load balancing.
Fault tolerance in the WSN is obtained by preventing
data loss caused by energy or memory depletion in the
storage node. The approaches reported in literatures5–11

focus on data loss prevention due to energy shortages,
whereas the approaches reported in literatures12–14 con-
centrate on efficient memory usage of nodes in the
WSN. The mechanism with which a replica is elected in
DDS is based on local broadcasts between the neigh-
bors of the storage node. This fully distributed mechan-
ism generates a large amount of traffic and decreases
the network lifetime.

In this article, we integrate DCS replication features
into DDS to cover both memory and energy efficiency
in data loss prevention mechanisms for WSNs. We
present a novel mechanism denoted as Collaborative
Memory and Energy Management (CoMEM). We
divide a WSN into multiple zones: in each zone, we

include a monitor node, as proposed by Chuang9 to act
as a gateway for both storage and retrieval processes.
Therefore, if an event is sensed throughout the zone,
the collected information is forwarded toward the mon-
itor, which stores the summary of the received data
locally and chooses the appropriate node for storing
the details. On the other hand, in the retrieval process,
all queries are routed toward the monitor, which deci-
des whether to answer the query directly (summarized
retrieval) or to redirect the query to a specific storage
node.

In order to take into account load balancing, in the
proposed optimization model, a load balancing evalua-
tion metric is defined on the basis of availability of
memory and energy in each IoT device. In particular,
this metric considers the percentage of memory and
energy availability at the storage nodes and the moni-
tor. If this parameter falls below a properly set thresh-
old at the storage node, the monitor will replicate the
data over the most memory- and energy-available node
within the zone and will balance the storage traffic load
between the previous storage node and its new replica.
On the other hand, whenever the percentage of the load
balancing metric of the monitor falls below the prop-
erly determined threshold, the node with the highest
load balancing metric is chosen by the current storage
node to be the new monitor. As a result, the proposed
mechanism collaboratively chooses new replicas and
monitors to bring load balancing to the WSN.

Overall, the contributions of the article can be sum-
marized as follows:

1. In order to support load balancing as well as
energy and memory efficiency, we define a
cross-layer optimization problem and find the
optimal solution. Since the mentioned optimiza-
tion problem is mixed-integer nonlinear pro-
gramming (MINLP), we use a genetic algorithm
to solve it.

2. We propose a heuristic algorithm, denoted as
CoMEM, to solve the centralized mathematical
problem in a distributed way.

3. We investigate the performance of the proposed
heuristic algorithm in a comparative way with
other algorithms proposed in the literature to
show its memory and energy efficiency as well
as load balancing.

The rest of the article is organized as follows: Section
2 is devoted to the related works on memory shortage
problems leading to CoMEM in WSNs. In Section 3,
we formulate the optimization problem. In Section 4,
we propose our approach to integrate DCS features
into DDS mechanisms. Section 5 is dedicated to simula-
tion results. Finally, Section 6 concludes the article.
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Related works

In the work by Chouikhi et al.,15 fault tolerance WSN
applications are categorized into five groups: (i) node
placement, (ii) topology control, (iii) target and event
detection, (iv) data gathering and aggregation, and (v)
sensor monitoring and surveillance. In this section, we
briefly take a look at works previously proposed in the
area of memory-efficient data gathering in WSNs.
Basic DCS and DDS methods are not designed for
WSNs with highly mobile or unreliable nodes.
Therefore, enhanced design techniques must be consid-
ered to make data dissemination mechanisms robust
against data losses due to both energy and memory
depletion occurrences in nodes. While several works
focus on energy efficiency in WSN, our effort mainly
concentrates on both energy- and memory-efficient
data dissemination mechanisms.

Efficient cluster-head election is considered in the
work by Behera et al.16 for energy consumption reduc-
tion and network lifetime enhancement. The cluster
head, a node responsible for handling storage and
retrieval communications of the cluster, is selected as
the node with the highest residual energy level among
the nodes in the cluster. The proposed algorithm
chooses the optimum value for the residual energy of
the cluster head. The abovementioned value is used to
elect cluster heads for different IoT applications.
However, the amount of the available memory for
cluster-head election is taken into account.

A dynamic cluster-head selection method (DCHSM)
is proposed in the work by John et al.17 to improve
energy efficiency and network lifetime of the IoT moni-
toring zone. First, DCHSM creates clusters in the
large-scale monitoring area in order to improve maxi-
mum coverage. Afterward, cluster heads are chosen on
the basis of perceived probability and survival time.
However, clusters are created on the basis of the loca-
tions of the targets, which make some positions of the
network unreachable. Furthermore, this may cause
inefficient routing in the network, thus reducing the
network lifetime.

An energy-efficient clustering routing algorithm is
proposed in the work by Wang et al.18 for non-uniform
traffic distribution. This algorithm considers uneven
cluster formation to support load balancing and energy
efficiency. Moreover, a multi-hop routing algorithm
leverages the cluster-head rotation mechanism. The
abovementioned algorithm considers the distance and
energy cost to calculate the energy depletion of individ-
ual nodes. In order to avoid packet loss and increase
reliability, memory cost can be added as the perfor-
mance metric to the routing mechanism evaluation.

In the work by Gonizzi et al.12 a low complexity dis-
tributed data replication (LCDDR) mechanism is pro-
posed to prevent data loss due to memory shortages by

replicating the data over the most memory-available
node, denoted as ‘‘donor node.’’ This increases fault
tolerance and reliability in the data storage mechanism.
However, the abovementioned method has some chal-
lenging issues. First, according to the results in the
work by Gonizzi et al.,12 the query process is of no con-
cern in the proposed mechanism. Second, the local
broadcast mechanism for donor node election is not
energy-efficient for large-scale data dissemination in
WSNs. Third, because of the fully distributed donor
node election mechanism of LCDDR, a hijacking node
can declare itself as the node with the highest available
memory and become the donor node in the election
process, thus easily sniffing data. Finally, if no donor
node can be chosen, data loss will happen because of
the lack of a widespread election mechanism.

In the work by Sajjadian Amiri et al.,13 a hybrid
routing algorithm, denoted as Bloom filter-based rout-
ing protocol, is proposed; it relies on hierarchical (clus-
ter-based) routing and bloom filter data aggregation.
This method decreases the amount of memory usage
for the routing table at each node by means of bloom
filtering and cluster-head data aggregation. However,
cluster-head election is handled by local broadcasts
between the neighbors of the current cluster head. Each
node broadcasts a parameter, denoted as ‘‘coverage-
aware cost’’ and calculated according to its remaining
energy, to its neighbors. After the first broadcast, a
node waits for a specific amount of time determined by
the coverage-aware cost; if there is no announcement
with a lower cost, it declares itself as a cluster head to
the neighbors by means of another broadcast. This gen-
erates a large amount of traffic for cluster-head elec-
tion. Moreover, the elected node is the node with the
highest available energy and memory usage is not taken
into account.

Another method, which relies on data compression
and thus increases memory efficiency, is presented in
the work by Xu et al.14 In this case, the memory usage
of nodes and the wireless bandwidth consumption are
affected by a co-design memory mechanism for low-
latency in-place lightweight compression. However, as
the compression happens on relevant memory pages,
the information can only be accessed by multiple
packet payload decompression. Therefore, data aggre-
gation at the cluster head incurs high energy consump-
tion. This tends to deplete the energy of the cluster
head. Moreover, no election mechanism for a depleted
cluster head is proposed.

Memory-based message efficient clustering was pre-
sented in the work by Banerjee et al.19 to enhance the
energy efficiency of nodes by reducing the propagation
of duplicated messages. Moreover, a heuristic protocol
is proposed to define the distribution of the sensors
over the specific sensed area. This protocol increases
the energy-saving efficiency in the given network.
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However, no data loss prevention mechanism is pro-
posed and practical issues, such as random distribution
of the sensors, are not considered.

A new transport layer protocol, denoted as reliable
transport with memory consideration, is presented in
the work by Zhou et al.20 Hop-by-hop retransmission
guarantees reception of specific data by the sink. It also
prevents the change of transmission rate for congestion
control to safeguard the control packets. Furthermore,
information on the memory status of each sensor is
included in the packet header for memory overflow
prevention. However, inserting sensor memory infor-
mation in each packet continuously causes unnecessary
redundant data transmissions. Therefore, this protocol
is not energy-efficient.

Tiny distributed shared memory (TinyDSM)21 is a
reliable DDS mechanism which tries to replicate the
data in some nodes along the path between the sink and
the source. According to this method, each node along
the query propagation path, which contains the repli-
cated data, will answer the query directly. Therefore, the
amount of query propagation traffic is load-balanced
over multiple replicas of the storage node. However, as
replicas are periodically updated by the source, the latter
becomes the bottleneck and depletes its energy fast.
Moreover, TinyDSM does not consider energy and
memory constraints in its replica selection mechanism.

In this article, we focus on energy and memory effi-
ciency as well as load balancing support. We show the
efficiency of the proposed heuristic data dissemination
algorithm, denoted as CoMEM, considering a cross-
layer objective function defined on the basis of memory
and energy efficiency with load balancing support. We
then analyze other performance metrics such as delay,
packet loss rate, computational complexity, and scal-
ability of the proposed algorithm in a comparative way

with respect to other data dissemination algorithms.
Since CoMEM solves the proposed cross-layer optimi-
zation problem in both centralized and distributed
manner, it reduces the computational complexity at the
network level.

Problem statement

In Figure 1, we show the architecture of the IoT system
comprising WSN, edge computing, and cloud computing.

WSN is responsible for collecting sensed data and
transmitting it toward the IoT gateway to reach the
cloud. Moreover, it can handle user-specific tasks
assigned to IoT devices. The abovementioned tasks can
either be executed by IoT devices or be offloaded to
edge servers for energy efficiency and load balancing.
Cloud servers are responsible for massive data storage
and analysis. In this article, our focus is on the storage
and retrieval process in a WSN. It is assumed that IoT
devices are randomly deployed in a given region. We
also consider power control at each IoT device. It is
assumed that the communication channel of each IoT
device can handle a variable bit rate depending on the
signal interference-to-noise ratio (SINR) of each IoT
device over the specified communication channel. As a
result, the focus is on power control, routing and infor-
mation storage, and retrieval in order to minimize
memory and energy consumption.

Network model

The network model considered to formalize the optimi-
zation problem is based on the introduction of a
directed graph G=(V ,E), where v 2 V denotes an IoT
device and (i, j) 2 E specifies the link between IoT
devices i and j. Moreover, mr

i and er
i are the available

Figure 1. System architecture.
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energy and memory of the specific IoT device i, respec-
tively. In order to support load balancing, we define a
load balancing performance metric denoted as Fi for
IoT device i. This can be calculated through the follow-
ing equation

Fi =
z1

mr
i +a1

+
z2

er
i +a2

ð1Þ

where z1 and z2 are the weight coefficients of the load
balancing performance metric Fi; a1 and a2 are used as
scaling factors to avoid divisions by zero. mr

i can be cal-
culated as follows

mr
i =m

cap
i � m

usage
i ð2Þ

where m
cap
i and m

usage
i are the total memory capacity

and current memory usage of IoT device i, respectively.

In order to calculate er
i , the following equation can be

used

er
i = ecap

i � econs
i ð3Þ

where ecap
i and econs

i are the total energy capacity and
energy consumption of IoT device i, respectively.

All the performance evaluation parameters are sum-
marized in Table 1.

Decision variables

The list of decision variables for the optimization prob-
lem are the following.

� y
e, t
i, j : is set to 1 if the flow of target t with the event
type e goes through the link between IoT devices
i and j; otherwise, it is set to 0.

Table 1. Network model parameters and decision variables.

Parameter Description Parameter Description

V Set of IoT devices E Set of wireless links between IoT
devices

li, j Link between IoT device i and j mr
i The remaining memory of IoT

device i
er
i The remaining residual energy of

IoT device i
m

cap
i

The memory capacity of IoT device
i

ecap
i

The energy capacity of IoT device i m
usage
i The memory usage of IoT device i

esense
i The energy usage of IoT device i

for sensing
m

storage
i

The memory usage of IoT device i
for storage

eforwarding
i

The energy usage of IoT device i
for data forwarding

m
forwarding
i

The memory usage of IoT device i
for data forwarding

econs
i The energy consumption of IoT

device i
equery
i The energy consumption of IoT

device i for query and response
b Sample rate u Query rate
h Sample size p Packet size
Ci, j Capacity of link between IoT device

i and j
z Set of zones

T Set of targets ET Set of event types
Ps Sensing power Fi The load balancing performance

metric of IoT device i
Pr Receive power gi, j SINR over link i and j

tSense Sensing time ttransmit Transmit time
z1, z2, z3, z4 Weighted coefficients a1,a2 Scaling parameters

Decision variable Description Decision variable Description

ye, t
i, j To show whether link between IoT

device i and j is used to transmit
target t data of event type e or not

qe, t
i, j To show whether link between IoT

device i and j is used to transmit
target t query of event type e or
not

re, t
i, j

To show whether link between IoT
device i and j is used to transmit
target t response of event type e or
not

xe, t, z
i

To show whether target t with
event type e in zone z is sensed by
IoT device i or not

mz
i To show whether IoT device i is the

monitor node of Zone z or not
se, z
i To show whether IoT device i is the

storage node of event type e or
not.

Pt
i Transmit power of IoT device i
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� q
e, t
i, j : is set to 1 if the flow of query for target t

with the event type e goes through the link
between IoT devices i and j; otherwise, it is set
to 0.

� r
e, t
i, j : is set to 1 if the flow of response for target t

with the event type e goes through the link between
IoT devices i and j; otherwise, it is set to 0.

� x
e, t, z
i : is set to 1 if the target t in zone z with event
type e is sensed by node i; otherwise, it is set to 0.

� mz
i : is set to 1 if IoT device i is the monitor node

of zone z; otherwise, it is set to 0.
� s

e, z
i : is set to 1 if IoT device i is the storage node
of zone z for event type e; otherwise, it is set to 0.

� Pt
i: is a real variable corresponding to the trans-

mit power of IoT device i.

Objective function

In order to increase memory and energy efficiency as
well as load balancing support in the data dissemina-
tion mechanism of WSN, the cross-layer optimization
problem is based on the following objective function

f : min
P
i2V

(z3 3 m
usage
i + z4 3 econs

i )3 Fi ð4Þ

Constraints

To model energy consumption, we apply a power con-
trol mechanism to evaluate the SINR. As a result, the
following constraint is used to evaluate SINR between
IoT devices i and j, denoted by gi, j

C1 : gi, j =
Pt

i
3 hi, jP

k 6¼i
Pt

k
3 hk, j + n

8i, j 2 E: ð5Þ

It is obvious that Pt
i has an upper bound. This upper

bound is denoted by Pmax and leads to the following
constraint

C2 : Pt
i ł Pmax 8i 2 V ð6Þ

We assume that the bit rate of each IoT device is
variable. Therefore, we denote the channel capacity
between IoT devices i and j as Ci, j. The bit rate is
upper-bounded by the abovementioned capacity
according to the following Shannon equation

C3 : Ci, j =w 3 log(1+ gi, j) 8i, j 2 E ð7Þ

where w is the bandwidth of all (wireless) links. The
packet transmission time between IoT devices i and j is
defined by the following equation

C4 : ti, j =
p 3 8

bi, j
8i, j 2 E ð8Þ

The amount of memory used for sensed data storage
and data forwarding must be smaller than or equal to

the memory capacity of the node. This leads to the fol-
lowing constraints

C5 : m
storage
i =

P
e2ET

P
z2Z

s
e, z
i 3 h 3 b 8i 2 V ð9Þ

C6 : m
forwarding
i =

P
e2ET

P
t2T

P
i, j2E

ye, t
i, j 3 p 3 b+

P
e2ET

P
t2T

P
i, j2E

(qe, t
i, j + r

e, t
i, j )3 p 3 u 8i 2 V

ð10Þ

C7 : m
usage
i =m

storage
i +m

forwarding
i 8i 2 V ð11Þ

C8 : m
usage
i ł m

cap
i 8i 2 V : ð12Þ

The amount of energy used for sensing an event and
data transmission must be smaller than or equal to the
energy capacity of the node. The constraints related to
energy consumption of IoT device i can be summarized
as follows

C9 : esense
i =

P
e2ET

P
t2T

P
z2Z

x
e, t, z
i 3 PSense 3 tsense 8i 2 V

ð13Þ

C10 : eforwarding
i =(

P
e2ET

P
t2T

P
i, j2E

y
e, t
i, j 3 Pt

i +

P
e2ET

P
t2T

P
j, i2E

y
e, t
j, i 3 Pr)3 ti, j 8i 2 V

ð14Þ

C11 : eQuery
i =(

P
e2ET

P
t2T

P
i, j2E

(qe, t
i, j + r

e, t
i, j )3 Pt

i +

P
e2ET

P
t2T

P
j, i2E

(qe, t
j, i + r

e, t
j, i )3 Pr)3 ti, j 8i 2 V

ð15Þ

C12 : econs
i = esense

i + eforwarding
i + equery

i 8i 2 V ð16Þ

C13 : econs
i ł ecap

i 8i 2 V ð17Þ

The sum of the bit rates of the flows over any link
must be smaller than or equal to the capacity of that
link. This is represented by the following constraint

C14 : (
P

e2ET

P
t2T

y
e, t
i, j 3 b+

P
e2ET

P
t2T

(qe, t
i, j + r

e, t
i, j )3 u)3

p ł Ci, j 8i, j 2 E:

ð18Þ

The flow conservation of the storage process from
the target to the storage node is illustrated by the fol-
lowing constraint

C15 :

X
i, j2E

y
e, t
i, j �

X
j, i2E

y
e, t
j, i =

�1 if
X

e2ET s
e, z
i = 1

+1 if
X

e2ET

X
t2T x

e, t, z
i = 1

0 otherwise

8>>><
>>>:

8z 2 Z, 8i 2 V , 8e 2 ET ð19Þ
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The flow conservation of the query process from the
gateway to the storage node is illustrated by the follow-
ing constraint, where G is the set of IoT gateways

C16 :
P

i, j2E

q
e, t
i, j �

P
j, i2E

q
e, t
j, i =

jZj if i 2 G
�1 if

P
e2ET s

e, z
i = 1

0 otherwise

8>><
>>:

8z 2 Z, 8i 2 V , 8e 2 ET

ð20Þ

The flow conservation of the response process from
the storage node to the gateway is represented by the
following constraint

C17 :
P

i, j2E

r
e, t
i, j �

P
j, i2E

r
e, t
j, i =

�1 if i 2 G
+1 if

P
e2ET s

e, z
i = 1

0 otherwise

8>><
>>:

8z 2 Z, 8i 2 V , 8e 2 ET :

ð21Þ

Finally, the overall optimization problem can be for-
mulated as follows

min
X

i2V
(z3 3 m

usage
i + z4 3 econs

i )3 Fi

s:t : C1,C2,C3,C4,C5,C6,C7,C8,C9,

C10,C11,C12,C13,C14,C15,C16,C17

xe, t, z
i , ye, t

i, j ,mz
i , se, z

i 2 f0, 1g

ð22Þ

CoMEM

Data storage and retrieval processes are challenging
design aspects, as they are directly related to a WSN
lifetime and to its topological structure. As anticipated
in Section 1, DDS and DCS are the main approaches
proposed in the literature for memory- and energy-
efficient data storage and retrieval.

� In DDS, the source node, upon sensing a specific
data, stores it locally without any communica-
tion requirement. Therefore, this approach is the
most energy-efficient one in the storage process.
Moreover, in order to collect the sensed data in
the retrieval phase, all nodes within the network
have to be queried and this typically involves the
use of flooding mechanisms. Therefore, the
retrieval process involves a high amount of traf-
fic and shortens the network lifetime. Figure 2
shows the retrieval process in DDS-based meth-
ods. As illustrated in the figure, the IoT gateway
sends the query for specific data to all nodes.
The nodes, which contain the specific data of
interest, will answer the IoT gateway, for

instance, this data could refer to specific targets.
Nodes and targets are placed over the monitored
area randomly, that is, according to a (two-
dimensional) spatially uniform distribution. It is
assumed that targets are stationary and that
each target is detected by the nearest sensor node
at a time. Afterward, the network topology
forms on the basis of the position of non-sensing
nodes, sensor nodes (each detecting a target),
and maximum adjacency range (which depends
on the physical characteristics of the wireless
transmission medium). In order to obtain aver-
age performance results, a sufficiently large
number of uniform deployments are considered.

� In DCS-based methods, the sensed data is stored
in a specific location determined by a GHT
mechanism,3 which maps the specific event type
to a specific location. In order to route the sensed
data, geometric routing algorithms, such as
GPSR,4 are used to deliver the data to the near-
est node to the mapped location. We enhance
this mechanism by replacing GPSR with the
popular IoT routing protocol denoted as the
routing protocol for low power and lossy net-
work (RPL).22 Although the DCS approach rela-
tively increases the storage process traffic, the
retrieval process is very efficient, as all queries
are forwarded to the single storage node using
the GHT-mapped location. This avoids flooding
mechanisms and increases energy efficiency and
scalability in the network. Figure 3 shows the
storage and retrieval processes in DCS-based
methods. As shown in the figure, sensors will for-
ward their sensed data to the storage node.
Therefore, the IoT gateway only sends queries to
this specific node instead of flooding all nodes
with queries.

Both basic versions of DDS and DCS suffer from
data loss due to node mobility and node failure. To
overcome these limitations, several approaches have
been proposed in the literature. All of them are based

Figure 2. DDS retrieval process.
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on replicating the data, that is, creating replicas over
multiple storage nodes to increase fault tolerance and
prevent data loss. In DDS-based approaches, due to a
fully distributed storage mechanism, the most memory-
or energy-available node is elected as a replica based on
the local broadcasts between the neighbors of the stor-
age node.12,13 This mechanism involves the following
challenging issues. First, a local broadcast mechanism
for replica election is not energy-efficient for highly
dense data dissemination. Second, a hijacking node can
declare itself as the most suitable node to store the data,
so that the data can easily be sniffed. Finally, if no stor-
age node for a replica can be chosen, data loss will be
unavoidable. This is due to the lack of a widespread
election mechanism.

On the other hand, in DCS-based approaches, the
replica is selected by the centralized GHT mechanism:
the nearest node to the mapped location, determined by
a hash function, will become the replica. Therefore, the
energy or memory availability of the new elected replica
is of no concern.

According to the method proposed by Chuang,9 the
entire network is divided into partitions called ‘‘zones.’’
In each zone, in addition to the storage node for each
event type, a new node called ‘‘monitor’’ is introduced
to act as a gateway for both storage and retrieval pro-
cesses. Whenever a data is sensed by a source node in
the zone, it is forwarded to the monitor by means of a
GHT hash function. The monitor then stores the sum-
mary of received data locally and forwards its details to
the replica specified for the event type of the received
data. This mechanism avoids the single point of failure
problem, as multiple storage nodes are used by the
monitor for data storage. In the retrieval process, all
queries are forwarded to the monitor node. If the
queries are related to locally stored data, the monitor
will answer directly; otherwise, it will forward the query
to the appropriate replica. However, due to the role of
the monitor, all storage and retrieval traffic passes
through the monitor and its neighbors. Therefore, they
have to support a high amount of traffic, especially
when the occurrence frequency of sensed events and

the sensor spatial density are high. This depletes the
energies of the monitor’s neighbors and, soon, the
monitor is left with no neighbor. A neighborless moni-
tor is not accessible and, therefore, storage and query
traffic will be interrupted.

We integrate the DCS data storage mechanism into
the DDS one and propose a novel scheme, denoted as
CoMEM, which relies on the ideas presented in litera-
ture 9.10,12 According to the CoMEM approach, we
divide the network into zones on the basis of the target
position. The number of zones is assumed to depend
on the network size. In some approaches, that is, by
Hejazi,10 the number of zone changes on the basis of
the occurrence frequency of the sensed events. Here, we
define variable numbers of targets to enable sensing in
several IoT devices. We assume that these targets are
stationary, so that number of zones is constant. First,
the monitor and storage nodes are determined by GHT
within each zone. After this centralized election, a self-
organized mechanism for the election of the monitor
and replicas is considered. Each node within a zone
informs the monitor of its remaining memory and
energy. This can be carried out during the propagation
of sensed data to the monitor or through dedicated
packet forwarding. As shown in Table 1, econs

i (dimen-
sion: (J) is the performance metric associated with the
(current) energy consumption of IoT device i and m

usage
i

(dimension: (Bytes) is the performance metric associ-
ated with the (current) memory usage of IoT device i.
The mentioned performance metrics are calculated and
normalized by each node and sent to the monitor. The
monitor stores the received data in its local perfor-
mance evaluation table and calculates the ‘‘election
metric,’’ (zr

i ) which is the following heuristic coefficient,
simultaneously taking into account energy and memory
resources

zr
i = c1 3 m

usage
i + c2 3 econs

i ð23Þ

c1 + c2 = 1 ð24Þ

where c1 2 ½0, 1� and c2 2 ½0, 1� are the relative weights
for the energy and memory coefficients. The monitor
also computes the following variation coefficient

zr, i
var = zr

max � zr ð25Þ

where zr is the election coefficient of the storage node
and zr

max is the maximum value of all election coeffi-
cients reported by the nodes. If zr, i

var overcomes a pre-
defined threshold, that is, the average value of all elec-
tion coefficients, the election mechanism represented in
Figure 4 starts.

If a node has lower energy and/or memory than at
least another node in its zone, then the former will be
covered by latter and its coverage number (defined in
the election algorithm) will be set to 0. As a result,

Figure 3. DCS storage and retrieval processes.
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nodes with coverage numbers greater than zero are
more likely to become replicas. With this algorithm,
local broadcasts between the neighbors of the storage
nodes are avoided, and also, the new replicas are not
limited to the neighbors of the storage nodes, which
also need to tolerate a high amount of traffic.

This mechanism has the drawback related to the sin-
gle point of failure due to the presence of the monitor.
Since all the interactions for storage, query, and elec-
tion processes are handled by the monitor, the monitor
manages a high amount of traffic and, thus, it depletes
its energy quickly. We then propose an efficient election
mechanism for the monitor. This election is performed
by the storage nodes. The collected er

i of all nodes are
periodically sent to the storage node by the monitor.
The storage node then calculates the variation of er

i as
follows

er, i
var = er

max � er
i ð26Þ

where er
max is the maximum value of the energy perfor-

mance metric reported by nodes within a zone. If er, i
var

overcomes a threshold, that is, the average value of er
i

of all nodes, the node with er
max becomes the new moni-

tor by the storage node announcement throughout the
zone. Then, the old monitor transfers its data to the
new one. Although this mechanism performs a single
broadcast for monitor election in the zone, it can be

ignored, as it happens whenever the monitor needs to
be changed. Therefore, this is more energy-efficient
than the one presented in DDS approaches. Moreover,
as the monitor contains all the information related to
nodes’ identification and placement, a hijacking node
can be easily detected and, then, easily banned.

In order to evaluate the performance (according to
various metrics) of the proposed distributed storage
system for WSNs, various simulation approaches have
been proposed with use of discrete event-based simula-
tors (DESs) such as ns2,23 ns3,24 TOSSIM,25 and
EmStar.26 In this work, we have developed a DES
which is based on the event-scheduling algorithm
explained by Banks.27 In our DES, we concentrate on
events and their effects on the status of the WSN dur-
ing a predetermined simulation time. Figure 5 illus-
trates the proposed DES structure, with the three
engines described below.

1. The simulation engine is the heart of our DES
and implements event scheduling algorithms
for non-deterministic, discrete, and dynamic
WSNs. This engine has the following main
components.

� Snapshot, which contains CLOCK as a base of
timing system; state variables to describe the sys-
tem in different points of time; future event list
(FEL), which contains an ordered list of future

Figure 4. Election algorithm.
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events for event scheduling algorithm execution;
and output parameters for evaluation and analy-
sis. It has some functionality in list processing
for inserting events into FEL and removing
events from it.

� The event scheduling algorithm for event pro-
cessing and updating the snapshot of the system
in different points of time. The snapshot is the
container of system state variables, FEL, system
queues, and output counters.27

� Simulation initializer, which is used to build the
first snapshot of the system at the CLOCK = 0.

2. The network engine handles all the interactions
of the nodes within the WSN on the basis of the
DCS data dissemination mechanisms. This
engine includes the following elements.

� GHTs for mapping an event type to a specific
location. These hash functions are appropriate
to avoid traditional point-to-point routing
approaches, which are used in today’s Internet
and, indeed, use datacentric approaches.

� RPL is a routing algorithm of choice: it can
route the packet on the basis of the dynamically
built directed acyclic graph (DAG) toward each
storage node and the monitor. RPL decouples
the routing protocol features from the routing
objective function so that any arbitrary routing
objective function can be applied to generate a
DAG from the source to the destination. We use
two basic objective functions denoted as

objective function zero (OF0) and minimum
rank with hysteresis objective function
(MRHOF)22 to choose the best paths in the net-
work. OF0 and MRHOF consider the hop count
and expected transmission count as the perfor-
mance metric for the path selection, respectively.

� ‘‘Node’’ is the template for sensor node imple-
mentation in terms of energy and memory
management.

� ‘‘Target’’ is used to define target coordination
and target movements within the WSN.

� ‘‘Packet’’ is a container of raw information
which is routed toward the storage, monitor, or
gateway.

� ‘‘Zones’’ are the partitions of the WSN network
and are used in all considered mechanisms, that is,
RDCS, ARDCS, and CoMEM. Zones are associ-
ated with their boundaries and their members.

3. The two-dimensional graphical engine allows us
to explicitly visualize events within the WSN
whenever a specific algorithm is going to be
used. It shows target movement, node place-
ment, information sensing, dissemination of
information toward the monitor or storage node,
and the data retrieval process of the gateway. It
contains the following packages.

� Board Wrapper: used to draw the boundary of
the network and node placement.

Figure 5. Developed DES structure.
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� Node Wrapper: used to determine the wireless
transmission range of the nodes and characterize
transmission and reception activities.

� Target Wrapper: indicates the target position
and its movement throughout the network.

� Gateway Wrapper: chooses the position of the
gateway to handle the data retrieval process.

� Packet wrapper: needs to show the ensemble of
the packets within the WSN.

The DES simulator proposed in this article does not
build directly on the methods we used for evaluation
and analysis of energy and memory efficiency.
According to its layered structure, it can easily be
extended to host more applications and other perfor-
mance evaluations of WSNs with simple modifications.
The main advantage of the abovementioned simulator
is related to the independency between network func-
tionality and simulation graphical engines. Therefore,
any modification in data dissemination protocols has
no effect on the abovementioned engines.

Performance results

Energy and memory efficiency are the most important
evaluation factors of WSNs, as they are directly related
to data loss and network lifetime. In order to evaluate
the proposed heuristic algorithm, we first consider
memory and energy efficiency by adding a load balan-
cing performance metric on the basis of the cross-layer
objective function defined in Section 1. Afterward, we
analyze other performance metrics such as delay and
data loss to show the efficiency of CoMEMwith respect
to other related WSN data dissemination methods.
Finally, we analyze the computational complexity of
each method by considering the simulation runtime (on
a workstation with a 16 GByte of DDR3 RAM, Intel
Core i7 CPU, and SSD hard drive).

In order to evaluate our proposed method with the
metrics outlined in the previous paragraph, we assume
that sensor nodes are static—the extension to mobile
nodes is under investigation. Since neighboring nodes
should not be deployed too close to each other, the
locations of nodes are determined randomly but with a
minimum inter-node distance. We also assume that the
quality of the radio channel does not change dramati-
cally in a short period of time, so that the transmission
range is considered to be constant. Moreover, nodes
are robust during storage and retrieval processes and
do not crash in the presence of traffic bursts. Finally, as
our research focuses on a cross-layer optimization
problem, wireless communication at physical layers is
modeled on the basis of the (IEEE 802.15.4) 6LowPAN
standard, with a short transmission range and relatively
high node spatial density. The extension to IEEE

802.11b/g protocols (and comparative performance
analysis) will be the subject of our future work. In order
to handle data transmission, we rely on power control
to guarantee energy efficiency at the physical layer.
More precisely, the transmission power is set, taking
into account (i) the path gain over the link and (ii) the
interference from neighboring nodes on the destination,
to reach the highest bit rate for the corresponding
SINR. Table 2 summarizes the input parameters for
IEEE 802.15.4 6LowPAN.28

We can divide the metrics in Table 2 into the follow-
ing three groups:

� Parameters depending on the application: net-
work size, number of nodes, minimum distance
between neighboring nodes, and number of
targets.

� Parameters based on the node specification: node
initial energy, which is evaluated on the basis of
the initial energy of an alkaline battery;29 receive
power computed as the product between the
node voltage, the current in receiving mode, and
the receiving time, that is, 3 V 3 11.8 mA 3

4 ms = 141 m J; transmission range calculated
according to the Friis formula30 with the path
loss exponent set to 2 (i.e. line-of-sight communi-
cations are considered); and number of memory
slots computed by dividing the available RAM
for data storage in the sensor nodes by the PDU
dimension.

Table 2. IEEE 802.15.4 6LowPAN physical and link layer inputs.

No. Name Value

1 Network size 12 3 12 m
2 Number of nodes 30
3 Minimum distance 1.4 m
4 Number of targets 1-10
5 Node initial energy 16 KJ
6 Frequency band 2.4 GHZ
8 Packet size 127 Bytes
7 Reception energy consumption 41 m J
8 Node RAM 1024 Blocks
9 Sample rate 0.5 sample

sec

10 Sample size 26 Bytes
11 Query rate 0.1 query

sec
12 Receiver sensitivity 3:9310�13

13 Maximum transmission power 1 mW
14 Transmission gain 0.003
15 Receiver gain 0.003
16 Path loss 2
17 Noise 10�13

18 Channel bandwidth 100 KHZ
19 z1, z2, z3, z4 0.5
20 a1,a2 10�5

21 TH1, TH2 0.2
22 Simulation time 80 sec
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� Parameters based on the network characteristics:
frequency band, bit rate, and transmission delay.

In order to evaluate the performance of the storage
and retrieval processes, we focus on the energy con-
sumption of a single packet transmission and the total
amount of packets which are sent in each process. On
the basis of the data provided by Atmel,28 the energy
consumption per packet can be calculated according to
the following equation

epacket =(etransmit + ereceive)3 (dP + ttransmit) ð27Þ

where dP is the propagation delay and ttransmit is the
transmission time. Moreover, according to the IEEE
802.15.4 standard, the minimum payload size is 81

Bytes. Since 40 Bytes are used for the IPv6 header and
7 Bytes belongs to the UDP header, 33 Bytes are left
for data. The use of a JSON data structure consumes 7

more Bytes, so that the space left for the key/value pair
(the ‘‘data’’) is 26 Bytes. We evaluate each data storage
algorithm by inserting different numbers of targets in
the simulated WSN. The number of targets is between
1 and 10 in order to force different levels of storage
and retrieval traffic in a short period of time (80 sec).

Before commenting on the specific performance
results presented in the following figures, we make the
following preliminary observations.

� Obviously, the energy consumption due to storage
is minimized when using LCDDR, as data is
stored locally without any transmission.
Therefore, the traffic due to storage is only lim-
ited to the election mechanism. R-DCS ranks
second. With this algorithm, monitors are also
used in the storage process: this creates more
traffic and makes R-DCS vulnerable to monitor

failure. CoMEM is the method with monitor
and storage nodes collaborating in the storage
process and uses two election mechanisms for
monitor and storage node election. Therefore,
the traffic of CoMEM storage is relatively
higher than R-DCS. Finally, the basic DCS has
the worst performance in terms of storage-
related traffic, as it only relies on storage nodes
and no fault tolerance mechanism is implemen-
ted: therefore, it does not contain any election
mechanism for storage and this also increases
the traffic due to node failure around the storage
nodes.

� In terms of energy consumption due to the query/
response process, the most efficient result belongs
to the basic DCS because only storage nodes are
involved in queries and responses. However, this
mechanism suffers from a lack of load balancing
consideration which increases traffic in the case
of node failure around the storage nodes. The
second position belongs to R-DCS and CoMEM
due to the role of the monitor as a gateway in the
retrieval process. R-DCS also suffers from the
single point of failure risk related to the energy
depletion of the monitor and a lack of load bal-
ancing approach. Finally, the LCDDR mechan-
ism incurs the highest amount of traffic due to its
inefficient retrieval process: this increases traffic
bursts in the retrieval process and decreases the
network lifetime. The average energy consump-
tion of nodes for the represented methods is
shown in Figure 6 as the function of the number
of targets. As shown in the figure, CoMEM and
R-DCS have the best energy efficiency with
higher numbers of targets and their results are
closer to the optimal solution.

Figure 6. Energy consumption as a function of the number of targets. The performance of CoMeM is compared with those of
other relevant algorithms and with that of the optimal solution.
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The performance results in terms of the value of the
objective function evaluation are shown in Figure 7. It
can be easily observed that CoMEM has the best per-
formance on energy and memory efficiency as well as
load balancing support, making it the closest to the
optimal solution. The main reason for this behavior is
the collaborative distributed election mechanism which
brings load balancing to memory usage and energy con-
sumption in IoT devices.

Since CoMEM has the best performance related to
energy and memory efficiency as well as load balancing
support, we now consider other performance metrics,
namely, delay, data-loss ratio, and computation com-
plexity. In Figure 8, the delay incured by the data disse-
mination flow from the sensing IoT device to the IoT
gateway access is shown as a function of the number of
targets. Since CoMEM and R-DCS add a monitor to
the storage and retrieval process, the amount of delay

they incur is higher than that of basic DCS. Therefore,
the best performance for delay evaluation belongs to
DCS.

From the data loss point of view, CoMEM has the
best performance because of its distributed collabora-
tive election mechanism. It also implements replication
to avoid single point of failure problem. This is con-
firmed by the results in Figure 9, where data loss per-
centage is shown as a function of the number of targets.
Finally, the computational complexities of the consid-
ered algorithms, in terms of numbers of mathematical
operations (additions and multiplications), are com-
pared in Figure 10. It can be easily observed that the
computation complexity of CoMEM, due to the dis-
tributed collaborative election mechanism, is very close
to that of R-DCS.

In order to observe scalability, we evaluate the objec-
tive function defined in equation (4) as the function of

Figure 7. Objective function evaluated as a function of the number of targets. The performance of CoMeM is compared with those
of other relevant algorithms and with that of the optimal solution.

Figure 8. Delay as a function of the number of targets. The performance of CoMeM is compared with those of other relevant
algorithms.
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different deployed IoT devices. The results are shown
in Figure 11. As shown in the abovementioned figure,
CoMEM has the best performance due to energy and
memory efficiency as well as load balancing support
with different IoT devices.

In Table 3, we summarize the performance of the
considered algorithms in a comparative way, consider-
ing the performance indicators investigated in Figures
6–11. In particular, for each performance indicator, we
show the ranking (note that if the performance of two
algorithms is basically the same, as is the case for
CoMEM and RDCS in two cases, we consider the same
ranking) based on the performance results obtained in
Figures 6–11 for the largest possible number of targets
(namely, 10). In the last row of Table 3, we show the
average ranking, based on the corresponding arithmetic
average of the per-indicator ranking values, between

parentheses—obviously, the smaller the arithmetic
average, the higher the ranking. It can be observed that
CoMEM is, on average, the best algorithm. In particu-
lar, CoMEM ranks first with respect to four indicators:
energy consumption, objective function (i.e. combined
energy and memory efficiency, together with load bal-
ancing), data loss, and scalability. This high perfor-
mance level, aligned with the starting design goals,
comes at the price of increased delay (CoMEM ranks
third) and computational complexity (CoMEM ranks
second). This is to be expected, as CoMEM was not
designed to minimize the delay but, rather, energy and
memory efficiency together with effective load balan-
cing; in order to guarantee an overall best trade-off
(between energy and memory efficiency, effective load
balancing, and scalability), it is natural that the compu-
tational complexity increases with respect to that of

Figure 10. Computational complexity as a function of the number of targets. The performance of CoMeM is compared with those
of other relevant algorithms.

Figure 9. Data loss percentage as a function of the number of targets. The performance of CoMeM is compared with those of
other relevant algorithms.
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simple DCS. Neverthless, one can observe that the
delay and computational complexity ‘‘penalties’’
incurred by CoMEM are very limited.

Conclusions

In this article, we have introduced a cross-layer optimi-
zation problem which accounts for both energy and
memory efficiency of data dissemination in IoT net-
works as well as load balancing support. This optimiza-
tion problem is MINLP and has been solved using a
genetic algorithm. Afterward, we have proposed a heur-
istic algorithm, denoted as CoMEM, to overcome the
abovementioned optimization problem. Finally, we
show that our proposed heuristic algorithm outper-
forms other related data dissemination methods consid-
ering packet loss, delay, and computational complexity
as the performance metrics.
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