Computer Networks 222 (2023) 109560

Contents lists available at ScienceDirect

ter
rks

Computer Networks —
p o5

journal homepage: www.elsevier.com/locate/comnet

Check for

DynGATT: A dynamic GATT-based data synchronization protocol for BLE | opnes’
networks

Christian Hirsch ®!, Luca Davoli ®*, Radu Grosu ¢, Gianluigi Ferrari®

2 Independent Researcher, Wien, Austria
b Internet of Things (IoT) Laboratory, Department of Engineering and Architecture, University of Parma, Parma, Italy
¢ Institute of Computer Engineering, Vienna University of Technology, Wien, Austria

ARTICLE INFO ABSTRACT

Keywords: Bluetooth Low Energy (BLE) is a wireless communication technology for power-constrained Internet of Things
Internet of Things (ToT) (IoT) applications. BLE data can be transmitted via either the IPv6 or the Generic ATTribute (GATT) Profile
Bluetooth Low Energy (BLE) protocol, with the former supporting dynamic IoT structures and the latter being application-friendly. In fact,

Generic ATTribute (GATT)
Internet Gateway
Dynamic network
Smart agriculture

GATT requires the data layout to be known in advance by peer devices, in order to properly interpret the
received data. In this paper, we introduce DynGATT, a protocol that achieves the benefits of both IPv6 and
GATT, by extending GATT in a seamless fashion to support dynamic IoT structures. The key idea of DynGATT
is to use GATT descriptors, originally intended to specify data in static IoT scenarios, to also specify IoT
systems whose structures may dynamically evolve. Peer devices reading these descriptors will know how to
interpret the data of GATT characteristics provided by devices joining the IoT network. Because no additional
data have to be transmitted, the connection time is then reduced with respect to classical BLE. DynGATT
has been implemented and tested in an agricultural IoT application, with different types of sensor nodes.
Our experimental evaluation shows that DynGATT is very power-efficient, despite its added flexibility. Its
worst-case power consumption is only around 19.37pA per data transmission and around 41.37 pA overall.
This consumption can be further reduced by using the methods discussed in this paper. To the best of our
knowledge, this work is the first to support dynamic IoT structures in a GATT-based setting.

1. Introduction channels. In the first case, on one side, a device, denoted as broadcaster,
periodically broadcasts information, while, on the other side, another

In recent years, the Internet of Things (IoT) has become increas- device, denoted as observer, scans for the advertised packets to receive
ingly popular as a way of connecting in a unified fashion different data. Once an observer receives advertisement data during its scanning
kinds of sensors and actuators, for different types of applications, from period, it knows that a broadcaster is within its connection range and
smart city scenarios and Industry 4.0, to smart agriculture and smart can potentially interact with itself. Hence, this leads to a connection-
health-care, just to name a few. In order to create a unified network, less communication and, thus, to the most commonly one-way data

all different things, also denoted as smart objects (SOs), need to be
connected. As in many IoT applications the provision of cable-based
power and network access may be challenging, SOs thus need to be
battery-powered and rely on wireless communications. One technology
providing wireless data transmission and holding the promise to save
power is BLE.

In detail, BLE is a wireless communication technology introduced
by the Bluetooth Special Interest Group (SIG) with the Bluetooth Core
Specification 4.0 in 2010 [1], with the goal to save power. With
BLE, data can be transmitted in two possible ways: (a) connection-
less, via advertising and scanning, or (b) connection-based, via data

transmission. On the other end, the second approach establishes a
connection between the two devices and, afterwards, relies on this
connection to exchange data in both ways.

One major advantage of BLE is its availability in many devices
on the market, especially in the Commercial Off-The-Shelf (COTS)
consumer area—e.g., modern laptops and PCs, smartphones, as well
as many Single Board Computers (SBCs) used for IoT applications, are
equipped with this communication technology. Hence, no additional
hardware is necessary to communicate with other devices, such as
sensors, actuators or beacons, by using BLE.

* Corresponding author.
E-mail addresses: christian@hirsch.zone (C. Hirsch), luca.davoli@unipr.it (L. Davoli), radu.grosu@tuwien.ac.at (R. Grosu), gianluigi.ferrari@unipr.it
(G. Ferrari).
1 He was with the Institute of Computer Engineering of the Vienna University of Technology when contributing to this work.

https://doi.org/10.1016/j.comnet.2023.109560

Received 17 July 2022; Received in revised form 3 December 2022; Accepted 3 January 2023
Available online 10 January 2023

1389-1286/© 2023 Published by Elsevier B.V.

https://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:christian@hirsch.zone
mailto:luca.davoli@unipr.it
mailto:radu.grosu@tuwien.ac.at
mailto:gianluigi.ferrari@unipr.it
https://doi.org/10.1016/j.comnet.2023.109560
https://doi.org/10.1016/j.comnet.2023.109560
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2023.109560&domain=pdf

C. Hirsch et al.

With respect to competing technologies, such as IEEE 802.11 (Wi-Fi),
Long Range (LoRa) protocol, or ZigBee, BLE uses less power to transmit
data [2,3]. However, it does not implement an Internet Protocol (IP)
stack in its core, which makes it difficult for Internet applications to
rely on BLE. Although IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPAN) allows to support the IP version 6 (IPv6) protocol
stack over constrained (IEEE 802.15.4-based) devices [4], the major-
ity of devices implementing BLE communicate relying on the GATT
Profile stack, which is designed to support a Device-to-Device (D2D)
communication with a master, thus forming a star topology. While the
6LoWPAN implementation is flexible, as the device can create its data
stream and send it to any remote device connected to the Internet, the
GATT stack is more stringent, as the peer device needs to know how
to interpret the data. An example is given by a smart watch connecting
to a person’s smartphone to exchange data. This watch is paired to the
user’s smartphone and is only meant to be connected to this device to
exchange data. The app running on the smartphone knows which GATT
services and characteristics to connect to, so that it can receive data and
interpret them correctly. For different sensors, applications need to be
reconfigured or new specialized apps need to be implemented, since
one needs to know exactly how to interpret the transmitted data.

For certain types of applications, power consumption is critical
and, therefore, data transfer shall be reduced. For example, consider
a farming scenario with different sensors, all battery-powered, that
either measure environmental impact, track vehicle data, or observe
a livestock’s health. In such a scenario, the GWs need to know all
possible sensor nodes, in order to receive, interpret and transmit the
data. Unfortunately, this approach cannot be generalized, since every
new sensor node added to the infrastructure requires a reconfiguration
of the system itself. In such a dynamic scenario, where livestock and
vehicles are involved, this is even trickier. Consider a barn that is
equipped with GWs that can connect to such a sensor node or to a
tracking device. In this case, it might happen that, at some point, the
livestock or vehicle moves out of the GW range. Consequently, the
sensor nodes and trackers need to create timestamped data, store them
locally temporarily, and synchronize them later, as soon as they are
within the transmission range of the GW.

The main contributions of this paper are the design and develop-
ment of a GATT-based synchronization protocol, denoted as DynGATT.
Our starting point is to abide by BLE specifications, in order to easily
implement it on any BLE-powered device — such as smartphones, PCs,
and microcontrollers — and targeting IoT-oriented applications, thus
reducing the number of interactions needed to decrease the power
consumption. In order to do so, we first introduce the infrastructure
needed and the challenges faced in gathering agricultural information.
Second, we propose an approach to overcome these challenges by
designing a protocol for an IoT scenario with BLE-powered sensor
nodes and GWs. Last, we describe the implementation of our IoT-
oriented data synchronization protocol. In particular, we develop: a
SSGW application to connect BLE-powered devices to the Internet; a
GATT descriptor-based characteristics paradigm to interpret the data
of the BLE-powered devices.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 provides an overview on the proposed IoT-
oriented infrastructure. Section 4 describes the sensor identification and
device discovery as part of the SSGW application, while Section 5 de-
scribes the proposed synchronization procedure and the corresponding
protocol. Section 6 describes the experimental setup considered to eval-
uate the proposed approach and Section 7 is dedicated to experimental
performance analysis. Finally, Section 8 presents our conclusions and
discusses future work directions.

2. Related work

A dynamic data synchronization requires, as a first step, a self-
configuring and self-managing paradigm for autonomous discovery of

Computer Networks 222 (2023) 109560

services, providing data to the different IoT devices belonging to the
involved network(s). To this end, discovery mechanisms have to be
defined, allowing interested clients to discover service providers in
contexts in which neither one knows the existence of the other. This
requires: (a) the definition of a language for describing the services
and their selection criteria; (b) a common protocol for exchanging the
descriptions; and (c) rules for matching criteria with service descrip-
tions. Components (a—c) have to be managed in an efficient way and in
challenging scenarios, such as those of IoT contexts [5,6]. To this end,
discovery paradigms should consider proactive service advertisement,
in order to ensure and exploit interoperability among heterogeneous
IoT devices, taking into account their dynamic presence in a network
- in topological terms — over a certain time interval.

Examples of discovery mechanisms that can be adopted in IoT
scenarios are Multicast Domain Name System (mDNS) with Service
Discovery (mDNS-SD) [7] (often adopted jointly with another protocol,
denoted as ZeroConf [8]) and the Constrained RESTful Environments
(CoRE) Link Format [9]. In detail, the former mechanism exploits the
DNS interaction mechanism to resolve host names in networks that do
not include a local name server [10], while the latter mechanism is
specifically designed to be used jointly with the Constrained Applica-
tion Protocol (CoAP) [11]. Unfortunately, mDNS-SD may not be a vi-
able solution for low-power or non-IP-compliant networks, while CoRE
Link Format would require that both CoAP clients and servers a priori
know a common lexicon. Then, another issue regarding heterogeneous
networks may be related to their natural fragmentation—sometimes,
there is the need to discover services and data hosted by several nodes
belonging to separate networks.

With regard to BLE-oriented discovery mechanisms, a well-known
one is iBeacon [12], proposed by Apple and enabling location-aware-
ness features for devices in the proximity of the beacon broadcaster
itself, leveraging the advertisement mode of the BLE protocol. Although
iBeacon is widely adopted (thanks to the availability on a wide plethora
of Apple devices), it is a one-way advertisement mechanism allowing
only to determine when a user enters or leaves the broadcaster’s
proximity region. To this end, iBeacon requires Universally Unique
IDentifiers (UUIDs) pre-allocation for every scenario in which it would
be adopted. Moreover, devices compatible with iBeacon are, in general,
always active in advertisement mode, thus not being able to selectively
deactivate this operational mode.

Another BLE-based discovery paradigm is Eddystone [13], proposed
by Google and providing functionalities for transparency and robust-
ness in the communication among the parties. Moreover, being able
to support different types of payload in the frame format — namely,
Eddystone-UID, Eddystone-URL, Eddystone-TLM, and Eddystone-EID,
each one being a good candidate to cover part of the heterogeneity
of IoT scenarios — Eddystone represents a reliable discovery mechanism
which a dynamic data synchronization protocol can build on. Examples
of such scenarios could be smart parking management [14,15], as
well as indoor navigation systems [16,17], with the goal of exploiting
retrieved information for high-layer processing purposes. As this tech-
nology is versatile from an utilization point of view, it is also included
in the proposed work for device discovery.

Regarding data transfer, in [18] three different ways for connecting
BLE devices to the Internet, using an Internet GW, are presented. The
first one is a smart system with a REpresentational State Transfer
(RESTful) Application Programming Interface (API) Internet GW. In
detail, sensor nodes act as GATT servers and the Internet GW acts
as a GATT client, with the GW connecting to sensor nodes and col-
lecting data upon request. Then, a user can access the Internet GW
via a RESTful API, while the GW accesses the information via GATT
communication from the sensor node [19]. Furthermore, a Generic
Access Profile (GAP) RESTful API is present on the Internet GW and
allows to carry out device discovery, connection establishment, and
other relevant operations [20]. The second application is a smart system

C. Hirsch et al.

with an HTTP proxy Internet GW. In this scenario, the sensor node acts
as a GATT client, connecting to the Internet GW, which acts as a GATT
server and forwards the data to a Cloud server. The third application,
proposed in [18], is a smart system with an Internet Protocol Support
Profile (IPSP) [21] border router application, where the 6LoWPAN
protocol is implemented. In detail, the server implements the IPv6 stack
and the Internet GW acts as a border router. Since our proposed work
is based on top of GATT, the ideas at the basis of the first two examples
of an Internet GW are taken into account.

Spork et al. [22] propose a IPv6 over BLE approach which dynami-
cally changes connection parameters to save energy. In their work, the
connection parameters are tuned so that, when no data is transmitted,
the connection intervals are increased to reduce power consumption.
When a data stream is transmitted, however, connection intervals are
shortened to transmit data faster.

Another BLE-based data transfer is proposed in [23], where data
related to motion tracking of human movements are sent from slaves to
a master exploiting BLE data packets. Even though experimental results
represent a relevant benchmark for BLE-based data transmission, the
chosen payload format lacks generality, since the receiver needs to
know exactly the position of each data type in order to correctly parse
the data.

With specific reference to smart agriculture scenarios and use cases,
there exist various approaches based on short-range (e.g., BLE [24,25]),
medium-range (e.g., IEEE 802.15.4 and IEEE 802.11 [26,27]), and
long-range (e.g., cellular LTE [28,29], LTE-M [30], and 5G [31]) com-
munication technologies. The rationale behind this array of technolo-
gies lies, as expected, on the adoption of the most suitable connectivity
type for the specific scenario—e.g., depending on the farm size [32,33],
the availability of an Internet access [34,35], and the need to interact
with high-level cyber-physical systems (CPSs) [36] (also in a secure
way [37,38]). As an example, IoT systems deployed on open fields
(e.g., aiming at livestock localization) normally rely on long-range
power-efficient technologies (namely, Low-Power Wide Area Networks,
LPWANS), such as Sigfox (e.g., for cow geo-localization [39]), Narrow-
band IoT (NB-IoT) [40], and LoRaWAN [41]. Examples of develop-
ments or deployments based on short-range and medium-range connec-
tivity are instead proposed in [42], where a Wireless Sensor Network
(WSN)-based farming ecosystem, based on embedded IEEE 802.11-
enabled devices and featuring a control mobile App, is presented.
In [43], a low-cost soil moisture data collection architecture, based on
the Ad-hoc On-demand Distance Vector (AODV) routing protocol, is
discussed. In [44], an IEEE 802.15.4-based WSN, aiming at assessing
a particular crop parameter, denoted as Leaf Area Index (LAI), is
proposed, while the use of LoRa for monitoring stations and Wi-Fi/LTE
for control stations is detailed in [45]. Finally, the adoption of BLE in
heterogeneous smart farming-like contexts is discussed in [46], while
an IoT platform (denoted as SheeplT), integrating sets of sensors into
mobile (coupled to livestock) and static (distributed along vineyards)
nodes, is presented in [47].

3. Overview of the IoT infrastructure

The reference IoT infrastructure in this work is shown in Fig. 1
and targets a smart agriculture scenario containing (a) a swarm of
static BLE-enabled sensor nodes (Fig. 1a), measuring weather status and
soil properties, and (b) dynamic BLE-equipped sensor nodes placed on
livestock and vehicles. In order to transmit the sensed data, a Fog layer
(Fig. 1b) consisting of at least one BLE-enabled GW with permanent
power supply and Internet connection, is deployed, in turn allowing to
connect the sensors’ swarm to the IoT’s Cloud infrastructure (Fig. 1c).

Each component of the IoT infrastructure has its own requirements.
As the swarm of sensor nodes is deployed outdoor, with a lack of
permanent power supply, the majority of sensor nodes have to run on
batteries. In order to reduce manual intervention and increase system’s
reliability, a major focus is on power consumption, which needs to be

Computer Networks 222 (2023) 109560

reduced in order to increase battery duration and, as a consequence,
extend operational lifetime. Since sensor nodes may be placed on
mobile objects — e.g., livestock or vehicles — and may have a limited
access to GWs, they need to temporarily store internally timestamped
measurements. As a consequence, sensor nodes have to be equipped
with a local clock, that can be exploited for this task.

Unlike battery-powered sensor nodes, GWs are powered in a perma-
nent way and, therefore, power consumption is not an issue. Keeping
in mind that most of the power is consumed by the wireless sensor
nodes during data transmission, the aim of a GW is to support sensor
nodes in reducing the time their wireless network interfaces need to
stay active. With BLE communications, this can be done by tuning the
connection parameters, which configure the amount of data packets
to be transmitted and their timing. This means that the time and
duration the radio module is turned on, to support an established
BLE connection, can be tuned to minimize the power consumption.
However, maintaining a connection alive — even with properly tuned
parameters — does not eliminate the following issues.

* A GW has limited resources and can keep only a limited amount
of simultaneous connections alive.

Since mobile sensors can go out of range of a GW, the connection
to the sensors may be lost.

Because of tuned connection parameters, the GW may not recog-
nize immediately a connection loss. For instance, this might de-
pend on the connection interval-investigated further in this work,
and being one of the three main BLE connection parameters, to-
gether with slave latency and connection supervision timeout [48]—
specifically chosen for specific interactions between GW (master)
and BLE slave nodes. Should the connection interval be too long,
it may thus have an impact on internal data exchanges operated
by the GW between two consecutive connection events. This is
especially true since, generally, the three connection parameters
mentioned above are related as follows:

TC—suplimeou[>2- T interval * 1+ TS—lalency)

where: Tc_gpimeoun 1S the connection supervision timeout (di-
mension: [s]1); Ts_jyency 1S the slave latency (adimensional); and
Tc_interval 1S the connection interval (dimension: [ms]) [49,50].

Besides connecting to sensor nodes, the GW has also other tasks to
perform in the proposed DynGATT infrastructure: it needs to receive the
sensor nodes’ measurements, interpret the data, convert them properly,
and forward them to a Cloud service. Therefore, it can be concluded
that a GW is responsible for providing sensor nodes with the possibility
to transmit data and, if necessary, for pre-process the received data to
fit into packets that can be handled by servers in the Internet.

In order to implement such a dynamic IoT scenario, the GW first
scans for BLE sensor nodes and, as soon as an advertising packet —
emitted by a sensor node - is received, it starts establishing a BLE
connection to the sensor node. Then, data from the sensor node are
synchronized, pre-processed on the GW, and transmitted to a Cloud
server that, in turn, stores them into a DataBase (DB). This approach
also overcomes the limitations of a GW which can only keep a limited
amount of connections alive. In other words, if many sensor nodes are
permanently connected to a GW and new sensor nodes come close to
the GW itself, the GW may not be able to connect to these new sensor
nodes. In order to connect to a new sensor node, the GW would need
to tear down an already established BLE connection.

With reference to the methods discussed in [18], the proposed
DynGATT IoT-oriented mechanism relies on the use of an HTTP proxy
Internet GW, with the difference that sensor nodes act as GATT servers,
while the GW is the GATT client. Furthermore, data transfer and
exchange with sensor nodes is initiated by the GW, instead of a sensor
node. Hence, when compared to the RESTful API approach presented
in [19], data accessed in the Cloud are always cached from a DB. With

C. Hirsch et al.

i
=

>@#) 1))
i o

a) Swarm of Sensors

Computer Networks 222 (2023) 109560

b) Fog c) Cloud

Fig. 1. Proposed BLE-based network infrastructure, composed of (a) swarm of sensors, (b) Fog layer, and (c) Cloud layer.

Application Synchronization application Cloud
MQTT client MQTT broker
.GAP GAP central Q Q
peripheral GATT client
GATT server TCP/IP TCP/IP
LE LE Network Network
transport transport transport transport
Fig. 2. Layered representation of the SSGW.
Table 1 sensor node identification, before being able to connect to the sensor
Comparison among Internet GWs. node itself. In detail, this is done by scanning for BLE advertisement
HTTP ow ii?g& SSGW packets through the SCAN () function, to discover sensor nodes in its
. proxy proximity. These sensor nodes (a) can have their BLE radio interface
Multiple GWs support s X / off or can be out of range of the GW, or (b) can have available data to
Synchronization sequence X 4 v b h ized h hei dio i f: d d .
No device conn. limitation « / Y e synchronized, can have their radio interface on, and can advertise

the proposed setup, one can thus establish a connection for a short time
interval, which gives the GW the opportunity to connect sequentially
to a large number of sensor nodes.

4. Smart synchronization Internet GW

In traditional Internet GW applications, the logic behind data trans-
fer resides at the application layer of the BLE device, such as a smart
system with an HTTP proxy Internet GW or a smart system with an
IPSP [18]. On the other hand, the logic can be implemented on the
client in a smart system with a RESTful API Internet GW.

In this work, we introduce a Smart Synchronization Internet GW
(SSGW) application. In comparison with its competing technologies,
the logic in charge of when and how to connect to BLE devices is
implemented in the GW (see Fig. 2). This, is turn, gives some additional
benefits, as summarized in Table 1 and discussed below.

» Unlike a RESTful API GW, it is possible to have multiple SSGWs
in the IoT infrastructure: this is because the Cloud does not need
to know different GWs to access the sensor nodes.

The SSGW can alter the sensor nodes’ synchronization sequence,
based on various properties (e.g., Received Signal Strength Indi-
cator, RSSI, last cached synchronization time, etc.) as well as on
their location (e.g., on the basis of their distance from the GW).

There are no limitations on the amount of sensors in the IoT
infrastructure; at the opposite, an HTTP proxy GW application
— where the logic for data synchronization resides in the sensor
node — may reach its connectivity limits.

4.1. Synchronization application

The proposed DynGATT data synchronization approach is based on
the paradigm shown in Fig. 3, where a SSGW performs beacon-oriented

themselves through the ADV () function, by broadcasting, for example,
Eddystone-URL beacons Bg_,,.

If the GW discovers advertising sensor nodes {.5; },.1151, then it verifies,
through the CHECK () function, if one or more advertising node(s)
contain(s) the Eddystone-URL which the GW itself is interested on. As-
suming that the verification procedure classifies the advertising sensor
node S, (k € {l1,...,Ng}) as a trusted node, then the GW will first
connect to .S, with the CONNECT(S,) function and, then, will start
the data synchronization procedure by: (a) retrieving S)’s services,
characteristics, and descriptors; (b) enabling indications; (c) listening
for incoming data packets {Sy_para-; };V=DIATA; and (d) handling them on
the basis of previously retrieved information.

As soon as the GW receives the data, it processes them and sends
them to a Cloud server, e.g., via an Message Queuing Telemetry Trans-
port (MQTT) client over a TCP/IP connection. On the Cloud server, the
data are further processed, e.g., stored into a DB.

5. GATT-based data synchronization

As mentioned in Section 1, each type of sensor node implements its
own GATT server structure, which needs to be known by the remote
device in order to interpret correctly the data. This is even true for
the considered agricultural IoT scenario with, for example, (a) cows
equipped with sensing collars, (b) sensor nodes on the fields, measuring
soil and weather status, and (c) actuators that can control irrigation. As
all these devices communicate via BLE, each one typically defines its
own GATT server structure to access the data.

In order to receive the data, a GATT client, corresponding to a
SSGW, first needs to connect to a GATT server (a sensor node or
an actuator). Then, the SSGW (i.e., the GATT client) can access the
sensor node or actuator’s values (i.e., the GATT server) through the
corresponding GATT characteristics hosted by the GATT server, either
by activating notifications or directly by reading these characteristics.
Many of these GATT services and characteristics are pre-defined and
standardized by the SIG [51].

C. Hirsch et al.

o

SCANQ) ADV()
2200 Sief1,..,Ns} 2222 Be_un
CHECK ()
2 MATCH: Sy
Connection
CONNECT (Sk)

CONNECTED/ERROR]

Data Synchronization

GET SERVICES
Sk—SERVICES l

GET CHARACTERISTICS
Sk—CHARACTERISTICS

GET DESCRIPTORS
Sk DESCRIPTORS

,,,,,,,,,,,,,,,,,,,,, >
Sk:—DATA—Z

,,,,,,,,,,,,,,,,,,,,, N
Sk—DATA—Npara

Fig. 3. Sensor node identification and GATT-based synchronization adopted in the
proposed DynGATT approach.

But the question is: how can recorded historical measurements be
synchronized and what is necessary in order to obtain a history of these
measurements?

The first essential requirement to support historical data transfer is
to add a timestamp to each measurement. However, as the numerous
SIG-defined GATT services and characteristics are standardized, it is
not suggested (although possible) to change the data format and to
add a timestamp to, for example, a temperature reading. Nevertheless,
reading a BLE characteristic should always be meant to retrieve the
most recent data, rather than historical ones.

One possible solution is to combine different characteristics, in
order to read historical data. Different SIG-defined characteristics are
available to be used to read the time from a remote device: one of
them is the Current-Time characteristic, another one is the Date-Time
characteristic. To this end, one approach to read historical data can
require to use one of these characteristics giving the time of a historical
measurement, followed by, for example, notifications or a reading of
the BLE characteristics carrying the measurement. However, this seems
to be odd and difficult to implement and control. Some questions (such
as how are lost connections handled?) arise, beside the fact that using
Current-Time for transmitting past time indexes (stamps) is not what a
BLE characteristic is supposed to be. As a consequence, this method
does not comply with the SIG standard and would increase the data
transfer, as many read operations and notification packets would be
necessary.

Another possibility is to create user-defined GATT services and
characteristics, where a characteristic can combine, at the same time, a
timestamp and one or multiple measurements. Assume, as an example,

Computer Networks 222 (2023) 109560

that historical temperature readings shall be communicated: every time
the characteristic is “read”, it returns the timestamp combined with the
measurement reading. Then, either the GATT client carries out read
operations, until no further temperature measurement is available or
notifications are enabled when all the available data are sent. Assuming
that a sensor node measures temperature and relative humidity, this
can be extended either by creating an additional GATT characteris-
tic, holding timestamped relative humidity readings, or by combining
timestamp, temperature and relative humidity in a unique GATT char-
acteristic. While the first approach has the advantage of being more
flexible, the latter mechanism saves bytes and, as such, reduces power
consumption. This leads to the creation of different synchronization
characteristics, identified by their UUIDs; then, a SSGW or the GATT
client will know how to interpret the data according to the UUID itself.

While this approach solves the problem of transmitting historical
measurements, it creates another problem: every GW needs to a priori
know every possible synchronization characteristic, in order to under-
stand and interpret the byte streams correctly. In other words, every
GW needs to know all possible devices (sensor nodes, actuators, etc.)
and their synchronization characteristics in advance, in order to com-
municate with them. Should new devices be integrated into an existing
IoT infrastructure, all the GWs would need to be re-programmed, thus
moving back to a static infrastructure.

Besides services and characteristics, a GATT server can also hold
descriptors to provide more details on a BLE characteristic—e.g., defin-
ing its possible values range. Despite the predefined descriptors, it
is possible to create new custom user-defined descriptors. The fact
that there is no limitation on how many descriptors can be used in a
service has been exploited in the definition of the proposed DynGATT
synchronization approach.

5.1. GATT server layout

In order to move from the static infrastructure generated by a static
approach towards a dynamic approach, our work proposes the use of
descriptors, in order to define the layout for services’ and character-
istics’ synchronization. This approach leads to the identification of a
single characteristic used to synchronize data and known by all devices,
where the layout of the transmitted data packets is described by the
corresponding descriptors.

In the left side of Fig. 4, the GATT layout for the proposed SSGW
service is shown, highlighting the following blocks: (a) the synchro-
nization service; (b) the corresponding synchronization characteristic
used to receive the data, in turn followed by the next descriptors (c)-
(e); (c) the (mandatory) Client Characteristic Configuration Descriptor
(CCCD), which is defined by the SIG and used to enable or disable
notifications or indications; (d) a newly introduced (and a non-SIG-
defined) mandatory Blob Count Descriptor descriptor, used to tell the
GW the expected amount of data blobs; (e) a sequence of (optional)
descriptors, telling the GW how to interpret the stream of data received
by the characteristics handler.

Moreover, consider Table 2 as the list of the UUIDs known in
the DynGATT infrastructure. Based on these UUIDs, it is possible to
create and introduce new sensor nodes with all possible combinations
of the specified measurements. An illustrative instance is given at
the right side of Fig. 4, relative to a weather station that measures
ambient temperature and relative humidity. Additionally, the weather
station stores and synchronizes the battery level. On the basis of the
description shown in the left side of Fig. 4, this is done by defining
the synchronization service and characteristic, followed by the CCCD,
and the blob count (mandatory for all types of sensors). Hence, the
following descriptors are specific for this weather station example:
the first descriptor tells that the first element of the data stream is a
timestamp; the second descriptor is associated with the battery status
information; the third descriptor is related to the ambient temperature;
and, finally, the last descriptor is for the ambient relative humidity.

C. Hirsch et al.

Sync. Service [a] 0x3801
Sync. Characteristic m 0x4A01
cceo 0x2902
Blob Cnt. Descr. 0x4901

0x4902
Descr. for Value 2 0x4903

Descr. for Value 3 0x4904

Computer Networks 222 (2023) 109560

Blob cnt. Timestamp Battery Temperature Humidity Timestamp Battery Temp...

i

A

struct

{
u32_t timestamp;
ulé_t battery;
s16_t temperature;

0x4905

ul6_t humidity;

1
I
I
1
I
|
1
Descr. for Value 1 1
I
I
1
I
|
1

} measurement;

Fig. 4. GATT-based layout, with descriptors used to define characteristics layout: (left) generic layout, (right) example instance for a weather station.

|0x4901 |0x4902 |0x4903 |0x4904 |0x4905|

0x6388D8FB | 0x04A5 |0x05F0 |0x17DE|

Fig. 5. Representative example of a descriptor related to a weather station, including timestamp, battery voltage level, ambient temperature, and ambient relative humidity.

| 0x4901 | 0x4902 | 0x4903 | 0x4907 | 0x4908 |

0x6388D8FB | 0x04A5 |0x0726 | 0x2134 |

Fig. 6. Representative example of a descriptor related to a soil status node, including timestamp, battery voltage, soil temperature, and soil moisture.

What the GW knows from this GATT layout is how to interpret
the received data bytes of the GATT characteristic. For a better un-
derstanding, let us assign numerical values to the example in Fig. 4.
Recall that Table 2 specifies some UUIDs, with their corresponding
descriptions and types of data. Based on this information, the GW can
assume that one blob of data (corresponding to the gray box on the
right side of Fig. 4) will consist of 10 B, where, as shown in Fig. 5: the
first 4 B represent the Unix-like timestamp (dimension: [s]; in Fig. 5,
they are equal to 0x6388D8FB that, once converted to decimal, lead
to a final value equal to 1669912827); the next 2B correspond to the
battery voltage level (dimension: [V]), with a resolution of 0.01V
(in Fig. 5, they are equal to 0x04A5 that, once converted to decimal,
lead to a final value equal to 11.89 V); the next 2B correspond to the
ambient temperature (dimension: [°C]), with a resolution of 0.01°C
(in Fig. 5, they are equal to 0x0O5FO that, once converted to decimal,
lead to a final value equal to 15.20°C); and the last 2B correspond to
the ambient relative humidity (adimensional: [%]), with a resolution
of 0.01 % (in Fig. 5, they are equal to Ox17DE that, once converted to
decimal, lead to a final value equal to 61.10 %). The very first byte is the
number of blobs contained in one characteristic reading, notification
or indication. Please note that, in this example, the specified (16 bit)
UUIDs are for demonstration purposes only. For real applications, full
128 bit UUIDs need to be defined as specified by the SIG.

Based on the descriptors in Table 2, other sensor nodes can also
be defined. As an example, consider a sensor node that measures the
soil status, e.g., soil temperature and soil moisture. If this sensor is
introduced, the GATT descriptor sequence (block (e) in the left side
of Fig. 4) can be equal to 0x4902, 0x4903, 0x4907, and 0x4908,
as shown in Fig. 6, thus representing a 10-byte stream containing
timestamp (equal to 0x6388D8FB that, once converted to decimal,
leads to a final value equal to 1669912827), battery voltage (equal to
0x04A5 that, once converted to decimal, leads to a final value equal
to 11.89V), soil temperature (equal to 0x0726 that, once converted
to decimal, leads to a final value equal to 18.30°C), and soil moisture
(equal to 0x2134 that, once converted to decimal, leads to a final value
equal to 85 %), respectively.

A concluding example is related to a weather station measuring
ambient temperature, atmospheric pressure and precipitation. Its GATT
descriptor sequence (block (e) in the left side of Fig. 4) would look
like as 0x4902, 0x4903, 0x4904, 0x4906, and 0x4909, as shown
in Fig. 7, representing a 14-byte stream containing information on
timestamp (equal to 0x6388D8FB that, once converted to decimal,
leads to a final value equal to 1669912827), battery voltage (equal to
0x04Ab5 that, once converted to decimal, leads to a final value equal to

Table 2

GATT information known in the infrastructure.
UUID Description Resolution Format
0 x 3801 Synchronization Service - -
0 x 4A01 Synchronization Characteristics - -
0 x 4901 Blob count - uint8
0 x 4902 Unix time in seconds - uint32
0 x 4903 Battery in V 0.01V uint16
0 x 4904 Ambient temperature in °C 0.01°C int16
0 x 4905 Ambient relative humidity in % 0.01 % uint16
0 x 4906 Atmospheric pressure in Pa 0.1Pa uint32
0 x 4907 Soil temperature in °C 0.01°C int16
0 x 4908 Soil moisture in % 0.01% uint16
0 x 4909 Precipitation in mm I mm uint16

11.89 V), ambient temperature (equal to 0xO5FO0 that, once converted
to decimal, leads to a final value equal to 15.20 °C), atmospheric pres-
sure (equal to 0xOO0F7BAC that, once converted to decimal, leads to
a final value equal to 101.47kPa), and precipitation (equal to 0x0019
that, once converted to decimal, leads to a final value equal to 25 mm).

It is noteworthy to highlight that the eight illustrative GATT descrip-
tors shown in Table 2 (0x4902 to 0x4909) allow to handle 28—1 = 255
different sensor nodes or synchronization streams, without the need of
re-configuring the infrastructure, namely the GW.

5.2. Connection tuning

According to the Bluetooth Core specifications [1], as anticipated
in Section 3, there are a couple of parameters which allow to tune the
data connection: (a) the connection interval, defining the time interval
between two consecutive connection events, during which the radio
interface should be turned on if data have to be exchanged between
the devices, and ranging from 7.5 ms to 4.0s; and (b) the data payload,
defining how many bytes can be transmitted within one connection
event, and ranging from 0B to 251 B per transmitted/received packet.

By tuning these parameters, two different goals can be achieved.
First, the data throughput can be increased or decreased, by either
changing the connection interval or the data payload. Second, the
power consumption can be controlled properly tuning the timing at
which the radio is turned on. In particular, a data payload’s change
has a high impact on power consumption. Moreover, for every con-
nection event, additional control information (e.g., a header, a Cyclic
Redundancy Check, CRC, or a Message Integrity Code, MIC) may be
included. If the same amount of information is contained in a single

C. Hirsch et al.

Computer Networks 222 (2023) 109560

[0x4901 [0x4902 [0x4903 | 0x4904 [0x4906 [0x4909 |

0x6388DSFB

[0x0445 [0x05F0 | 0x000F7BAC [0x0019 |

Fig. 7. Representative example of a descriptor related to an alternative weather station, including timestamp, battery voltage, ambient temperature, atmospheric pressure, and

precipitation.

Fig. 8. nRF52840 SoC-based sensor node measuring ambient temperature, ambient
relative humidity and atmospheric pressure.

Fig. 9. nRF51822 SoC-based sensor node measuring soil temperature and soil moisture.

transmitted packet, the overhead needs to be sent only once, thus
saving wireless transmission time. However, this is only true in an ideal
scenario with no or negligible wireless interference. At the opposite, in
noisy environments, large data payloads can also lead to an increased
power consumption, as a whole dataset needs to be resent if not
correctly received. With small data payloads, only limited amounts of
data need to be re-transmitted. The connection timing only influences
the power consumption on established connections when no data are
transmitted, as a limited amount of data has to be exchanged in order
to keep a connection alive. Otherwise, if a connection is only used
to transmit data and terminated right after data transmission, the
connection interval has an impact on the data throughput between
the master device (i.e., the GW) and the peripheral device (e.g., a
longer connection interval results in longer data transmissions and
lower data throughput [49]). At the opposite, the impact of connection
establishment on the overall power consumption is negligible with
respect to the consumption incurred by data transfer.

In order to achieve short connection times in the aforementioned
scenario, the data throughput is increased by setting the Maximum
Transmission Unit (MTU) size, which defines, at L2CAP level, the
maximum payload size that can fit into one data packet. Because one
data packet may fit more than the measurements size, the previously
introduced blob count (block (d) in the left side of Fig. 4) is used to
help filling the packet with as many measurements as possible. Both
the remote device and the GW can define their own MTU sizes and,
as soon as a connection is established, the GATT client (the GW in
this scenario) can start negotiating the MTU size that will be used
throughout the connection. Depending on the negotiated MTU size and
on the size of a single measurement, the sensor node calculates how
many measurements can fit into a single data packet: this amount will
correspond to the content of the very first byte transmitted by the GATT
server. Therefore, the GATT client (namely, the SSGW) will know how
many measurements are transmitted within a single reading.

6. Experimental evaluation

In order to evaluate the proposed SSGW with the DynGATT synchro-
nization protocol, we consider an experimental setup in both a static

Fig. 10. Raspberry Pi 3 with external USB Bluetooth adapter.

scenario and a dynamic scenario, deploying the DynGATT protocol
(proposed in Section 5) on the following self-developed sensor nodes.

SN1 A Nordic Semiconductor nRF52840 System-on-Chip (SoC)-based
sensor node measuring ambient temperature, ambient relative
humidity, and atmospheric pressure (Fig. 8).

SN2 A Nordic Semiconductor nRF51822 SoC-based sensor node mea-
suring soil temperature and soil moisture (Fig. 9).

SN3 A Nordic Semiconductor nRF52840 SoC-based sensor node mea-
suring ambient temperature and acceleration (similar to SN1
shown in Fig. 8).

The firmware for all sensor nodes is based on the Zephyr Real-Time
Operating System (RTOS) [52] and implements the proposed DynGATT
synchronization protocol.

On the SSGW side, DynGATT was implemented through a Python
application, which interacts with the Linux OS Bluetooth driver via the
BlueZ Desktop Bus (D-Bus) API [53]. In order to verify and evaluate dif-
ferent BLE solutions, the SSGW application was tested on the following
systems:

* a PC running Ubuntu 18.04 (a) with the internal Bluetooth
adapter, as well as (b) with an external USB Bluetooth adapter,
based on the nRF52840 SoC and the Zephyr RTOS;

+ a Raspberry Pi 3 SBC running Raspbian Wheezy, with the same
external USB Bluetooth adapter used for the PC (Fig. 10).

As discussed in Section 4.1, the synchronization mechanism is im-
plemented as follows. First, the SSGW, through its BLE interface (either
internal or external), scans for sensor nodes broadcasting a specific
Eddystone-URL and stores the retrieved sensor nodes in an array. Then,
the SSGW:(a) connects sequentially to the sensor nodes, one by one;
(b) discovers the GATT server layout; (c) looks for the synchronization
service, characteristics and descriptors; and (d) enables the indications.
As soon as the indications are enabled, the sensor node, which the
SSGW is currently connected to, starts sending its data to the SSGW via
indications. Upon data reception, the SSGW unpacks the received data,
encodes them in JavaScript Object Notation (JSON) format and prints
the JSON-formatted output to the stdout interface. Then, this output
is sent to an MQTT client connecting to an MQTT broker and publishing
the JSON data. Additionally, the SSGW prints out debug information
(such as timings) into the stderr interface.

6.1. Static scenario

In the static scenario, one SSGW and different sensor nodes are
deployed. The SSGW, as well as the sensor nodes, are placed at fixed

C. Hirsch et al.

Beacon scan

@ variable

Computer Networks 222 (2023) 109560

Beacon broadcast

Data sensing

@) 15min

e @) 1sec

Fig. 11. Pictorial representation of the considered static scenario.

locations and do not move throughout the experiment. With this exper-
iment, the impact of timings can be evaluated, as the distance between
the SSGW and each sensor node does not change. The results can also
be used for power consumption estimation based on real measurements,
as well as using a power profiler (e.g., Nordic Semiconductor offers an
online power profiler [54] that can be used for this purpose).

In detail, as shown in the pictorial representation in Fig. 11, the
sensor nodes are configured to take a measurement every 15 min and to
broadcast an Eddystone-URL once a second. Additionally, the SSGW is
configured to scan for sensor nodes and, if any is found, to synchronize
the data available at the sensor nodes. Hence, one may alter the scan
period on the SSGW in order to get different timings. In this experiment,
sensor nodes SN1 and SN2, storing 14B and 10B in one data blob,
respectively, are used.

With this setup, we measure timings on the SSGW side to perform a
power consumption estimation. More precisely, the considered timings
are as follows: (a) the overall interaction time, from the instant at
which the BLE connection is established to the instant at which the
BLE connection is terminated; (b) the time required for sending the raw
data via indications; (c)the amount of bytes and datasets; and (d) the
amount of indications used to transmit data.

As anticipated before, a significant component of the power con-
sumption at the deployed sensor nodes is related to the power con-
sumption of the SoC during data transmission, which can be measured
through the online power profiler offered by Nordic Semiconductor.
In detail, the considered sensor nodes are typically in two operational
states: (a) broadcasting their own Eddystone-URL or (b) connected to
a SSGW for data synchronization purposes.

6.2. Dynamic scenario

As discussed in Section 3, one of the aims of the proposed DynGATT
protocol is to handle dynamic scenarios, such as tracking livestock in a
farm. Similarly to the static scenario shown in Section 6.1, we deployed
one SSGW and different sensor nodes. However, in order to make
the scenario dynamic, the following modifications were introduced, as
shown in the pictorial representation in Fig. 12: (a) we mounted SN3
on a cleaning cart, and (b) we simulated the behavior of an animal on
SN2. Similarly to the other sensor nodes, SN3 broadcasts an Eddystone-
URL once per second and measures the ambient temperature and the
current three-axes (x, y, z) acceleration every 5min. Additionally, the
acceleration sensor in SN3 sends an interrupt to the MCU in the sensor

node when moved: this will generate an additional acceleration mea-
surement with the corresponding timestamp. In comparison to the static
scenario, the cleaning cart permanently moves around. This means that,
most of the time, the cleaning cart is sufficiently far from the SSGW,
which cannot thus detect SN3 on board the cart. However, it can be
assumed that the cleaning cart moves near the SSGW at least once a
day, except for weekends. As soon as the cleaning cart is sufficiently
close to the SSGW, SN3 will be detected by the SSGW, which will start
the synchronization procedure.

The simulated behavior is based on some data retrieved from a
highly automated farm. On this farm, cows can go to a milking robot
in order to get milked. While they get milked, they are simultaneously
getting fed. The farmer can decide, on the basis of the cows’ status,
health, and time from the last calving, how often a cow is allowed to
go to the milking robot. Then, it is assumed that cows are allowed to
go to the milking robot two to five times a day (with an average equal
to three), with an estimated milking time of about eight minutes (as
suggested by literature works [55-58]). From this information, we can
implement a simulated behavior, by randomly switching off and on the
radio module of a single sensor node. First, the sensor node switches
its radio module off and calculates the time its radio module stays off,
representing the cow away from the milking robot. Then, the radio
module switches on, representing the cow at the milking robot, and
stays on as long as the milking procedure lasts. After milking, the radio
module switches off again. In order to calculate the timings, we use a
normal distribution with a mean value of 4 h and a standard deviation of
1 h. In this experiment, we assume that the SSGW is placed right next to
the milking robot and that cows sleep about 12 h. That is also the reason
why the mean value was chosen to 4h: since the SSGW is switched
off for 12h a day (during the simulated sleep), the chosen distribution
corresponds, on average, to 3 milkings per day. The milking duration,
i.e., the time a cow is close to the SSGW, is calculated with a mean value
of 480 s and a standard deviation of 120s. During this time, the SSGW
needs to detect and connect to the sensor node to synchronize the data.
Unlike the static scenario, in the dynamic scenario the SSGW scans for
sensor nodes every minute (but for an incomplete synchronization).
In order to avoid to connect to a sensor node that has recently been
synchronized, the SSGW skips all sensor nodes that were successfully
synchronized in the last hour.

C. Hirsch et al.

Beacon broadcast

@) 1sec

Computer Networks 222 (2023) 109560

Fig. 12. Pictorial representation of the considered dynamic scenario.

[] @ static scenario
dynamic scenario
104 o Y
o o
°
)
. | ¢
£ 81
=]
= °
°
c
c
8 64 [
Pl (]
©
[
5 °
g °
o
41 € . M
1}
o o ®
»
v
0 5 10 15 20 25

data transmitted [kB]

Fig. 13. Connection overhead Ty as a function of the number of transmitted bytes.

7. Results and discussion

On the basis of the experimental evaluation scenarios described in
Section 6, a first performance evaluation, associated with the connec-
tion overhead (including connection establishment, service discovery,
time synchronization, and connection termination), is carried out by
analyzing the timing logs at the SSGW. In Fig. 13, the connection
overhead, denoted as Ty, is shown as a function of the number of
transmitted bytes. As can be seen, Ty ranges from 2.49s to 10.67s.
From the results in Fig. 13, it can be seen that there is no correlation be-
tween Ty and the number of transmitted bytes, i.e., the amount of data
transferred does not influence the overhead time. However, the time
required for data transfer heavily depends on the amount of available
information: on the basis of our experimental evaluation, the achieved
data rates vary between 6.95B/s and 2,027.82B/s, corresponding to a
large interval. Fig. 14 shows the transmission rate (dimension: [kB/s])
as a function of the transmitted data.

In order to estimate as precisely as possible the worst-case power
consumption, taking into account that the larger the amount of data
transferred at once, the higher the throughput for the synchronization
procedure, we considered the timings for transmitting only a single
dataset. This quantity, denoted as Try, ranges from 0.27s to 2.36s in
the static scenario.

In the broadcasting state, a nRF52840 SoC consumes, on average,
I,py = 22 pA when broadcasting 31 B of payload every 1000 ms [54].
In this state, the power consumption heavily depends on the BLE
advertising interval.? If, for example, we increase the interval to 2000
ms, the power consumption drops to I,y = 12 pA. However, since we

2 For the sake of clarity, in this paper, unless stated otherwise, we im-
plicitly assume that the voltage is fixed. Therefore, the power consumption
is associated with the current intensity.

2.0 ® static scenario
dynamic scenario
[_J
= 1.5
)
X
- °
o e
: | !
) [)
£10{ ©
K=l
8
E e ©
5 ° °
= -
054 &
o o,
ﬁ.
0.0 A /
T T T T T T
0 5 10 15 20 25

data transmitted [kB]

Fig. 14. Transmission rate as a function of the transmitted data.

use a one-second advertising interval, we consider this scenario as the
worst-case for power consumption, as the largest possible payload is
transmitted.

In the synchronization state, i.e., when connected to a central device,
the SoC usually consumes, on average, Igync = 1.36 mA, with peaks up
to 10.9mA. This performance is obtained using a transmission power
equal to 4dBm, the largest possible payload, and a connection interval
of 30ms [54].

In order to calculate the overall worst-case power consumption,
both broadcasting and synchronization states need to be combined
together. Consider that the sensor node collects a measurement every
Tpara = 15min and that the SSGW connects to the sensor node as
soon as data are available. This would result in a connection time
Tconn = Ton + Trx = 10.67s +2.365 = 13.03s every Tpapa = 15min, in
which the SoC consumes Igyync = 1.36 mA. During the rest of the time,
namely during an interval of duration Txpy = Tpata — Tconn = 900s —
10.36 s = 886.97 s, the sensor node is in advertising state and consumes
I,py =22 pA. Hence, the average worst-case power consumption of the
SoC is the following:

_ (Ton + Trx) X Isync + Tapy X Tapy

Igyc =
° Tpata
_ 13.03s X 1.36 mA + 886.97 s X 22 A
- 900's
= 4137 pA.)}

Moreover, even considering the worst-case battery energy scenario,
with a sensor node equipped with a 350 mAh battery, the sensor node
could still operate for 8460 h (approximately 352 days), assuming that
only the SoC is affecting the power consumption and the battery does
not self-discharge.

Hence, these results highlight the impact of advertising and synchro-
nizing states on power consumption. Regarding power consumption,
the advertising state represents a fixed lower bound specified by the

C. Hirsch et al.

42 A

40 -

38 A

36

34 -

321

averaged power consumption [A]

30 A

281

26 4
15

90 105 120 135 150 165 180 195 210 225
synchronization interval [1/min]

30 45 60 75

Fig. 15. Average worst-case power consumption for synchronizing data.

SoC. However, in order to control the energy consumed by the SoC, it
is possible to configure the SSGW for the scenario’s needs. The more
often data are synchronized, the higher is the energy consumption.
Fig. 15 shows the correlation between the average power needed for
synchronizing data and the synchronization interval in the worst-case
scenario, on the basis of Eq. (1). From Fig. 15, it can be concluded
that increasing the synchronization period decreases the average power
consumption of the SoC. Additionally, this has another impact as well:
because transmitting more data at once increases the transmission rate,
the power consumed to transmit one dataset decreases as well (this,
however, is not considered in Fig. 15), resulting in even lower power
consumption. However, this comes at the cost that data are available in
the Cloud layer at a delayed time. For example, if the SSGW increases
the synchronization interval from 15 min to 120 min, the average power
consumption of the SoC drops from 41.37 pA to 27.58 pA (worst-case),
resulting in an increased lifetime of 528 days with data being updated
in the cloud every 2 hours.

On the SoC side, the advertisement period can be altered to fur-
ther decrease the power consumption. But this has an impact on the
responsiveness of the system, as it takes longer for a SSGW to detect
and connect to the sensing device—the longer the advertising interval,
the longer the scan time and the slower the system responsiveness.
Moreover, this may have a negative impact especially in dynamic sce-
narios, such as in smart farming, where cows can move close to or walk
away from a SSGW very quickly, thus preventing the SSGW from on-
time detection of the presence of an animal and synchronization of its
data. This further highlights why the trade-off between responsiveness
and power consumption has to be carefully considered and adjusted
according to the application needs.

Another strategy allowed by DynGATT is related to the possibility
to quickly synchronize data through the use of dynamic trackers: our
experimental evaluation confirms that communicating more data at
once increases the data rate. In the best-case scenario, it was possible
to synchronize 8335 B in 4.11s transmitted via indications without
overhead.

Besides power consumption, the proposed SSGW with the Dyn-
GATT dynamic synchronization protocol offers the following advan-
tages. First, since BLE connections are established only if necessary to
synchronize data, a (theoretically) unlimited amount of BLE devices can
be integrated into the IoT infrastructure. This would not be possible
for scenarios in which connections are kept alive, as devices have only
a limited number of (a) resources per connection and (b) peripherals
to connect to. Second, BLE peripherals dynamically appearing and
disappearing from the SSGW’s visibility can be handled, as data on

10

Computer Networks 222 (2023) 109560

the peripherals are stored temporarily. Third, thanks to the fact that
the structure of both synchronization service and characteristics is
defined by GATT descriptors, the SSGW only needs to know a specific
synchronization GATT characteristic, but does not need to a priori
know its data byte structure. Finally, another advantage of the proposed
approach is that new sensor nodes can be integrated in an existing IoT
infrastructure without updating or changing the SSGW. However, this
is true only to some extent: as long as the descriptors are pre-defined
and known by the SSGW, then no update is necessary. As soon as
new measurements are introduced and new descriptors thus need to be
introduced in the system, the SSGW also needs to be updated in order
to handle these new data types.

8. Conclusion and future work

In this paper, we have presented a new Smart Synchronization
Internet GW (SSGW) and a dynamic BLE GATT-based synchronization
mechanism, denoted as DynGATT, to be used in dynamic IoT scenarios,
such as those in agricultural domains. In these scenarios, there are
on-field BLE sensor nodes, collecting data and advertising themselves
through Eddystone-based beacons, and BLE-equipped SSGWs, in charge
of discovering sensor nodes and synchronizing with them in a timely-
and energy-preserving way.

The flexibility of the proposed DynGATT approach makes it attrac-
tive in the future, to place GWs on mobile carriers, such as Unmanned
Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs), thus
exploiting the potentialities of our protocol.

Security needs also to be taken into account. Securing end-to-
end the communication between on-field sensor nodes and the Cloud
allows to mitigate threats from data harvesting to data processing, but
completely prevents the possibility to pre-process data at GW level.
The investigation of end-to-end security mechanisms between sensor
nodes and a SSGW is an interesting extension, possibly through group
key-based algorithms, exploiting the dynamicity of BLE sensor nodes
and sharing keys with sensor nodes at their first interaction. Obviously,
these security add-ons will have an impact on power consumption, that
should be carefully considered.

Finally, in order to improve energy management policies, a dynamic
power tuning strategy can be defined, in which the advertising interval
can be regulated based on the battery state. Then, additional informa-
tion may be considered to be sent inside the beacon packets, to share
further knowledge between a sensor node and the SSGW exploiting all
the available features.

CRediT authorship contribution statement

Christian Hirsch: Conceptualization, Methodology, Software, Val-
idation, Investigation, Writing — original draft, Writing — review &
editing. Luca Davoli: Conceptualization, Methodology, Software, Vali-
dation, Investigation, Writing — original draft, Writing — review & edit-
ing. Radu Grosu: Conceptualization, Investigation, Writing — original
draft, Supervision, Funding acquisition. Gianluigi Ferrari: Conceptu-
alization, Investigation, Writing — original draft, Writing — review &
editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

C. Hirsch et al.
Acknowledgments

This work received funding from the European Union’s Horizon
2020 research and innovation program ECSEL Joint Undertaking (JU)
under grant agreement No. 783221, AFarCloud project - “Aggregate
Farming in the Cloud”. The work of L.D. and G.F. is also partially
supported by the Agritech project - “National Research Centre for
Agricultural Technologies”, project code CN00000022, funded under
the National Recovery and Resilience Plan (NRRP), Mission 4 Com-
ponent 2 Investment 1.4 - Call for tender no. 3138 of 16/12/2021
of Italian Ministry of University and Research funded by the Eu-
ropean Union - NextGenerationEU, Concession Decree no. 1032 of
17/06/2022 adopted by the Italian Ministry of University and Re-
search; SMALLDERS research project - “Smart Models for Agrifood
Local vaLue chain based on Digital technologies for Enabling covid-19
Resilience and Sustainability”, funded by the PRIMA Program - Section
2 Call multi-topics 2021; and by the European Union’s Horizon 2020
research and innovation program ECSEL Joint Undertaking (JU) under
grant agreement No. 876019, ADACORSA project - “Airborne Data
Collection on Resilient System Architectures”. The JU received support
from the European Union’s Horizon 2020 research and innovation pro-
gramme and the nations involved in the mentioned projects. The work
reflects only the authors’ views and opinions; neither the European
Union nor the European Commission can be considered responsible for

any use that may be made of the information it contains.
References

[1] Bluetooth SIG, Core Specification 4.0, 2010, https://www.bluetooth.com/
specifications/specs/. (Accessed on 23 May 2021).
M. Siekkinen, M. Hiienkari, J.K. Nurminen, J. Nieminen, How low energy is
bluetooth low energy? Comparative measurements with ZigBee/802.15.4, in:
2012 IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), IEEE, Paris, France, 2012, pp. 232-237, http://dx.doi.org/10.1109/
WCNCW.2012.6215496.
B.B. Olyaei, J. Pirskanen, O. Raeesi, A. Hazmi, M. Valkama, Performance
comparison between slotted IEEE 802.15.4 and IEEE 802.1 lah in IoT based
applications, in: 2013 IEEE 9th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), IEEE, Lyon, France,
2013, pp. 332-337, http://dx.doi.org/10.1109/WiMOB.2013.6673381.
J. Decuir, Bluetooth smart support for 6LoBTLE: Applications and connection
questions, IEEE Consum. Electron. Mag. 4 (2) (2015) 67-70, http://dx.doi.org/
10.1109/MCE.2015.2392955.
J. Quevedo, M. Antunes, D. Corujo, D. Gomes, R.L. Aguiar, On the application
of contextual IoT service discovery in information centric networks, Comput.
Commun. 89-90 (2016) 117-127, http://dx.doi.org/10.1016/j.comcom.2016.03.
011.
G. Codeluppi, A. Cilfone, L. Davoli, G. Ferrari, LoRaFarM: A LoRaWAN-based
smart farming modular IoT architecture, Sensors 20 (7) (2020) http://dx.doi.
0rg/10.3390/520072028.
S. Cheshire, M. Krochmal, Multicast DNS, RFC, (6762) IETF, 2013, URL https:
//tools.ietf.org/html/rfc6762.
Zero Configuration Networking (Zeroconf), 2020, http://www.zeroconf.org/.
(Accessed on 16 July 2022).
Z. Shelby, Constrained RESTful Environments (CoRE) Link Format, RFC, (6690)
IETF, 2012, URL https://tools.ietf.org/html/rfc6690.
S. Cheshire, M. Krochmal, DNS-Based Service Discovery, RFC, (6763) IETF, 2013,
URL https://tools.ietf.org/html/rfc6763.
Z. Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol (CoAP),
RFC, (7252) IETF, 2014, URL https://tools.ietf.org/html/rfc7252.
iBeacon Technology, 2020, https://developer.apple.com/ibeacon/. (Accessed on
16 July 2022).
Google Beacon Platform - Eddystone,
eddystone. (Accessed on 16 July 2022).
A. Mackey, P. Spachos, K.N. Plataniotis, Smart parking system based on blue-
tooth low energy beacons with particle filtering, IEEE Syst. J. 14 (3) (2020)
3371-3382, http://dx.doi.org/10.1109/JSYST.2020.2968883.
H.-T. Chen, P.-Y. Lin, C.-Y. Lin, A smart roadside parking system using bluetooth
low energy beacons, in: Web, Artificial Intelligence and Network Applications,
Springer International Publishing, Cham, 2019, pp. 471-480, http://dx.doi.org/
10.1007/978-3-030-15035-8_44.
F. Campaiia, A. Pinargote, F. Dominguez, E. Peldez, Towards an indoor naviga-
tion system using bluetooth low energy beacons, in: 2017 IEEE Second Ecuador
Technical Chapters Meeting, ETCM, IEEE, Salinas, Ecuador, 2017, pp. 1-6,
http://dx.doi.org/10.1109/ETCM.2017.8247464.

[2]

[3]

[4]

[5]

[6]

[71
[8]
[91
[10]
[11]
[12]
[13]

2020, https://github.com/google/

[14]

[15]

[16]

11

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Computer Networks 222 (2023) 109560

G. De Blasio, A. Quesada-Arencibia, C.R. Garcia, J.C. Rodriguez-Rodriguez, R.
Moreno-Diaz, A protocol-channel-based indoor positioning performance study for
bluetooth low energy, IEEE Access 6 (2018) 33440-33450, http://dx.doi.org/10.
1109/ACCESS.2018.2837497.

J. Decuir, C. Hansen, C. Gordon, L. Blair, C. Pfister, K. Schultz, D. Richkas, T. Wei,
V. Zhodzishsky, K. Kambhampati, Y. Kwan, J. Tien, N. Hunn, Internet Gateways,
White Paper, (v01) Bluetooth SIG, 2016, p. 22, https://www.bluetooth.com/wp-
content/uploads/2019/03/InternetGateways_WP_v01.pdf. (Accessed on 16 July
2022).

M. Andersson, R. Heydon, K. Schulz, M. Olsson, A. Larsson, GATT REST
API, White Paper, (V10r01) Bluetooth SIG, 2014, https://www.bluetooth.com/
wp-content/uploads/2019/03/GATT-REST-API_ WP_V10r01.pdf. (Accessed on 16
July 2022).

M. Andersson, A. Larsson, R. Heydon, M. Olsson, T. Howes, GAP REST API, White
Paper, (V10r01) Bluetooth SIG, 2014, https://www.bluetooth.com/wp-content/
uploads/2019/03/GAP-REST-API_ WP_V10r01-1.pdf. (Accessed on 16 July 2022).
Bluetooth SIG, Internet Protocol Support Profile, 2014, https://www.bluetooth.
com/specifications/specs/internet- protocol-support-profile-1-0. (Accessed on 25
November 2022).

M. Spork, C.A. Boano, M. Zimmerling, K. Romer, BLEach: Exploiting the full
potential of IPv6 over BLE in constrained embedded IoT devices, in: Proceedings
of the 15th ACM Conference on Embedded Network Sensor Systems, SenSys ’17,
ACM, 2017, pp. 1-14, http://dx.doi.org/10.1145/3131672.3131687.

J. Tosi, F. Taffoni, M. Santacatterina, R. Sannino, D. Formica, Throughput
analysis of BLE sensor network for motion tracking of human movements, IEEE
Sens. J. 19 (1) (2019) 370-377, http://dx.doi.org/10.1109/JSEN.2018.2877102.
N. Islam, B. Ray, F. Pasandideh, IoT based smart farming: Are the LPWAN
technologies suitable for remote communication? in: 2020 IEEE International
Conference on Smart Internet of Things (SmartloT), 2020, pp. 270-276, http:
//dx.doi.org/10.1109/SmartIoT49966.2020.00048.

A. Tlapakurti, C. Vuppalapati, Building an IoT framework for connected dairy,
in: 2015 IEEE First International Conference on Big Data Computing Service
and Applications, 2015, pp. 275-285, http://dx.doi.org/10.1109/BigDataService.
2015.39.

T. Truong, A. Dinh, K. Wahid, An IoT environmental data collection system
for fungal detection in crop fields, in: 2017 IEEE 30th Canadian Conference on
Electrical and Computer Engineering, CCECE, 2017, pp. 1-4, http://dx.doi.org/
10.1109/CCECE.2017.7946787.

M.-S. Liao, S.-F. Chen, C.-Y. Chou, H.-Y. Chen, S.-H. Yeh, Y.-C. Chang, J.-A.
Jiang, On precisely relating the growth of phalaenopsis leaves to greenhouse en-
vironmental factors by using an IoT-based monitoring system, Comput. Electron.
Agric. 136 (2017) 125-139, http://dx.doi.org/10.1016/j.compag.2017.03.003.
F. Edwards-Murphy, M. Magno, P.M. Whelan, J. OHalloran, E.M. Popovici,
b+WSN: Smart beehive with preliminary decision tree analysis for agriculture
and honey bee health monitoring, Comput. Electron. Agric. 124 (2016) 211-219,
http://dx.doi.org/10.1016/j.compag.2016.04.008.

S. Trilles, J. Torres-Sospedra, A. Belmonte, F.J. Zarazaga-Soria, A. Gonzalez-
Perez, J. Huerta, Development of an open sensorized platform in a smart
agriculture context: A vineyard support system for monitoring mildew disease,
Sustain. Comput.: Inf. Syst. (2019) http://dx.doi.org/10.1016/j.suscom.2019.01.
011.

R. Ratasuk, N. Mangalvedhe, A. Ghosh, B. Vejlgaard, Narrowband LTE-M
system for M2M communication, in: 2014 IEEE 80th Vehicular Technology
Conference (VTC2014-Fall), 2014, pp. 1-5, http://dx.doi.org/10.1109/VTCFall.
2014.6966070.

Y. Tang, S. Dananjayan, C. Hou, Q. Guo, S. Luo, Y. He, A survey on the 5G
network and its impact on agriculture: Challenges and opportunities, Comput.
Electron. Agric. 180 (2021) 105895, http://dx.doi.org/10.1016/j.compag.2020.
105895.

F.K. Shaikh, S. Karim, S. Zeadally, J. Nebhen, Recent trends in internet of things
enabled sensor technologies for smart agriculture, IEEE Internet Things J. (2022)
1, http://dx.doi.org/10.1109/JI0T.2022.3210154.

G. Manogaran, M. Alazab, K. Muhammad, V.H.C. de Albuquerque, Smart sensing
based functional control for reducing uncertainties in agricultural farm data
analysis, IEEE Sens. J. 21 (16) (2021) 17469-17478, http://dx.doi.org/10.1109/
JSEN.2021.3054561.

R.K. Singh, R. Berkvens, M. Weyn, AgriFusion: An architecture for IoT and
emerging technologies based on a precision agriculture survey, IEEE Access 9
(2021) 136253-136283, http://dx.doi.org/10.1109/ACCESS.2021.3116814.

K. Grgic, D. Zagar, J. Balen, J. Vlaovic, Internet of things in smart agriculture
— possibilities and challenges, in: 2020 International Conference on Smart
Systems and Technologies, SST, 2020, pp. 239-244, http://dx.doi.org/10.1109/
SST49455.2020.9264043.

K. Dineva, D. Parvanov, T. Atanasova, G. Mateeva, P. Petrov, G. Kostadinov,
Towards CPS/IoT system for livestock smart farm monitoring, in: 2021 In-
ternational Conference Automatics and Informatics, ICAI, 2021, pp. 252-255,
http://dx.doi.org/10.1109/ICA152893.2021.9639460.

A. Yazdinejad, B. Zolfaghari, A. Azmoodeh, A. Dehghantanha, H. Karimipour, E.
Fraser, A.G. Green, C. Russell, E. Duncan, A review on security of smart farming
and precision agriculture: Security aspects, attacks, threats and countermeasures,
Appl. Sci. 11 (16) (2021) http://dx.doi.org/10.3390/app11167518.

https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/
http://dx.doi.org/10.1109/WCNCW.2012.6215496
http://dx.doi.org/10.1109/WCNCW.2012.6215496
http://dx.doi.org/10.1109/WCNCW.2012.6215496
http://dx.doi.org/10.1109/WiMOB.2013.6673381
http://dx.doi.org/10.1109/MCE.2015.2392955
http://dx.doi.org/10.1109/MCE.2015.2392955
http://dx.doi.org/10.1109/MCE.2015.2392955
http://dx.doi.org/10.1016/j.comcom.2016.03.011
http://dx.doi.org/10.1016/j.comcom.2016.03.011
http://dx.doi.org/10.1016/j.comcom.2016.03.011
http://dx.doi.org/10.3390/s20072028
http://dx.doi.org/10.3390/s20072028
http://dx.doi.org/10.3390/s20072028
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc6762
http://www.zeroconf.org/
https://tools.ietf.org/html/rfc6690
https://tools.ietf.org/html/rfc6763
https://tools.ietf.org/html/rfc7252
https://developer.apple.com/ibeacon/
https://github.com/google/eddystone
https://github.com/google/eddystone
https://github.com/google/eddystone
http://dx.doi.org/10.1109/JSYST.2020.2968883
http://dx.doi.org/10.1007/978-3-030-15035-8_44
http://dx.doi.org/10.1007/978-3-030-15035-8_44
http://dx.doi.org/10.1007/978-3-030-15035-8_44
http://dx.doi.org/10.1109/ETCM.2017.8247464
http://dx.doi.org/10.1109/ACCESS.2018.2837497
http://dx.doi.org/10.1109/ACCESS.2018.2837497
http://dx.doi.org/10.1109/ACCESS.2018.2837497
https://www.bluetooth.com/wp-content/uploads/2019/03/InternetGateways_WP_v01.pdf
https://www.bluetooth.com/wp-content/uploads/2019/03/InternetGateways_WP_v01.pdf
https://www.bluetooth.com/wp-content/uploads/2019/03/InternetGateways_WP_v01.pdf
https://www.bluetooth.com/wp-content/uploads/2019/03/GATT-REST-API_WP_V10r01.pdf
https://www.bluetooth.com/wp-content/uploads/2019/03/GATT-REST-API_WP_V10r01.pdf
https://www.bluetooth.com/wp-content/uploads/2019/03/GATT-REST-API_WP_V10r01.pdf
https://www.bluetooth.com/wp-content/uploads/2019/03/GAP-REST-API_WP_V10r01-1.pdf
https://www.bluetooth.com/wp-content/uploads/2019/03/GAP-REST-API_WP_V10r01-1.pdf
https://www.bluetooth.com/wp-content/uploads/2019/03/GAP-REST-API_WP_V10r01-1.pdf
https://www.bluetooth.com/specifications/specs/internet-protocol-support-profile-1-0
https://www.bluetooth.com/specifications/specs/internet-protocol-support-profile-1-0
https://www.bluetooth.com/specifications/specs/internet-protocol-support-profile-1-0
http://dx.doi.org/10.1145/3131672.3131687
http://dx.doi.org/10.1109/JSEN.2018.2877102
http://dx.doi.org/10.1109/SmartIoT49966.2020.00048
http://dx.doi.org/10.1109/SmartIoT49966.2020.00048
http://dx.doi.org/10.1109/SmartIoT49966.2020.00048
http://dx.doi.org/10.1109/BigDataService.2015.39
http://dx.doi.org/10.1109/BigDataService.2015.39
http://dx.doi.org/10.1109/BigDataService.2015.39
http://dx.doi.org/10.1109/CCECE.2017.7946787
http://dx.doi.org/10.1109/CCECE.2017.7946787
http://dx.doi.org/10.1109/CCECE.2017.7946787
http://dx.doi.org/10.1016/j.compag.2017.03.003
http://dx.doi.org/10.1016/j.compag.2016.04.008
http://dx.doi.org/10.1016/j.suscom.2019.01.011
http://dx.doi.org/10.1016/j.suscom.2019.01.011
http://dx.doi.org/10.1016/j.suscom.2019.01.011
http://dx.doi.org/10.1109/VTCFall.2014.6966070
http://dx.doi.org/10.1109/VTCFall.2014.6966070
http://dx.doi.org/10.1109/VTCFall.2014.6966070
http://dx.doi.org/10.1016/j.compag.2020.105895
http://dx.doi.org/10.1016/j.compag.2020.105895
http://dx.doi.org/10.1016/j.compag.2020.105895
http://dx.doi.org/10.1109/JIOT.2022.3210154
http://dx.doi.org/10.1109/JSEN.2021.3054561
http://dx.doi.org/10.1109/JSEN.2021.3054561
http://dx.doi.org/10.1109/JSEN.2021.3054561
http://dx.doi.org/10.1109/ACCESS.2021.3116814
http://dx.doi.org/10.1109/SST49455.2020.9264043
http://dx.doi.org/10.1109/SST49455.2020.9264043
http://dx.doi.org/10.1109/SST49455.2020.9264043
http://dx.doi.org/10.1109/ICAI52893.2021.9639460
http://dx.doi.org/10.3390/app11167518

C. Hirsch et al.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

J. Prakash, P. Thorwe, T.Q.S. Quek, AgriAuth: Sensor collaboration and cor-
roboration for data confidence in smart farms, in: Proceedings of the 14th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, WiSec 21,
Association for Computing Machinery, New York, NY, USA, 2021, pp. 383-385,
http://dx.doi.org/10.1145/3448300.3468260.

A. llaria, G. Terrasson, H. Arregui, A. Hacala, Geolocation and monitoring
platform for extensive farming in mountain pastures, in: 2015 IEEE International
Conference on Industrial Technology, ICIT, 2015, pp. 2420-2425, http://dx.doi.
org/10.1109/ICIT.2015.7125454.

L. Wen, Z. Qingfang, H. Ke, L. Xueke, G. Kai, Design of agricultural irrigation
hydropower dual control intelligent equipment based on NB-IoT technology, in:
Proceedings of the 7th International Conference on Informatics, Environment,
Energy and Applications, IEEA ’18, Association for Computing Machinery, New
York, NY, USA, 2018, pp. 42-48, http://dx.doi.org/10.1145/3208854.3208897.
D. Davcev, K. Mitreski, S. Trajkovic, V. Nikolovski, N. Koteli, IoT agriculture
system based on LoRaWAN, in: 2018 14th IEEE International Workshop on
Factory Communication Systems, WFCS, 2018, pp. 1-4, http://dx.doi.org/10.
1109/WFCS.2018.8402368.

K. Aliev, M. Moazzam Jawaid, S. Narejo, E. Pasero, A. Pulatov, Internet of plants
application for smart agriculture, Int. J. Adv. Comput. Sci. Appl. 9 (4) (2018)
http://dx.doi.org/10.14569/1JACSA.2018.090458.

J. Lloret, S. Sendra, L. Garcia, J.M. Jimenez, A wireless sensor network
deployment for soil moisture monitoring in precision agriculture, Sensors 21
(21) (2021) http://dx.doi.org/10.3390/521217243.

J. Bauer, N. Aschenbruck, Design and implementation of an agricultural moni-
toring system for smart farming, in: 2018 IoT Vertical and Topical Summit on
Agriculture - Tuscany (IoT Tuscany), 2018, pp. 1-6, http://dx.doi.org/10.1109/
IOT-TUSCANY.2018.8373022.

J.A. Brenes, G. Marin-Raventds, When one wireless technology is not enough:
A network architecture for precision agriculture using LoRa, Wi-Fi, and LTE,
in: AK. Nagar, D.S. Jat, G. Marin-Raventés, D.K. Mishra (Eds.), Intelligent
Sustainable Systems, Springer Nature Singapore, Singapore, 2022, pp. 103-112.
P.K. Reddy Maddikunta, S. Hakak, M. Alazab, S. Bhattacharya, T.R. Gadekallu,
W.Z. Khan, Q.-V. Pham, Unmanned aerial vehicles in smart agriculture: Applica-
tions, requirements, and challenges, IEEE Sens. J. 21 (16) (2021) 17608-17619,
http://dx.doi.org/10.1109/JSEN.2021.3049471.

L. Nobrega, P. Gongalves, P. Pedreiras, J. Pereira, An IoT-based solution for
intelligent farming, Sensors 19 (3) (2019) http://dx.doi.org/10.3390/5s19030603.
R. Katila, T. Nguyen Gia, T. Westerlund, Analysis of mobility support approaches
for edge-based IoT systems using high data rate bluetooth low energy 5, Comput.
Netw. 209 (2022) 108925, http://dx.doi.org/10.1016/j.comnet.2022.108925.

P. Bulié, G. Kojek, A. Biasizzo, Data transmission efficiency in bluetooth low
energy versions, Sensors 19 (17) (2019) http://dx.doi.org/10.3390/519173746.
A. Jaimin, BLE power optimization parameters, 2021, https://buildstorm.com/
blog/ble-power-optimization-parameters/. (Accessed on 22 November 2022).
Bluetooth GATT Specifications, 2020, https://www.bluetooth.com/specifications/
gatt/. (Accessed on 23 May 2021).

Zephyr Project, 2020, https://www.zephyrproject.org/. (Accessed on 16 July
2022),

DBus API, 2020, https://git.kernel.org/pub/scm/bluetooth/bluez.git/tree/doc.
(Accessed on 16 July 2022).

Online Power Profiler, 2020, https://devzone.nordicsemi.com/power/w/opp.
(Accessed on 16 July 2022).

M. Ayadi, Optimization of milking frequency in dairy ruminants, in: N. M’Hamdi
(Ed.), Lactation in Farm Animals, IntechOpen, Rijeka, 2019, http://dx.doi.org/
10.5772/intechopen.87303.

J. Wang, D. Lovarelli N. Rota, M. Shen, M. Lu, M. Guarino, The poten-
tialities of machine learning for cow-specific milking: Automatically setting
variables in milking machines, Animals 12 (13) (2022) http://dx.doi.org/10.
3390/anil2131614.

A. Castro, J. Pereira, C. Amiama, J. Bueno, Estimating efficiency in automatic
milking systems, J. Dairy Sci. 95 (2) (2012) 929-936, http://dx.doi.org/10.3168/
jds.2010-3912.

12

Computer Networks 222 (2023) 109560

[58] J. Hogenboom, L. Pellegrino, A. Sandrucci, V. Rosi, P. D’Incecco, Hygienic

quality, composition, and technological performance of raw milk obtained by
robotic milking of cows, J. Dairy Sci. 102 (9) (2019) 7640-7654, http://dx.doi.
org/10.3168/jds.2018-16013.

Christian Hirsch is an independent researcher focusing
on IoT solutions, hardware prototyping and development,
especially based on near-range Wi-Fi and BLE and low-
power Narrowband-IoT and LTE-M cellular. He has been a
University Assistant at the Institute of Computer Engineering
at the Vienna University of Technology until February 2022.

Luca Davoli is a non-tenured Assistant Professor at the
Internet of Things (IoT) Laboratory, Department of Engi-
neering and Architecture, University of Parma, Italy. He
obtained his Dr. Ing. degree in computer engineering and
his Ph.D. in information technologies at the Department of
Information Engineering of the same university, in 2013
and 2017, respectively. His research interests focus on
IoT, Pervasive Computing, Big Stream and Software-Defined
Networking.

Radu Grosu received the Ph.D. degree in computer science
from the Technical University of Munich, Munich, Germany,
in 1994. He is currently a Professor and the Head of
the Cyber-Physical Group, Faculty of Informatics, Vienna
University of Technology. Before receiving his appointment
at the Vienna University of Technology, he was an As-
sociate Professor with the Computer Science Department,
State University of New York, Stony Brook, where he co-
directed the Concurrent-Systems Laboratory and co-founded
the Systems-Biology Laboratory. He was a Research Asso-
ciate with the Computer Science Department, University of
Pennsylvania. He is a Research Professor with the Computer
Science Department, State University of New York. His
research interests include modeling, analysis and control of
cyber—physical, and biological systems. His application focus
include green operating systems, mobile ad-hoc networks,
automotive systems, the Mars rover, cardiac-cell networks,
and genetic regulatory networks. He is a member of the
International Federation of Information Processing WG 2.2.
He was the recipient of the National Science Foundation
Career Award, the State University of New York Research
Foundation Promising Inventor Award, the ACM Service
Award.

Gianluigi Ferrari received the Laurea (summa cum laude)
and Ph.D. degrees in electrical engineering from the Univer-
sity of Parma, Parma, Italy, in 1998 and 2002, respectively.
Since 2002, he has been with the University of Parma,
where he is currently an Associate Professor of telecom-
munications and also the coordinator of the Internet of
Things (IoT) Laboratory, Department of Engineering and
Architecture. His current research interests include signal
processing, advanced communication and networking, and
IoT and smart systems.

http://dx.doi.org/10.1145/3448300.3468260
http://dx.doi.org/10.1109/ICIT.2015.7125454
http://dx.doi.org/10.1109/ICIT.2015.7125454
http://dx.doi.org/10.1109/ICIT.2015.7125454
http://dx.doi.org/10.1145/3208854.3208897
http://dx.doi.org/10.1109/WFCS.2018.8402368
http://dx.doi.org/10.1109/WFCS.2018.8402368
http://dx.doi.org/10.1109/WFCS.2018.8402368
http://dx.doi.org/10.14569/IJACSA.2018.090458
http://dx.doi.org/10.3390/s21217243
http://dx.doi.org/10.1109/IOT-TUSCANY.2018.8373022
http://dx.doi.org/10.1109/IOT-TUSCANY.2018.8373022
http://dx.doi.org/10.1109/IOT-TUSCANY.2018.8373022
http://refhub.elsevier.com/S1389-1286(23)00005-1/sb45
http://refhub.elsevier.com/S1389-1286(23)00005-1/sb45
http://refhub.elsevier.com/S1389-1286(23)00005-1/sb45
http://refhub.elsevier.com/S1389-1286(23)00005-1/sb45
http://refhub.elsevier.com/S1389-1286(23)00005-1/sb45
http://refhub.elsevier.com/S1389-1286(23)00005-1/sb45
http://refhub.elsevier.com/S1389-1286(23)00005-1/sb45
http://dx.doi.org/10.1109/JSEN.2021.3049471
http://dx.doi.org/10.3390/s19030603
http://dx.doi.org/10.1016/j.comnet.2022.108925
http://dx.doi.org/10.3390/s19173746
https://buildstorm.com/blog/ble-power-optimization-parameters/
https://buildstorm.com/blog/ble-power-optimization-parameters/
https://buildstorm.com/blog/ble-power-optimization-parameters/
https://www.bluetooth.com/specifications/gatt/
https://www.bluetooth.com/specifications/gatt/
https://www.bluetooth.com/specifications/gatt/
https://www.zephyrproject.org/
https://git.kernel.org/pub/scm/bluetooth/bluez.git/tree/doc
https://devzone.nordicsemi.com/power/w/opp
http://dx.doi.org/10.5772/intechopen.87303
http://dx.doi.org/10.5772/intechopen.87303
http://dx.doi.org/10.5772/intechopen.87303
http://dx.doi.org/10.3390/ani12131614
http://dx.doi.org/10.3390/ani12131614
http://dx.doi.org/10.3390/ani12131614
http://dx.doi.org/10.3168/jds.2010-3912
http://dx.doi.org/10.3168/jds.2010-3912
http://dx.doi.org/10.3168/jds.2010-3912
http://dx.doi.org/10.3168/jds.2018-16013
http://dx.doi.org/10.3168/jds.2018-16013
http://dx.doi.org/10.3168/jds.2018-16013

	DynGATT: A dynamic GATT-based data synchronization protocol for BLE networks
	Introduction
	Related Work
	Overview of the IoT Infrastructure
	Smart Synchronization Internet GW
	Synchronization Application

	GATT-Based Data Synchronization
	GATT Server Layout
	Connection Tuning

	Experimental Evaluation
	Static Scenario
	Dynamic Scenario

	Results and Discussion
	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

