
Biomedical Signal Processing and Control 86 (2023) 105148

1

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journal homepage: www.elsevier.com/locate/bspc

Motion magnification algorithms for video-based breathing monitoring
Veronica Mattioli a,∗, Davide Alinovi1, Gianluigi Ferrari a, Francesco Pisani b, Riccardo Raheli a

a Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
b Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, 108, 00185 Rome, Italy

A R T I C L E I N F O

Keywords:
Respiratory rate estimation
Motion magnification
Maximum likelihood
Video processing

A B S T R A C T

In this paper, we present two video processing techniques for contact-less estimation of the Respiratory Rate
(RR) of framed subjects. Due to the modest extent of movements related to respiration in both infants and
adults, specific algorithms to efficiently detect breathing are needed. For this reason, motion-related variations
in video signals are exploited to identify respiration of the monitored patient and simultaneously estimate
the RR over time. Our estimation methods rely on two motion magnification algorithms that are exploited
to enhance the subtle respiration-related movements. In particular, amplitude- and phase-based algorithms
for motion magnification are considered to extract reliable motion signals. The proposed estimation systems
perform both spatial decomposition of the video frames combined with proper temporal filtering to extract
breathing information. After periodic (or quasi-periodic) respiratory signals are extracted and jointly analysed,
we apply the Maximum Likelihood (ML) criterion to estimate the fundamental frequency, corresponding to
the RR. The performance of the presented methods is first assessed by comparison with reference data. Videos
framing different subjects, i.e., newborns and adults, are tested. Finally, the RR estimation accuracy of both
methods is measured in terms of normalized Root Mean Squared Error (RMSE), demonstrating the superiority,
performance-wise, of the phase-based method.
1. Introduction

Breathing monitoring is a fundamental diagnostic tool to assess the
physiological status of a patient. In particular, the Respiratory Rate
(RR) is a relevant indicator of potential human respiratory system
dysfunctions that may be caused by critical medical conditions. Typical
values of the RR in healthy adults at rest lie between 12 and 20
breaths per minute and may vary with age. The RR in newborns and
children is usually higher. Abnormal values of the RR may be a sign of
serious problems arising from respiratory disorders or complications.
For instance, diseases such as chronic obstructive pulmonary disease,
asthma, anaemia and epileptic seizures may cause oxygen levels in the
blood to significantly drop, potentially leading to cyanosis, cerebral
palsy or cardiac arrest and ischaemic events [1].

A constant and careful monitoring of the respiration of a patient
is crucial for early diagnosis and intervention that may be lifesaver in
some cases. Recent and extensive reviews about current RR monitoring
methodologies can be found in [1,2]. In particular, these monitoring
systems are typically classified into two main categories: contact-based
and contact-less. In [1], a thorough analysis of both categories is
presented, whereas [2] focuses on contact-less methods only, which
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are gaining increasing attention thanks to the advantages they may
provide. In fact, they are particularly suitable for remote monitoring,
that has become fundamental especially in the pandemic era in which
patients affected by COVID-19 need constant medical attention [3].
Furthermore, contact-less devices include Red, Green and Blue (RGB)
and Infra Red (IR) cameras, as well as microphones and radars, among
other sensors [2], whose costs are significantly lower than those of
sophisticated equipment usually deployed in hospital environments.
These instruments are also non-invasive, hence more comfortable, as
they do not require a direct contact with the body of the patient. On
the other hand, contact-based methods include more invasive proce-
dures, such as pneumography [4] and phlebotomy [5]. The former
technique allows to measure the thoracic movements by means of an
elastic belt placed around the chest of the patient, whereas the latter
allows to sample arterial, capillary or venous blood gas. Despite its
high accuracy, phlebotomy may be painful and difficult to perform,
especially in children and newborns, and may lead to complications
such as thrombosis, haemorrhage and aneurysm formation [5].

Other conventional probes to monitor the cardiac and pulmonary
activity are the ElectroCardioGram (ECG) and the Pneumogram, which
746-8094/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.bspc.2023.105148
Received 24 November 2022; Received in revised form 6 May 2023; Accepted 8 Ju
ne 2023

https://www.elsevier.com/locate/bspc
http://www.elsevier.com/locate/bspc
mailto:veronica.mattioli@unipr.it
mailto:gianluigi.ferrari@unipr.it
mailto:francesco.pisani@uniroma1.it
mailto:riccardo.raheli@unipr.it
https://doi.org/10.1016/j.bspc.2023.105148
https://doi.org/10.1016/j.bspc.2023.105148
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2023.105148&domain=pdf


Biomedical Signal Processing and Control 86 (2023) 105148V. Mattioli et al.
require wired electrodes to be directly attached to the chest of the
patient. The main limitation of these instruments is their deployment,
as it is mainly limited to clinical settings and is not suitable for home
care. As another example of contact-based devices, we mention the
pulse oximeter, that has become very popular nowadays as it allows
to easily measure the oxygen saturation in the blood, also in domestic
environments. For example, this is, indeed, a very informative param-
eter about the severity of the COVID-19 disease. The pulse oximeter is
usually clipped to the fingertip of a patient and measures the changes
in the transmission or reflection of the light emitted by a Light-Emitting
Diode (LED) hitting the skin of the subject. This operational principle is
referred to as PhotoPlethysmoGraphy (PPG) and has also inspired some
contact-less video-based monitoring methodologies, as discussed in the
following.

Among contact-less methodologies for the RR monitoring, video
processing systems based on IR or RGB sensors are becoming very
appealing. For instance, thermal imaging techniques may be exploited
to detect temperature variations around the nostrils, as in [6,7], to dis-
criminate between the inhalation and exhalation phases. Despite being
robust against illumination changes, thermal imaging techniques are
subject to some limitations, being sensitive to the ambient temperature
variations and requiring the nasal area to be clearly visible. More robust
methods could be obtained by employing RGB cameras for which three
main approaches can be identified on the basis of (a) PPG, (b) optical
flow, and (c) motion magnification [2].

In [8], the respiratory signal is extracted from selected PPG signals
computed on a Region Of Interest (ROI) that surrounds the pit of the
neck of the subject. The RR is estimated in frequency and time domains
and the performance of different RGB camera sensors is analysed. The
PPG principle is also exploited in [9], where the hue channel of the
Hue, Saturation and Value (HSV) colour space is considered for the
analysis. On the other hand, the optical flow may be exploited to
detect and track breathing-related movements, as in [10,11]. However,
since respiration movements may be subtle and difficult to detect, espe-
cially in newborns, motion magnification techniques may be applied to
enhance them. Preliminary attempts may be found, e.g., in [12–15],
where the usefulness of these techniques towards more accurate RR
measurements was initially demonstrated.

An effective mathematical model of the RR and its possible disorders
is presented in [16]. This model is based on a time-continuous Markov
chain and enables the implementation of video-based simulations of
breathing disorders, which may be useful in the design of RR estimation
algorithms.

This paper analyses motion magnification algorithms for RR esti-
mation. Amplitude- and phase-based techniques, respectively inspired
by the works in [17,18], are considered. In particular, in [17] spatial
and temporal processing is combined to amplify the variations of the
pixel intensities for frequency bands of interest obtained by a Laplacian
decomposition [19]. In [18], an approximation of the Riesz transform
is proposed to perform phase amplification of motion signal. This paper
improves upon the approaches in these references by demonstrating
that video reconstruction with amplified motion is not necessary in
breathing monitoring, which can instead be directly performed on the
amplified motion signal components, thus improving both efficiency
and effectiveness. Once the amplified motion signal components are
obtained, an estimation technique, based on the Maximum Likelihood
(ML) principle [20], can, indeed, be applied to estimate the RR.

Related work that may be worth mentioning is the following. The
paper [13] is based on the method proposed in [17], but uses a wavelet
pyramid decomposition to obtain the frequency bands of interest. Am-
plitude magnification and the unnecessary final video reconstruction
are performed, as also done in [12]. The work in [15], which we were
referred to during the review process, is also based on the magnification
method in [17], but frequency bands are obtained by applying the
Hermite transform to each video frame and a Convolutional Neural
2

Network (CNN) is trained to classify the presence of inhalation or
exhalation within the processed frames. The work in [14], based on
the phase magnification technique described in [18], presents a method
for video stabilization for handheld cameras and the procedure to
extract useful phase signals in this context. These works represent
significant contributions as initial demonstrations of the effectiveness
of motion amplification techniques applied to the task of RR estimation.
Therefore, they motivate further investigation.

The main contributions of this paper with respect to the state of the
art are the following:

• The RR estimation is directly performed on the magnified signals,
rather than on the reconstructed video sequence

• The employed estimation technique, i.e., the ML principle, repre-
sents a novelty in the context of video processing for the extrac-
tion of periodic features, such as the RR

• A unified and comprehensive comparative analysis of the
amplitude- and phase-based methods is presented

• An extensive performance analysis is carried out in realistic ex-
perimental scenarios

• The performance advantage of the phase-based method is demon-
strated.

This paper expands upon preliminary conference versions by some
of the authors [21–23].

The remainder of the paper is organized as follows. In Section 2,
the extraction of the motion signals is described and two techniques
for motion magnification are detailed. In Section 3, the RR estimation
method is presented and the procedure of automatic selection of the
ROIs with breathing-related movements is described, along with a de-
cision strategy to discard unsuitable ROIs. In Section 4, the performance
of the considered methods is discussed and compared against reference
data. Finally, in Section 5 conclusions are drawn.

2. Motion signal extraction

In this section, the extraction of motion signals from video se-
quences is described. Full-frame video sequences are initially consid-
ered as inputs to the proposed methods for an effective and simple
description. Nevertheless, ROIs can also be extracted to reduce the
computational complexity as well as to improve robustness. To this end,
a method to automatically select ROIs will be presented in Section 3.1
and a method to discard unsuitable ROIs, based on the detection
of large movements unrelated with respiration, will be presented in
Section 3.2.

In the following, we refer to a generic gray scale video sequence,
acquired with a sampling rate 𝑓𝑠 (dimension: [frame/s]), as a discrete
signal 𝑓 [𝐮, 𝑛] that defines the pixel intensities at position 𝐮 = (𝑢1, 𝑢2) at
the 𝑛-th frame. Each frame has size 𝑈1×𝑈2 (dimension: [pixel × pixel])
and is sampled at time instants 𝑛𝑇𝑠 (dimension: [s]), where 𝑇𝑠 = 1∕𝑓𝑠
is the sampling period (dimension: [s]). The videos considered in this
paper, recorded by RGB cameras, can be converted to gray scale [24].

2.1. Amplitude-based motion magnification

Amplitude-based techniques for motion magnification aim at lin-
early amplifying variations of each pixel intensity over time. The
method proposed in [17], called Eulerian Video Magnification (EVM),
performs temporal processing on different spatial frequency bands
obtained by decomposing each frame of the input video into a set
of subimages. The processed and unprocessed video subsignals are
finally recombined to obtain the amplified output video. Unlike the
preliminary work in [12], we present here a spatio-temporal approach
to extract useful motion signals, inspired by the EVM algorithm in [17],
in which this final recombination step is not performed because not
of interest for the purpose of breathing monitoring. An illustrative
overview of the proposed method is shown in Fig. 1, where each
processing step is associated with a diagram block and is detailed

hereafter.
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Fig. 1. Amplitude-based (spatio-temporal) RR estimation algorithm.
Spatial decomposition. As a first step, each frame of the video 𝑓 [𝐮, 𝑛]
is decomposed into a set of 𝑀 subimages with scaled resolutions,
each representing a different spatial frequency band. This approach is
known as multi-scale decomposition. The obtained 𝑀 scaled subimages
are referred to as ‘‘levels’’ and are sorted according to a decreasing
resolution criterion. The multi-scale image decomposition is performed
here by computing a Laplacian pyramid [19] of the input frame, as
described in the following. First, a Gaussian pyramid [19] is derived,
where 𝑔0[𝐮, 𝑛] = 𝑓 [𝐮, 𝑛] is set as the bottom level, that corresponds
to the highest spatial frequency band and is characterized by the
highest resolution. Upper levels, representing lower spatial frequency
bands and characterized by lower resolutions, are recursively computed
according to a ‘‘reduce’’ function defined as

𝑔𝑚[𝐮, 𝑛] =
+𝑅𝑀
∑

𝑘1=−𝑅𝑀

+𝑅𝑀
∑

𝑘2=−𝑅𝑀

𝑤[𝑘1, 𝑘2]𝑔𝑚−1[2𝑢1 − 𝑘1, 2𝑢2 − 𝑘2, 𝑛] (1)

where 𝑚 = 1,…𝑀 − 1 denotes the 𝑚-th pyramid level, 𝑤[𝑘1, 𝑘2]
is a proper truncated Gaussian low-pass filter, designed according to
specific constraints described in [19], and 𝑅𝑀 is a positive integer that
specifies the size of this filter as (2𝑅𝑀 + 1) × (2𝑅𝑀 + 1). An ‘‘expand’’
function can also be defined as

𝑔̂𝑚[𝐮, 𝑛] = 4
+𝑅𝑀
∑

𝑘1=−𝑅𝑀

+𝑅𝑀
∑

𝑘2=−𝑅𝑀

𝑤[𝑘1, 𝑘2]𝑔𝑚+1

[

𝑢1 − 𝑘1
2

,
𝑢2 − 𝑘2

2
, 𝑛
]

(2)

to obtain a specific level by expanding the dimensions of the upper one
(with lower resolution) by interpolation. The filter mask 𝑤[𝑘1, 𝑘2] is the
same in (1) and (2).

The Laplacian pyramid levels are derived from (1) and (2) as

𝑝𝑚[𝐮, 𝑛] =
{

𝑔𝑚[𝐮, 𝑛] − 𝑔̂𝑚[𝐮, 𝑛] 𝑚 = 1,… ,𝑀 − 2
𝑔𝑚[𝐮, 𝑛] 𝑚 = 𝑀 − 1

(3)

where 𝑝𝑀−1[𝐮, 𝑛] = 𝑔𝑀−1[𝐮, 𝑛] is set as the highest-index level and
describes the lowest spatial frequency band. The expression in (3)
represents the error image between a level of the Gaussian pyramid 𝑔𝑚
and the same level 𝑔̂𝑚 obtained by expanding the upper one according
to the function in (2).

The operation of spatial decomposition is highlighted in the first
block of the diagram in Fig. 1.

Temporal filtering. Once spatial processing is performed and a spatial
decomposition based on the Laplacian pyramid is obtained, each level
is pixel-wise temporally filtered to extract a frequency band that cor-
responds to a typical range of RR. A Butterworth filter of the second
order with Infinite Impulse Response (IIR) can be selected as a proper
temporal digital band-pass filter. Its transfer function can be expressed
as

𝐻𝑏𝑝(𝑧) = 𝐾
(1 + 𝑧−1)(1 − 𝑧−1)

(1 − 𝑝𝑧−1)(1 − 𝑝∗𝑧−1)
(4)

where the scale factor 𝐾 and the complex conjugates poles 𝑝 and 𝑝∗ can
be computed following the filter design rules to satisfy the requirements
for the lower and upper 3-dB cut-off frequencies 𝑓 co

L and 𝑓 co
H [25]. In

this work, the cut-off frequencies of the filter are set according to the
framed subject: for adults 𝑓 co

L = 0.19 Hz and 𝑓 co
H = 0.9 Hz, corresponding

to a range of 11 ÷ 54 breath/min, whereas for newborns 𝑓 co = 0.3 Hz
3

L

Fig. 2. Frequency response of the IIR filter employed for adults.

and 𝑓 co
H = 1.1 Hz, corresponding to a range of 18 ÷ 66 breath/min. The

frequency response of the IIR filter employed for adults is shown in
Fig. 2.

The temporal processing is represented as a filter bank in Fig. 1 and
the obtained filtered levels are denoted as {𝛾𝑚[𝐮, 𝑛]}𝑀−1

𝑚=0 .

Signal amplification. Each filtered level 𝛾𝑚[𝐮, 𝑛], 𝑚 = 0,… ,𝑀 − 1, is
multiplied by a proper amplification factor to linearly amplify motions
related to respiration. The amplification coefficients are denoted as
{𝛼𝑚}𝑀−1

𝑚=0 in Fig. 1 and are properly set according to [17] to avoid noise
amplification or motion artefacts. The amplification coefficient for the
lowest-index level is set as 𝛼0 = 1 and increasing values of amplification
are used for higher-index levels, up to 𝛼𝑀−2 = 12. As the highest-index
level resolution is too low to provide useful information, 𝛼𝑀−1 is set to
0.

Binarization. Binarization is performed pixel-wise on the amplified
signals {𝛾𝑚[𝐮, 𝑛]𝛼𝑚}𝑀−1

𝑚=0 to reduce the computational complexity (blocks
labelled ‘‘bin’’. in Fig. 1). This operation allows to highlight the respi-
ration movements by setting to 1 the pixel intensity values larger than
a preset threshold, whereas the rest of the framed scene is set to 0.
This operation yields the following binarized levels, also highlighted in
Fig. 1

𝑏𝑚[𝐮, 𝑛] =
{

1 if |{𝛾𝑚[𝐮, 𝑛]𝛼𝑚}| ≥ 𝛤th

0 otherwise
(5)

where 𝛤th is a proper binarization threshold heuristically set to adjust
the sensitivity to motion.2

Signal extraction. As a last step, the motion signals are extracted by
spatially averaging each binarized level of the pyramid as

𝑙𝑚[𝑛] =
1

𝑐𝑚𝑟𝑚

𝑐𝑚
∑

𝑢1=1

𝑟𝑚
∑

𝑢2=1
𝑏𝑚[𝐮, 𝑛] (6)

where {𝑐𝑚}𝑀−1
𝑚=0 and {𝑟𝑚}𝑀−1

𝑚=0 are the widths and heights of the binarized
frames (blocks labelled ‘‘extr’’. in Fig. 1).

2 The set of coefficients {𝛼𝑚}𝑀−1
𝑚=0 and the threshold 𝛤th in (5) can be

scaled by a common factor without affecting the binarized frames. This
underdetermined feature can be overcome by setting 𝛼 = 1.
0
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Fig. 3. Phase-based RR estimation algorithm.
2.2. Phase-based motion magnification

Amplitude-based motion magnification presents some limitations
directly linked to the linear amplification operation. When the analysed
motion is small, a pixel intensity variation can be approximated by a
first-order Taylor series expansion as described in [26]. If the small
motion condition is not verified, or the amplification factor 𝛼𝑚 is too
large, the approximation is not accurate and the magnification may
cause undesired artefacts. Furthermore, for 𝛼𝑚 > 1, noise is also
amplified.

A solution to overcome problems related to linear amplification is
provided by phase-based magnification methods, that aim at amplify-
ing the phase of each pyramidal subsignal [18]. We present here an
algorithm for motion magnification inspired by [18], whose illustrative
overview is shown in Fig. 3, in which each processing step is associated
with a diagram block and will be detailed hereafter.

Spatial decomposition. Similarly to the amplitude-based
(spatio-temporal) method presented in Section 2.1, the first step to
extract amplified motion signals, as also highlighted in the first block
of Fig. 3, consists of the spatial multi-scale decomposition of each
frame of the input video sequence 𝑓 [𝐮, 𝑛]. A set of 𝑀 scaled levels is
obtained by computing the Laplacian pyramid [19] according to (1)–
(3). An efficient representation of the signals, where amplitudes and
phases are highlighted, can now be adopted by computing the Riesz
transform [27] of all the pyramid levels {𝑝𝑚[𝐮, 𝑛]}𝑀−1

𝑚=0 . The Riesz
transform can be defined as a two-Dimensional (2D) generalization
of the Hilbert transform and its 2D frequency response in the Fourier
domain can be expressed as [28]

𝐻(𝝎) =
(

𝐻1(𝜔1)
𝐻2(𝜔2)

)

=
(

−𝑗𝜔1∕‖𝝎‖
−𝑗𝜔2∕‖𝝎‖

)

(7)

where 𝝎 = (𝜔1, 𝜔2) is the 2D vector of normalized angular frequencies
and ‖⋅‖ is the euclidean norm operator. The following operation, shown
in the second bank of blocks in Fig. 3, is hence performed:

{𝑝𝑚[𝐮, 𝑛]} =
(

𝑟1,𝑚[𝐮, 𝑛]
𝑟2,𝑚[𝐮, 𝑛]

)

=
(

ℎ1[𝐮] ∗ 𝑝𝑚[𝐮, 𝑛]
ℎ2[𝐮] ∗ 𝑝𝑚[𝐮, 𝑛]

)

(8)

where {⋅} represents the Riesz transform operator, ℎ𝑖[𝐮] = −1(𝐻𝑖(𝝎)),
𝑖 = 1, 2; ∗ denotes the 2D convolution operator, and −1(⋅) is the inverse
2D Fourier transform operator.

The following triple of elements

p𝑚[𝐮, 𝑛] = (𝑝𝑚[𝐮, 𝑛], 𝑟1,𝑚[𝐮, 𝑛], 𝑟2,𝑚[𝐮, 𝑛]) (9)

is known as the monogenic signal of the 𝑚-th level. In particular,
the combination of {p𝑚[𝐮, 𝑛]}𝑀−2

𝑚=0 with the last level of the Laplacian
pyramid 𝑝𝑀−1[𝐮, 𝑛] forms a Riesz pyramid.

It may be convenient to represent the monogenic signal in (9) as the
quaternion [29]

q [𝐮, 𝑛] = 𝑝 [𝐮, 𝑛] + 𝑖𝑟 [𝐮, 𝑛] + 𝑗𝑟 [𝐮, 𝑛] + 𝑘 ⋅ 0 (10)
4

𝑚 𝑚 1,𝑚 2,𝑚
where 𝑖, 𝑗, and 𝑘 are the imaginary units. Following the quaternionic
algebra in [29], the norm and the natural logarithm of the quaternion
in (10) can be, respectively, defined as

‖q𝑚‖ =
√

𝑝𝑚[𝐮, 𝑛]2 + 𝑟1,𝑚[𝐮, 𝑛]2 + 𝑟2,𝑚[𝐮, 𝑛]2 (11)

log(q𝑚) = log(‖q𝑚‖) +
𝑖𝑟1,𝑚[𝐮, 𝑛] + 𝑗𝑟2,𝑚[𝐮, 𝑛]

‖𝑖𝑟1,𝑚[𝐮, 𝑛] + 𝑗𝑟2,𝑚[𝐮, 𝑛]‖
arccos

𝑝𝑚[𝐮, 𝑛]
‖𝑝𝑚[𝐮, 𝑛]‖

. (12)

The amplitude and the quaternionic phase of (10) can now be computed
as

𝐴𝑚[𝐮, 𝑛] = ‖q𝑚[𝐮, 𝑛]‖ (13)
𝑖𝜑𝑚[𝐮, 𝑛] cos(𝜗𝑚[𝐮, 𝑛]) + 𝑗𝜑𝑚[𝐮, 𝑛] sin(𝜗𝑚[𝐮, 𝑛]) = log(q𝑚[𝐮, 𝑛]∕‖q𝑚[𝐮, 𝑛]‖)

(14)

where

𝜑𝑚[𝐮, 𝑛] = arctan
((

√

𝑟1,𝑚[𝐮, 𝑛]2 + 𝑟2,𝑚[𝐮, 𝑛]2
)

∕𝑝𝑚[𝐮, 𝑛]
)

(15)

𝜗𝑚[𝐮, 𝑛] = arctan
(

𝑟2,𝑚[𝐮, 𝑛]∕𝑟1,𝑚[𝐮, 𝑛]
)

(16)

are the 𝑚-th phase and orientation, respectively. The main advantage
of this signal representation is that the quaternionic phase in (14) is
invariant to the signs of the phase and orientation in (15) and (16) [29].

Temporal filtering. As a second step of the proposed phase amplification
method, temporal filtering is again necessary to select a range of fre-
quencies of interest, as in the amplitude-based approach of Section 2.1.
An IIR band-pass second-order Butterworth filter with lower and higher
cut-off frequencies 𝑓 co

L and 𝑓 co
H can be employed to filter the phases of

each level of the Riesz pyramid. As discussed in [29], the quaternionic
phases in (14) are first unwrapped and their cumulative sum is subse-
quently filtered. To this purpose, the quaternionic logarithm of the 𝑚-th
(𝑚 = 0,… ,𝑀 −1) normalized Riesz pyramid coefficient is computed as

{

log(q̄𝑚[𝐮, 𝑛]) for 𝑛 = 0
log(q̄𝑚[𝐮, 𝑛]q̄−1𝑚 [𝐮, 𝑛 − 1]) for 𝑛 = 1, 2,…

(17)

where q̄𝑚[𝐮, 𝑛] = q𝑚[𝐮,𝑛]
‖q𝑚[𝐮,𝑛]‖

is the normalized quaternion [29] and we
recall the following definitions of the inverse and conjugate quaternion
in (10)

q−1𝑚 =
q∗𝑚[𝐮, 𝑛]
‖q𝑚‖2

(18)

q∗𝑚 = 𝑝𝑚[𝐮, 𝑛] − 𝑖𝑟1,𝑚[𝐮, 𝑛] − 𝑗𝑟2,𝑚[𝐮, 𝑛]. (19)

Assuming that the orientations are approximately constant in time, the
elements in (17) for 𝑛 = 1, 2,… can be written as

𝑖(𝜑′
𝑚[𝐮, 𝑛]) cos(𝜗𝑚[𝐮]) + 𝑗(𝜑′

𝑚[𝐮, 𝑛]) sin(𝜗𝑚[𝐮]) (20)

where the term

𝜑′ [𝐮, 𝑛] = 𝜑 [𝐮, 𝑛] − 𝜑 [𝐮, 𝑛 − 1] (21)
𝑚 𝑚 𝑚
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is the phase difference. Defining now the unwrapped phase as

𝜑′′
𝑚[𝐮, 𝑛] = 𝜑𝑚[𝐮, 0] +

𝑛
∑

𝑘=1
𝜑′
𝑚[𝐮, 𝑘] for 𝑛 = 1, 2,… (22)

the following cumulative sum can be computed

𝑖𝜑′′
𝑚[𝐮, 𝑛] cos(𝜗𝑚[𝐮]) + 𝑗𝜑′′

𝑚[𝐮, 𝑛] sin(𝜗𝑚[𝐮]). (23)

By time-filtering the quantity in (23), the following two imaginary
quaternionic components are obtained

𝑓 (𝑖)
𝑚 [𝐮, 𝑛] = 𝛿𝑚[𝐮, 𝑛] cos(𝜗𝑚[𝐮])

𝑓 (𝑗)
𝑚 [𝐮, 𝑛] = 𝛿𝑚[𝐮, 𝑛] sin(𝜗𝑚[𝐮])

(24)

that define the spatial translation due to a framed motion. In Fig. 3,
the quaternionic phase extraction and unwrapping operations are as-
sociated with a single block that is followed by the cumulative sum
filtering block.

Signal amplification. Following the approach presented in [30], in order
to enhance a motion of interest, the two filtered quaternionic compo-
nents in (24) at each pyramid level 𝑚 ∈ {0,… ,𝑀−1} can be multiplied
y the amplification factor 𝛼𝑚, 𝑚 ∈ {0,… ,𝑀 − 1}, as shown in Fig. 3,
btaining {𝛼𝑚𝑓

(𝑖)
𝑚 [𝐮, 𝑛], 𝛼𝑚𝑓

(𝑗)
𝑚 [𝐮, 𝑛]}𝑀−1

𝑚=0 .

ignal extraction. Motion signals can finally be extracted by spatial
veraging the amplified and filtered quaternionic components (blocks
abelled ‘‘extr’’. in Fig. 3). Considering a frame of size 𝑈1 × 𝑈2, the
ollowing signals are obtained

𝑦(𝑖)𝑚 [𝑛] = 1
𝑈1𝑈2

𝑈1−1
∑

𝑢1=1

𝑈2−1
∑

𝑢2=1
𝛼𝑚𝑓

(𝑖)
𝑚 [𝐮, 𝑛]

= 1
𝑈1𝑈2

𝑈1−1
∑

𝑢1=1

𝑈2−1
∑

𝑢2=1
𝛼𝑚𝛿𝑚[𝐮, 𝑛] cos(𝜗𝑚[𝐮])

𝑦(𝑗)𝑚 [𝑛] = 1
𝑈1𝑈2

𝑈1−1
∑

𝑢1=1

𝑈2−1
∑

𝑢2=1
𝛼𝑚𝑓

(𝑗)
𝑚 [𝐮, 𝑛]

= 1
𝑈1𝑈2

𝑈1−1
∑

𝑢1=1

𝑈2−1
∑

𝑢2=1
𝛼𝑚𝛿𝑚[𝐮, 𝑛] sin(𝜗𝑚[𝐮]).

(25)

3. Maximum likelihood estimation

Once the motion signals are extracted at each pyramid level, the
RR is estimated according to the ML criterion. To this purpose, we
first introduce the standard ML principle, that will also be exploited
in Section 3.1 to automatically select ROIs in order to focus on areas
where the motion is mainly due to breathing.

The ML principle is indeed a reliable and consolidated method that
allows to estimate unknown parameters of interest. Since respiration is
characterized by quasi-periodic movements of the chest and abdomen,
i.e., expansion and relaxation, the ML criterion can be exploited to de-
tect the presence of a fundamental periodic component, corresponding
to the RR, and estimate it [22].

The RR estimation operation is embedded in the last blocks of
Figs. 1 and 3. As the motion signals are extracted at each pyramid level
for both the presented amplitude- and phase-based approaches, a data
aggregation method similar to the one proposed in [31] for multiple
sensors can be employed.

For the sake of compactness, the motion signals extracted at each
pyramid level can be grouped as

𝐥[𝑛] =

⎡

⎢

⎢

⎢

⎢

⎣

𝑙0[𝑛]

𝑙1[𝑛]
⋮

𝑙𝑀−1[𝑛]

⎤

⎥

⎥

⎥

⎥

⎦

(26)

𝐘[𝑛] =

⎡

⎢

⎢

⎢

⎢

𝑦(𝑖)0 [𝑛] 𝑦(𝑗)0 [𝑛]

𝑦(𝑖)1 [𝑛] 𝑦(𝑗)1 [𝑛]
⋮

(𝑖) (𝑗)

⎤

⎥

⎥

⎥

⎥

(27)
5

⎣𝑦𝑀−1[𝑛] 𝑦𝑀−1[𝑛]⎦ a
n the case of amplitude (26) and phase (27) components, respectively.
et us define 𝐗[𝑛] as a generic observation model, that can be written
n the form of (26) or (27) according to the considered method. The
eneric size of 𝐗[𝑛] is 𝑀 × 𝐶, where 𝑀 is the number of considered
yramid levels and the number of columns 𝐶 is equal to 1 or 2 in the
ase of (26) or (27), respectively.

Given the nature of the respiration movements of interest, the
bservation model 𝐗[𝑛] is assumed to have the following structure

[𝑛] = 𝐁 + 𝐀cos(2𝜋𝑓0𝑇𝑠𝑛 +𝜱) +𝐖[𝑛] (28)

here 𝐁 are the continuous components, 𝐀 and 𝜱 are the amplitudes
nd phases, respectively, and 𝐖[𝑛] are sequences of independent and
dentically distributed (i.i.d.) zero-mean Gaussian noise samples, all
f size 𝑀 × 𝐶. In (28), the amplitudes 𝐀, the fundamental frequency
0, and the phases 𝜱 are unknown parameters and may be collected
s the array of parameters 𝜣 = [𝐀, 𝑓0,𝜱]. Following the standard
ethod presented in [20, p.193-195] and extending it to the case of
ulti-dimensional signals, as in [31,32], the parameter array 𝜣 can

e estimated on a window of 𝑁 frames by minimizing the likelihood
unction

(𝜣) =
𝐶−1
∑

𝑐=0

𝑀−1
∑

𝑚=0

𝑁−1
∑

𝑛=0

[

𝑥[𝑚, 𝑐, 𝑛] − 𝑎[𝑚, 𝑐] cos (2𝜋𝑓0𝑇𝑠𝑛 + 𝜙[𝑚, 𝑐])
]2 (29)

here 𝑥[𝑚, 𝑐, 𝑛], 𝑎[𝑚, 𝑐] and 𝜙[𝑚, 𝑐] are the generic elements of the
atrices 𝐗[𝑛], 𝐀 and 𝜱, respectively. As shown in [20, p.193-195],

f the real frequency 𝑓0 is not close to 0 or 𝑓𝑠∕2, an approximate
xpression of the estimator 𝑓0 of the fundamental frequency can be
erived from (29) as

0̂ = argmax
𝑓min≤𝑓≤𝑓max

𝐶−1
∑

𝑐=0

𝑀−1
∑

𝑚=0

|

|

|

|

𝑁−1
∑

𝑛=0
𝑥[𝑚, 𝑐, 𝑛]𝑒−𝑗2𝜋𝑓𝑇𝑠𝑛

|

|

|

|

2
(30)

here the maximization is performed over the limited frequency in-
erval [𝑓min, 𝑓max], with 𝑓min and 𝑓max being the minimum and the
aximum feasible frequencies, respectively, that must be heuristically

et.
The amplitudes can similarly be estimated as

𝑎̂[𝑚, 𝑐] = 2
𝑁

𝐶−1
∑

𝑐=0

𝑀−1
∑

𝑚=0

|

|

|

|

|

|

𝑁−1
∑

𝑛=0
𝑥[𝑚, 𝑐, 𝑛]𝑒−𝑗2𝜋𝑓0𝑛𝑇𝑠

|

|

|

|

|

|

(31)

nd the presence of a significant periodic component is declared,
ccording to [32], only if the following condition is verified

𝑁
𝑀𝐶

𝐶−1
∑

𝑐=0

𝑀−1
∑

𝑚=0
𝑎̂2[𝑚, 𝑐] > 𝜂 (32)

here 𝜂 is a properly set threshold.

.1. Region of interest selection

To reduce the computational complexity of the proposed algo-
ithms, a ROI selection algorithm can be exploited to obtain and process
ideo sequences with reduced frame size. In this section, we present an
utomatic ROI selection algorithm based on the above described ML
pproach, now applied to the considered video sequence. An illustrative
verview of the method is shown in Fig. 4.

Given the generic video sequence 𝑥[𝐮, 𝑛], the first step for au-
omatically extracting 𝑅 ROIs consists in selecting 𝐿 frames where
ariations are only due to respiration movements. This processing step
s associated with the first block of the diagram in Fig. 4. The 𝐿 frames
𝑥[𝐮, 𝑛]}𝐿−1𝑛=0 are first downsampled in space by an integer value 𝐷 to
educe the computational complexity, obtaining a new block of frames
𝑥𝐷[𝐮, 𝑛]}𝐿−1𝑛=0 with a smaller dimension ⌈𝑈1∕𝐷⌉ × ⌈𝑈2∕𝐷⌉, where ⌈⋅⌉
epresents the ceiling operator. This operation is associated with the
econd bank of blocks of the diagram in Fig. 4. The ML approach
escribed in Section 3, associated with the third block of Fig. 4, is
pplied to the downsampled sequences {𝑥 [𝐮, 𝑛]}𝐿−1 to estimate the
𝐷 𝑛=0
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Fig. 4. ROI selection algorithm.
fundamental frequency 𝑓0 and the amplitudes 𝑎̂𝐷[𝐮], according to (30)
and (31), respectively, where 𝑥[𝑚, 𝑐, 𝑛] and 𝑀 × 𝐶 are now replaced
by 𝑥𝐷[𝐮, 𝑛], i.e., the intensity of the pixel at position 𝐮, and ⌈𝑈1∕𝐷⌉ ×
⌈𝑈2∕𝐷⌉, i.e., the size of the frames.

To compute the centres of the selected 𝑅 ROIs, the matrix of the
amplitudes 𝑎̂𝐷[𝐮], estimated for the reduced frames, is interpolated at
the original frame size 𝑈1 × 𝑈2 to estimate the amplitudes 𝑎̃𝐷[𝐮] in
the original block of frames. The centres {𝑐𝑟}𝑅−1𝑟=0 are finally found by
selecting the coordinates of the pixels that correspond to the maximum
values of 𝑎̃𝐷[𝐮]. The interpolation and the selection of the ROIs centres
are the operations embedded in the fourth and fifth (last) blocks of the
diagram in Fig. 4, respectively. This procedure allows to extract 𝑅 ROIs
with a fixed size 𝑊 ×𝑊 and may be repeated over time to deal with
changes in the position of the framed subject.

3.2. Large motion detection

To discard ROIs where the motion is affected by large movements
unrelated with breathing, a further control procedure may be needed.
To this purpose, the intensity of the pixel at position 𝐮 at the 𝑛-th frame
of the 𝑟-th ROI can be defined as 𝑥𝑟[𝐮, 𝑛] and the pixel-wise difference
of consecutive frames can be computed as

𝑖[𝐮, 𝑛] = 𝑥𝑟[𝐮, 𝑛] − 𝑥𝑟[𝐮, 𝑛 − 1]. (33)

To reduce the computational complexity, the filtered signal in (33)
could also be binarized according to the following binarization rule

𝑖𝑟[𝐮, 𝑛] =
{

0 if |

|

𝑥𝑟[𝐮, 𝑛] − 𝑥𝑟[𝐮, 𝑛 − 1]|
|

< 𝛾bin
1 else

𝑟 = 1, 2,… , 𝑅 (34)

where 𝛾bin is a properly chosen binarization threshold. The average
motion signal on the 𝑟-th region can now be computed as

𝑖𝑟[𝑛] =
1

𝑊 2

𝑊 −1
∑

𝑢1=1

𝑊 −1
∑

𝑢2=1
𝑖𝑟[𝐮, 𝑛]. (35)

A good decision strategy is such that the 𝑟-th ROI is discarded if 𝑖𝑟[𝑛] in
35) is above a heuristically set threshold, as expressed by the following
ecision rule:

𝑟 =

{

0 if 𝑖𝑟[𝑛] > 𝛾th
1 else

𝑟 = 1, 2,… , 𝑅 (36)

here the binary-valued decision 𝜅𝑟 defines the presence (𝜅𝑟 = 1) or
bsence (𝜅𝑟 = 0) of large motion inside the 𝑟-th ROI and 𝛾th is the

selected decision threshold.
Finally, the RR is estimated by maximizing the following likelihood

function

𝐽 (𝜣) =
𝑅
∑

𝑟=1
𝜅𝑟𝐽𝑟 (𝜣) (37)

where 𝐽𝑟 (𝜣) is defined according to (29) and refers to the 𝑟-th ROI.
The pseudo-code of the proposed phase-based estimation method

s detailed in Algorithm 1. The ROI selection algorithm described in
ection 3.1 is first applied. The motion signals are extracted for each
OI, as detailed in Section 2, and unsuitable ROIs affected by large
otions are discarded, as described in Section 3.2. Finally, the ML
6

estimation algorithm described in Section 3 is applied to obtain the
estimated respiratory rate 𝑓0. The similar pseudo-code of the proposed
amplitude-based estimation method is omitted for brevity.
Algorithm 1 Pseudo-code of the proposed phase-based estimation
method.
Input: video sequence 𝑓 [𝐮, 𝑛]
1:  ← ∅
2:  ← {(𝑢1, 𝑢2) ∶ ⌊𝑊 ∕2⌋ ≤ 𝑢1 ≤ 𝑈1 − 1 − ⌊𝑊 ∕2⌋,

⌊𝑊 ∕2⌋ ≤ 𝑢2 ≤ 𝑈2 − 1 − ⌊𝑊 ∕2⌋}
3: 𝑟 = 1
4: while 𝑟 ≤ 𝑅 do
5: (𝑞1, 𝑞2) ← argmax(𝑢1 ,𝑢2)∈ 𝑎̃𝐷[𝐮]
6:  ←  ∪ {(𝑞1, 𝑞2)}
7:  ←  ⧵ {(𝑢1, 𝑢2) ∶ 𝑞1 − ⌊𝑊 ∕2⌋ ≤ 𝑢1 ≤ 𝑞1 + ⌊𝑊 ∕2⌋,

𝑞2 − ⌊𝑊 ∕2⌋ ≤ 𝑢2 ≤ 𝑞2 + ⌊𝑊 ∕2⌋}
8: 𝑓𝑟[𝐮, 𝑛] ← 𝑓 [𝐮, 𝑛] for (𝑢1, 𝑢2) ∶ 𝑞1 − ⌊𝑊 ∕2⌋ ≤ 𝑢1 ≤ 𝑞1 + ⌊𝑊 ∕2⌋,

𝑞2 − ⌊𝑊 ∕2⌋ ≤ 𝑢2 ≤ 𝑞2 + ⌊𝑊 ∕2⌋

9: 𝑦(𝑖)𝑚 [𝑛] ← 1
𝑈1𝑈2

𝑈1−1
∑

𝑢1=1

𝑈2−1
∑

𝑢2=1
𝛼𝑚𝑓

(𝑖)
𝑚 [𝐮, 𝑛]

𝑦(𝑗)𝑚 [𝑛] ← 1
𝑈1𝑈2

𝑈1−1
∑

𝑢1=1

𝑈2−1
∑

𝑢2=1
𝛼𝑚𝑓

(𝑗)
𝑚 [𝐮, 𝑛]

10: if 𝑖𝑟[𝑛] > 𝛾th then
11: 𝜅𝑟 ← 0
12: else
13: 𝜅𝑟 ← 1
14: end if
15: 𝑟 ← 𝑟 + 1
16: end while
Output: 𝑓0 ← argmax𝑓min≤𝑓≤𝑓max

∑𝑅
𝑟=1 𝜅𝑟𝐽𝑟 (𝜣)

4. Applications and results

The performance of the estimation algorithms presented in Sec-
tions 2 and 3 is now discussed on the basis of experimental results
directly obtained by applying the proposed methods on three sets of
videos specifically recorded. In particular, the first set includes 2 videos
of a newborn sleeping face-up [12], whereas the second and third
sets include 4 and 16 videos, respectively, of adults sitting still. All
videos were recorded indoor by placing a camera laterally or in front
of a steady subject normally breathing and not affected by respiratory
disorders. The camera distance from the subjects, e.g., between 40 and
80 cm, is such that movements of the chest and abdomen related to res-
piration are clearly visible in the recorded videos and not hidden by the
clothes worn by the subjects. Possible random movements of the subject
unrelated to respiration do not significantly affect the performance
of the estimation algorithms, as the large motion detection algorithm
described in Section 3.2 is employed to discard such movements.

Motion signals are initially extracted and compared with refer-
ence data. In the case of the newborn, a pneumogram is used as
gold standard device to acquire the reference respiratory waveform
by placing an elastic belt around the chest of the subject. In the
case of adults, two wearable sensors, namely, Shimmer3 by Shimmer
SensingTM and Equivital EQ02 LifeMonitor by EquivitalTM, are used

to record, respectively, the reference accelerometric signal and the
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Fig. 5. Example of: (a) image of a framed subject where 3 ROIs are highlighted, (b) extracted motion information for 𝑟 = 3 and 𝑚 = 1, 2 and (c) likelihood function where the
estimated RR is highlighted by the argument of the peak at 0.25 Hz.
respiratory waveform. A comparison between the proposed amplitude-
and phase-based methods is also presented. Results in terms of Root
Mean Squared Error (RMSE) between estimated and reference data,
normalized to the Root Mean Square (RMS) value of the reference data,
are finally presented.

In Fig. 5(a), an illustrative image of a framed subject is shown,
highlighting three ROIs as square regions. The centres of the ROIs
are computed according to the procedure detailed in Section 3.1 for
𝑅 = 3. In Fig. 5(b), the corresponding motion information extracted by
the phase-based motion magnification estimation method is shown. In
particular, the signals 𝑦(𝜄)𝑚 [𝑛𝑇𝑠], 𝜄 ∈ {𝑖, 𝑗}, obtained by applying (25) at
time instants 𝑛𝑇𝑠, are plotted over a 20 s time window for the third
ROI, i.e., 𝑟 = 3, and for two pyramid levels, i.e., 𝑚 = 1, 2. Finally, in
Fig. 5(c), the corresponding likelihood function in (37) is shown as a
function of frequency. The estimated frequency 𝑓 = 0.25 Hz is the one
corresponding to the maximum peak of the function.

As illustrative examples, motion signals extracted by the amplitude-
and phase-based motion magnification estimation methods are shown
in Fig. 6 and Fig. 7, respectively, along with the corresponding refer-
ence signals. In particular, in Fig. 6 the motion signal extracted from
a video of a newborn by applying (6) is plotted over a 20 s time
window along with the reference signal, i.e., the pneumogram, for
the second level (𝑚 = 1) of the processed pyramid. Considering that
one period of the pneumogram corresponds to a complete respiratory
cycle, that involves two main movements (inhalation and exhalation),
a good correspondence between the two signals can be observed. On
the other hand, the average phase variations extracted by two videos,
of a newborn and an adult, are plotted over two 20 s time windows
and compared with the corresponding pneumogram and accelerometric
signals in Figs. 7(a) and 7(b), respectively. In each case, the two pairs
of signals exhibit a comparable periodicity, whereas the differences
between the two reference signals, in particular the RR, depend on the
employed sensors and on the age of the subject.
7

Fig. 6. Comparison of the motion signal extracted from a video of a newborn by
the amplitude-based motion magnification estimation method and the reference signal,
i.e., the pneumogram.

As further investigation, the ML estimation method presented in
Section 3 is performed on interlaced windows of 𝑁 frames, each
corresponding to 𝑁𝑇𝑠. In the following results, interlaced windows
are considered to track the RR over time with proper resolution and
the overlap of consecutive windows is defined by an interlacing factor
𝜌 ∈ [0, 1). An example of windows of length 𝑁𝑇𝑠 interlaced by a factor
𝜌 = 0.75 is shown in Fig. 8.

In Fig. 9, the frequencies estimated by the phase-based method
on interlaced windows for a video framing an adult sitting still are
compared with the reference frequencies estimated by the Equivital
EQ02 LifeMonitor. The duration of the considered video is 56 s and
the RR estimation is performed on 20 s windows interlaced by 90%
(i.e., 𝜌 = 0.9): this corresponds to 28 processed windows. The first 9
windows should not be considered in the analysis because processed
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Fig. 7. Comparison of two motion signals extracted by the phase-based motion
magnification estimation method and the reference signals: (a) pneumogram of a
newborn, (b) accelerometric signal of an adult.

Fig. 8. Windows of length 𝑁𝑇𝑠 s interlaced by a factor 𝜌 = 0.75.

Fig. 9. Comparison of estimated and reference RR for the phase-based estimation
method.

data are incomplete due to the chosen window overlap pattern. In
fact, as shown in Fig. 8 for 𝜌 = 0.75, the 3 initial windows are
incomplete. It can be noticed that the RR is estimated with good
approximation in all windows, confirming the robustness of the system.
Tolerance boundaries highlighted in Fig. 9 are computed according to
the medical practice of considering acceptable a ±15% variation from
to the reference frequency.

A comparison of the presented amplitude- and phase-based methods
is now proposed in Fig. 10. In particular, the signal extracted by the
amplitude-based motion magnification estimation method from a video
of a newborn is shown in Fig. 10(a), along with the corresponding
signals 𝑦(𝜄)0 [𝑛], 𝜄 ∈ {𝑖, 𝑗} locally extracted from a selected ROI of the
considered video by the phase-based method. The duration of the
considered video signal is 20 s. The signal extracted by the amplitude-
based method is always positive, as the quantity obtained by applying
(6) defines the average luminance for each processed frame. For this
reason, inhalation and exhalation acts, which are characterized by
movements in opposite directions, may not be clearly distinguishable,
8

Fig. 10. Comparison of the presented methods: (a) extracted motion signals and (b)
magnitude spectra.

especially under critical conditions, e.g., poor camera positioning or pa-
tient type. The phase-based method allows to overcome this limitation,
as the extracted signals 𝑦(𝜄)0 [𝑛], 𝜄 ∈ {𝑖, 𝑗} exhibit negative values, too.

The different characteristics of the two types of signals are also
visible in Fig. 10(b), where their magnitude frequency spectra are
plotted. As the phase-based magnification is performed on a selected
ROI, the extracted phases are indicated as ‘‘local phases’’ in the leg-
end of Fig. 10(b). A peak around 0.75 Hz can be observed for all
the considered cases, corresponding to the correctly estimated RR of
45 breath/min. Nevertheless, the shape of the signal extracted by the
amplitude-based method causes other peaks, related to higher order
harmonics, to appear around 1.4 Hz and 2.2 Hz. Under critical condi-
tions, these secondary peaks may be higher than the fundamental one
impairing RR estimation: for example, a frequency twice the correct one
could be estimated. On the other hand, as the signals extracted by the
phase-based method are quasi-sinusoidal, due to the direct application
of (25), peaks related to higher order harmonics are negligible. This
leads to more reliable RR estimation.

4.1. Performance analysis

To evaluate the performance of the presented methods, various
videos, framing different subjects in different scenarios, are analysed.
The main characteristics of the considered videos are summarized in
Table 1, where the parameter setting for the video processing analysis is
also reported. The durations of the videos vary approximately between
1 min 35 s and 5 min. The camera resolution and the sampling
frequency vary according to the employed recording device. We recall
that the parameters 𝑀 , 𝑊 , and 𝑅 indicate, respectively, the number of
pyramid levels, the fixed size of the ROIs, and the number of ROIs, the
cut-off frequencies of the employed Butterworth filter, used to extract
the frequency band of interest, are denoted as 𝑓 co

L and 𝑓 co
H , 𝛼 is the

amplification factor, 𝑁𝑇𝑠 is the duration of the processed time window,
and the interlacing factor 𝜌 denotes the overlap between consecutive
estimation windows. For each video set, the device used as reference is
also indicated.

The accuracy of the presented methods is now analysed in terms
of normalized RMSE for 6 tested videos (first two sets in Table 1). The
results, expressed in dB, are shown in Fig. 11, where the type of framed
subject is reported. Considering 𝑁𝑤 temporal windows where the RR
estimation is performed, the RMSE for each video is defined as

RMSE =

√

√

√

√

√

√

∑𝑁𝑤
𝑛=1

|

|

|

𝑓0[𝑛] − 𝑓0[𝑛]
|

|

|

2

∑𝑁𝑤
|𝑓 [𝑛]|2

(38)
𝑛=1 0
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Table 1
Characteristics of the considered videos and parameter setting.
Video No. Camera 𝑓𝑠 𝑀 𝑊 𝑅 [𝑓 co

L , 𝑓 co
H ] 𝛼 𝑁𝑇𝑠 𝜌 Reference

set videos resolution [Hz] [pixel] [Hz] [s] device

Newborns 2 360 × 288 25 3 21 4 [0.3 1.1] 25 20 0.5 Pneumograph

Adults 4 800 × 600 30 4 41 3 [0.19 0.9] 20 20 0.5 Accelerometer

Adults 16 1920 × 1080 30 3 16 3 [0.19 0.9] 20 20 0.5 Equivital EQ02
LifeMonitor
Fig. 11. Performance of the assessed methods in terms of normalized RMSE for 6
considered videos (first two sets in Table 1).

where {𝑓0[𝑛]}
𝑁𝑤
𝑛=1 and {𝑓0[𝑛]}

𝑁𝑤
𝑛=1 are the estimated and reference fre-

quencies for the 𝑛th window, respectively. The reference frequencies
are obtained either by means of an accelerometer (for adults) or a
pneumogram (for newborns). As RR estimation based on the amplitude-
based approach is prone to errors caused by higher order harmon-
ics, as previously discussed, an idealized Genie-Aided (GA) version
of this method is also considered as a benchmark. The GA method
automatically corrects estimated double frequencies. Despite this ad-
justment, the phase-based method exhibits better performance for all
the considered videos. Estimates are indeed more reliable due to the
characteristics of the motion signals in (25), which inherently allow to
distinguish motions in opposite directions associated with inhalation
and expiration.

In order to further analyse the performance of the more efficient
phase-based method, 16 more videos, all framing adults sitting still,
are tested and the normalized RMSE is computed according to (38).
Various subjects, scenarios, and camera angles are considered and the
Equivital EQ02 LifeMonitor is used as the reference device. The results,
expressed in dB, are presented in Fig. 12 and show a good agreement
with the RMSE values in Fig. 11, thus confirming the robustness of
the considered method. The average error over all the videos is also
highlighted as a straight line at −18.7 dB and it can be observed that
the RMSE obtained for 9 videos is smaller than or equal to this value.

5. Conclusions

In this paper, two contact-less methods to estimate the RR from
video sequences are presented. The proposed methods are based on am-
plitude and phase motion magnification to highlight subtle respiratory
movements and combine spatial and temporal processing techniques to
extract reliable motion information. Suitable ROIs, where the motion is
mainly due to respiration, may be selected to enhance the estimation.
Once the motion signals are extracted, the ML principle is applied to
estimate, by aggregating data from different ROIs and pyramid levels,
the fundamental frequency corresponding to the RR. The accuracy of
the two methods is assessed by comparison with reference data, show-
ing good agreement between the estimated signals and the reference
ones. Nevertheless, the characteristics of the motion signal obtained by
9

Fig. 12. Performance of the phase-based method in terms of normalized RMSE for 16
considered videos (last set in Table 1).

applying the amplitude-based approach may lead to wrong frequency
estimates, twice the correct ones. These limitations are overcome by
the phase-based method that leads to more reliable estimates due to
the regular shape of the extracted motion signals, which may resemble
quasi-sinusoidal ones. The performance of the two methods is compared
in terms of normalized RMSE showing the higher accuracy of the phase-
based approach, which leads to smaller errors for all tested videos.
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