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In the work presented here, we study how to combine

decoding and fusion at the access point (AP) in sensor networks

for distributed binary detection. We assume that all sensors

make noisy observations of the same spatially constant binary

phenomenon and communicate to the AP through noisy

communication links. Simple distributed channel coding strategies

are analyzed, either using repetition coding at each sensor (i.e.,

multiple observations) or distributed (network-wide) systematic

block channel coding (possibly with local fusion in the presence

of multiple observations). In the latter case, the use of a relay

is proposed. In all cases, the system performance is analyzed

separating or joining the decoding and fusion operations at the

AP. As expected, the schemes with joint decoding and fusion show

a significant performance improvement with respect to that of

schemes with separate decoding and fusion.
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I. INTRODUCTION

Sensor networks have been an active research

field in the last years [1—3]. Communication-theoretic

and information-theoretic approaches have been

proposed for characterizing a sensor network with

a spatially constant binary phenomenon under

observation and direct communications between

the sensors and the access point (AP) [4—8]. The

performance of different fusion strategies in the

presence of nonideal communication links has been

also deeply investigated, especially in the realm

of distributed detection [9, 10]. One of the critical

issues in designing sensor networks is their energy

efficiency, especially in wireless scenarios, where

sensors may be battery powered. Motivated by

recent theoretical results in the area of network

coding [11, 12], significant research activity has been

devoted to the development of specific (distributed)

channel coding strategies. Moreover, attention has

also been dedicated, from an information-theoretic

perspective, to distributed source coding, especially

to the Gaussian central estimating officer (CEO)

problem [13, 14].

In this paper we study simple distributed channel

coding schemes applicable to sensor networks for

decentralized detection of a spatially constant binary

phenomenon. In particular, we apply well-known

results of channel coding theory to sensor network

scenarios, focusing on possible strategies for the

combination of detection, decoding, and fusion

operations1 at the AP. The fusion operation is

restricted to be a simple majority-like fusion rule [8].

For simplicity, the term sensor refers to a wireless

node which, besides sensing the phenomenon of

interest, can also transmit. We use simple distributed

channel codes, possibly relying on the presence of

a proper intermediate relay node. We first consider

scenarios where the observations at the sensors are

ideal, i.e., error free, and we then extend our approach

to scenarios where the sensors’ observations are noisy,

highlighting the relevant performance degradation

caused by the observation noise in the presence of

distributed channel coding. We also evaluate the

performance degradation in the presence of noisy

communication links from the sensors (and the

relay) to the AP, and we comment on the impact

of noisy links from the sensors to the relay (when

used).

This paper is structured as follows. In Section II

we provide the reader with preliminaries on

decentralized detection (Section IIA) and on possible

distributed channel coding strategies at the sensors

1In this paper, we use the term “detection” to indicate both the

local processing on the received data at the input of the AP and the

overall (cooperative) distributed processing of the network to detect

the phenomenon status. The context will eliminate any ambiguity.
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Fig. 1. Pictorial description of considered sensor network schemes. Solid lines are associated with mandatory elements (either blocks or

connections), dashed lines associated with optional elements.

and detection/decoding/fusion strategies at the AP

(Section IIB). In Section III, we study separate and

joint decoding/fusion schemes in the presence of

ideal observations at the sensors. In Section IV, our

approach is extended to a scenario where the sensors’

observations are noisy. In Section V, we discuss

the impact of noisy communications between the

sensors and the relay. Numerical results are presented

in Section VI. Finally, Section VII concludes the

paper.

II. PRELIMINARIES

A. Decentralized Detection

We consider a network scenario where N sensors

observe a spatially constant binary phenomenon

whose status is defined as follows:

H =

½
H0 with probability p0

H1 with probability 1¡p0:
In the remainder of this paper, we assume p0 = 1=2,
but our framework is applicable also to scenarios

where p0 6= 1=2. The assumption of a spatially
constant binary phenomenon under observation has a

practical validity when the goal of the sensor network

is to detect if the observed phenomenon overcomes,

on average, a critical threshold (e.g., detecting that the

concentration of a dangerous gas is above a critical

threshold) [15]. The observed signal at the ith sensor
can be expressed as

yi = cE + ni, i= 1, : : : ,N

where

cE
¢
=

½
0 if H =H0

s if H =H1

and fnig are additive noise samples. Assuming that
the noise samples fnig are independent with the
same Gaussian distribution N (0,¾2), the common
signal-to-noise ratio (SNR) at the sensors can be

defined as follows:2

SNRsensor =
[EfcE jH1g¡EfcE jH0g]2

¾2
=
s2

¾2
:

Each sensor makes a decision comparing its

observation yi with a threshold value ¿i and computes
a local decision ui =U(yi¡ ¿i), where U(¢) is the
unit step function. In order to optimize the system

performance, the thresholds f¿ig need to be optimized.
Imposing that ¿i = ¿ 8i, in all considered cases the
optimized value of the common threshold ¿ is aroundp
SNRsensor=2, as already observed in [8, 17].

B. Distributed Channel Coding and
Detection/Decoding/Fusion Strategies

In Fig. 1, a pictorial description of the considered

sensor network model is shown. There are source

nodes (the sensors), which observe (in a noisy

manner) a spatially constant phenomenon and send

their decisions to the AP, possibly using channel

coding. The presence of a relay is also considered and

a simple relaying strategy is proposed. The impact of

multiple access interference is not investigated here:

in other words, we assume orthogonal transmissions

to the AP (e.g., perfect transmission scheduling

between the sensors and, if present, the relay). The

AP performs the following operations: detection of

the observables, taking into account their statistical

characterization; decoding of the embedded error

correction code (when used); fusion of the decoded

data to estimate the status of the phenomenon under

observation. Note that some of the elements in Fig. 1

are present only in specific scenarios, for instance, the

relay node and the decoding block in the AP appear

only in coded scenarios.

In the following, we resort to classical

communication theory in order to derive optimum

2The extension of the presented framework to scenarios with

nonconstant observation SNR can be carried out following the

approach proposed in [16].
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(in a maximum a posteriori probability (MAP) sense)

decoding and fusion strategies at the AP.

1) Repetition Coded Sensor Network: A

sensor network with multiple observations (M
consecutive and independent observations of

the same phenomenon) can be interpreted as a

system embedding a repetition code (with code rate

Rc = 1=M) at each sensor. In this case, redundant
information is not sent by a relay, but from

the sensors themselves through M consecutive

transmission acts per sensor.

2) Systematic Block Coded Sensor Network: In

order to embed a systematic block channel code

into a sensor network, we propose a simple relaying

strategy. More precisely, we preliminary assume that

each sensor makes a single observation, transmits

its (uncoded) decision to the AP, and, owing to

the broadcast nature of the wireless medium, also

to the relay. Upon reception of the decisions from

the sources, the relay, by using a systematic block

code, generates parity bits and sends them to the AP.

For example, an (n,k) = (7,4) systematic Hamming
code [18, p. 562] can be embedded into a sensor

network with N = k = 4 sensors and one relay,
which generates L= n¡ k = 3 bits according to
the parity-check equations of the Hamming code.

Assuming (as mentioned) that each sensor can reach

both the AP and the relay in a single transmission

act, the total number of transmission acts in the

proposed sensor network is N +L. The equivalent
code rate of this distributed coded scheme is Rc =
N=(N +L) = 4=7. Note, however, that the connections
between the sensors and the relay have to be ideal

(i.e., with no communication noise) in order for the

proposed schemes to be applicable. This assumption

is reasonable provided that, for example, the relay

is relatively closer to the sensors than the AP is. In

Section V, we comment on the impact of the noise in

the communication links from the sensors to the relay.

In the presence of noisy observations, considering

multiple observations and local fusion (at each sensor)

might be beneficial in block coded scenarios. In fact,

the “quality” of the transmitted information should

improve, thus making channel coding more effective

against communication noise. More details are given

in Section IV. Note also that the use of multiple

observations and local fusion in a scenario with ideal

(noiseless) observations does not bring any benefit.

3) Communication Schemes: In a (repetition or

block) coded scenario with binary phase shift keying

(BPSK), the observable ri received at the output of an
additive white Gaussian noise (AWGN) link between

the ith node and the AP can be written as

ri = (2ci¡ 1)
p
Ec +wi, i= 1, : : : ,N +L (1)

where ci 2 f0,1g is the symbol transmitted from
either a sensor (ci is an information bit, i= 1, : : : ,N)

or the relay (in this case, ci is a parity bit, i=N +
1, : : : ,N +L), fwig are statistically independent AWGN
samples with the same distribution N (0,N0=2), N0
being the single-sided noise power spectral density,

and Ec
¢
=RcEb is the energy per coded bit, Eb being

the energy per information bit. The link bit error rate

(BER) at the output of the detector at the AP can be

written as [19]

pAWGN =Q
³p

2Rc°b

´
(2)

where Q(x)
¢
=
R1
x (1=

p
2¼)exp(¡y2=2)dy and

°b
¢
=Eb=N0 is the SNR at the AP.

In a coded scenario with BPSK and Rayleigh

faded links, the observable at the output of the

communication channel can be expressed as

ri = fi(2ci¡ 1)
p
Ec +wi, i= 1, : : : ,N +L (3)

where fi is a random variable with Rayleigh

distribution–perfectly coherent demodulation is

considered. Under the assumptions of independence

between consecutive fading samples (e.g., through

the use of channel interleaving) and that E[jfij2] = 1,
the link BER at the output of the detector at the AP

is [19]

pRayleigh =
1

2

"
1¡

s
Rc°b

1+Rc°b

#
: (4)

In general, one can denote as p the link BER at
the output of the detector, where p has a specific
expression (either (2) or (4)), depending on the

communication scheme of interest, i.e., coding

strategy and type of channel. For simplicity, we

assume that p is the same for all sensor-AP links.
In all communication schemes, the probability of

decision error at the AP can be written, using the total

probability theorem [20], as

Pe
¢
=P(Ĥ 6=H)

= p0P(Ĥ =H1 jH =H0) + (1¡p0)P(Ĥ =H0 jH =H1)
= 1

2
[P(Ĥ =H1 jH =H0) +P(Ĥ =H0 jH =H1)] (5)

where the conditional probabilities P(Ĥ =Hi jH =Hj)
(i,j = 0,1, i 6= j) depend on the presence/absence of
channel coding and on the detection/decoding/fusion

strategy at the AP, as described in the following

sections, distinguishing on the basis of the

observations at the sensors.

III. IDEAL OBSERVATIONS AT THE SENSORS

In order to obtain performance benchmarks, we

first consider scenarios where the spatially constant

phenomenon H is ideally detected by the sensors. In
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this case, we distinguish between AP structures where

the decoding and fusion operations are either separate

or joint.

A. Separate Decoding and Fusion

When the decoding and fusion operations are

separate, assuming majority-like fusion the conditional

probabilities at the right-hand side of (5) can be

computed as follows:

P(Ĥ =H1 jH =H0) =
NX
i=k

μ
N

i

¶
(pidealch )i(1¡pidealch )N¡i

(6)

P(Ĥ =H0 jH =H1) =
k¡1X
i=0

μ
N

i

¶
(1¡pidealch )i(pidealch )N¡i

(7)

where the repeated trials formula has been used

[20], k (i.e., the majority decision threshold) is
bN=2c+1, and the probability pidealch depends on the

noisy communication link model and the specific

distributed channel coding strategy. Note that the

upper index of the sum in (6) is N (and not N +L)
also in coded scenarios, since the information from

the relay (i.e., the parity bits) is not used in the fusion

process (only the systematic bits are used). The

parity bits are used only in the detection/decoding

process.

Since the local sensors’ decisions are error free,

pidealch and 1¡pidealch in (6) and (7) correspond to the

probabilities of error and correct link decision at the

detector output, respectively. In an “uncoded scenario”

(i.e., L= 0), it holds that pidealch = p. In a scenario
with multiple observations and repetition coding, the

AP preliminary decides for the phenomenon status

at each sensor through a majority fusion rule over

the M consecutive decisions sent by that sensor.

In this case, pidealch can be expressed, similarly to

(6), as

pidealch =

MX
i=kNC

μ
M

i

¶
pi(1¡p)M¡i (8)

where kNC
¢
=bM=2c+1. In a block coded scenario

and for sufficiently small values of p, the following
approximation holds [18]:

pidealch '
μ
N +L¡ 1

t

¶
pt+1

where t= (dmin¡ 1)=2 is the number of errors which
can be corrected by a code with minimum distance

dmin [18, 21]. We point out that, provided that 1=M =

N=(N +L), the comparison between repetition coded
(with multiple observations) and block coded schemes

is consistent from an energetic viewpoint.

B. Joint Decoding and Fusion

In a scenario with multiple (M) independent

observations at the sensors and repetition coding,

joining the decoding and fusion operations consists

in adopting a majority fusion rule over all the N £M
bits sent from the sensors to the AP. In this case, the

probability of decision error becomes

Prep. codinge =
1

2

24N£MX
i=kM

μ
N £M
i

¶
pi(1¡p)N£M¡i

+

kM¡1X
i=0

μ
N £M
i

¶
(1¡p)ipN£M¡i

#
(9)

where kM
¢
=bN £M=2c+1 is the majority decision

threshold.

In a block coded scenario with single observations

at the sensors, a receiver with joint decoding

and fusion can be designed as follows. Since the

considered sensor networks embed systematic codes,

we denote as [u(j)1 , : : : ,u
(j)
N ,b

(j)
1 , : : : ,b

(j)
L ] the entire

sequence of bits transmitted by the sensors (u(j)i
from sensor i) and the relay (fbigLi=1 from the relay)

in correspondence to the phenomenon status Hj
(j = 0,1). Note that in the current case with a spatially

constant binary phenomenon and ideal observations

at the sensors, (u1, : : : ,uN) is either (0, : : : ,0) or

(1, : : : ,1). In other words, in the presence of ideal

observations, only two codewords, denoted as c(0)

and c(1), are allowed–this does not hold with noisy

observations, as discussed in Section IV. In particular,

c(0) = (0, : : : ,0). In all cases considered in this paper, it

will also hold that c(1) = (1, : : : ,1).

Given that decoding and fusion are joint, two

possible detection strategies at the AP can be devised:

hard-output detection is followed by (hard-input) joint

decoding/fusion; detection, decoding, and fusion are

all joined together. In the former case, the MAP joint

decoding/fusion strategy can be formalized as

Ĥ = argmax
j=0,1

P(c(j) j crx) = argmax
j=0,1

P(crx j c(j))P(c(j))

(10)

where crx is the codeword at the output of the

detector at the AP. Since only two codewords c(0)

and c(1) are used, the a priori probability of the

sequence c(j) is equal to the a priori probability of

the phenomenon status Hj , i.e., P(c
(j)) = pj = 1=2.

Owing to the independence of the communication

channels (conditionally on the transmitted bits),

the MAP decoding/fusion strategy in (10) can be

MARTALÒ & FERRARI: DECODING AND FUSION IN DISTRIBUTED DETECTION SCHEMES 19



rewritten as

Ĥ = argmax
j=0,1

pj

N+LY
i=1

P(ci,rx j c(j)i )

= argmax
j=0,1

N+LY
i=1

[(1¡p) + (2p¡ 1)jci,rx¡ c(j)i j]| {z }
Y(j)(crx)

(11)

where the irrelevant term pj = 1=2 has been discarded
and p depends on the communication channel. After a
few manipulations, Y(j)(crx) can be expressed as

Y(j)(crx) = p
#(j,crx)(1¡p)N+L¡#(j,crx), j = 0,1

where #(j,crx) denotes the number of bits in error
at the AP when the phenomenon status is Hj and
crx is the received sequence (at the output of the AP

detector). In other words, #(1,crx) is the number of 0s
and #(0,crx) =N +L¡#(1,crx) is the number of 1s in
crx. The MAP decoding/fusion strategy in (11) can be

finally formulated asμ
1¡p
p

¶2#(1,crx)¡N¡L H0
?
H1

1: (12)

At this point, one can evaluate the probability of

decision error in (5). In particular, the terms fP(Ĥ =
Hi jH =Hj)g (i,j = 0,1, i 6= j) can be computed from
the decision rule (12). After a few manipulations, one

obtains

Pe =
1

2

"
N+LX
k=k¤

μ
N +L

k

¶
pk(1¡p)N+L¡k +

k¤¡1X
k=0

μ
N +L

k

¶
(1¡p)kpN+L¡k

#

where we have used the fact that #(j,crx) is a binomial
random variable with parameters N +L and p, c(1) = 1,
and k¤ is defined as follows:

k¤ =minf1, : : : ,N +Lg s.t.

μ
1¡p
p

¶2k¤¡N¡L
> 1:

In the case with joint detection/decoding/fusion,

we first consider a scenario with Rayleigh faded links,

and we denote by f= [f1, : : : ,fN+L] the fading samples
and by r= [r1, : : : ,rN+L] the observables at the output
of the communication links. Under the assumption of

perfect channel state information at the AP, the MAP

detection/decoding/fusion strategy can be formulated

as3 [21]

Ĥ = argmax
j=0,1

p(r j c(j), f)P(c(j) j f)

= argmax
j=0,1

pj

N+LY
i=1

p(ri j c(j)i ,fi) (13)

where we have used the facts that the observables

are conditionally independent given fc(j)i g and the
coded bit c(j)i is independent of the fading sample fi.
Discarding pj = 1=2, from (13) one can derive the

following binary decision rule:

N+LY
i=1

p(ri j c(0)i ,fi)
p(ri j c(1)i ,fi)

H0
?
H1

1 (14)

where, according to (3), the probability density

function (pdf) of the ith observable (i= 1, : : : ,N +L) is

p(ri j c(j)i ,fi) =
1p
¼N0

exp

(
¡ (ri¡fi(2c

(j)
i ¡ 1)

p
Ec)

2

N0

)
(15)

where j = 0,1. By substituting (15) into (14),
after a few manipulations the decision rule can be

expressed as
N+LX
i=1

rific
(1)
i

H1
?
H0

0: (16)

On the basis of (16) and recalling that a linear

combination of Gaussian random variables is

still a Gaussian random variable [20], after a few

manipulations the probability of decision error at the

AP (5) becomes

Pe =
1

2

24Q
0@2 pRcEbPN+L

i=1 fic
(1)
iq

N0
PN+L

i=1 f
2
i (c

(1)
i )

2

1A+©
0@¡2pRcEbPN+L

i=1 fi(2c
(1)
i ¡ 1)c(1)iq

N0
PN+L
i=1 f

2
i (c

(1)
i )

2

1A35 (17)

where ©(x)
¢
=1¡Q(x). Observe that (17) depends on

the particular sequence of fading samples ffig.
An expression for the probability of decision error

in the case with AWGN links can be directly obtained

3In (13) and in the remainder of this paper, the uppercase P is used

to denote the probability of an event, whereas the lowercase p is

used to denote the conditional probability density function (pdf) of

a random variable.
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from (17) by imposing fi = 1 (i= 1, : : : ,N +L). In
particular, in the presence of a code with c(1) = 1

(recall that, in all cases, c(0) = 0) it can be shown

that

Pe =Q
³p

2(N +L)Rc°b

´
=Q

³p
2N°b

´
:

IV. NOISY OBSERVATIONS AT THE SENSORS

We now extend the derivation presented in

Section III to encompass the presence of observation

noise.

A. Separate Decoding and Fusion

In the case with separate decoding and fusion, only

the expressions of the probabilities pidealch in (6) and (7)

need to be modified. In particular, by using the total

probability theorem [20], one can write

pnoisych = P(ci,rx = 1 jH`) 8i= 1, : : : ,N
= P(ci,rx = 1 j c(`)i = 1,H`)P(c

(`)
i = 1 jH`)

+P(ci,rx = 1 j c(`)i = 0,H`)P(c
(`)
i = 0 jH`)

= pidealch ©(¿ ¡ s ¢ `) + (1¡pidealch )Q(¿ ¡ s ¢ `)
(18)

where the sensors’ decisions fc(`)i g are done as
outlined in Section IIA and pidealch is the final BER,

which depends on the presence/absence of distributed

channel coding, as shown in Section III.

In a scenario with repetition coding and M
observations at each sensor, expression (8) for pidealch

has to be similarly modified. In particular, one obtains

pnoisych =

MX
i=kNC

μ
M

i

¶
[g(p,`)]i[1¡ g(p,`)]M¡i (19)

where g(p,`)
¢
=p©(¿ ¡ s ¢ `) + (1¡p)Q(¿ ¡ s ¢ `).

In the presence of multiple (M) observations
and block channel coding, the following strategy

can be devised. Assuming that each sensor takes M
consecutive decisions (one per observation) and fuses

them with a majority-like fusion rule, it is sufficient to

modify the expression of pnoisych in (18). In particular,

by using the total probability theorem, one obtains

pnoisych = P(ci,rx = 1 jH`) 8i= 1, : : : ,N
= (1¡pidealch )ª (M,¿ ,`)+pidealch [1¡ª (M,¿ ,`)]

(20)
where

ª(M,¿ ,`)
¢
=

MX
i=kNC

μ
M

i

¶
[Q(¿ ¡ s ¢ `)]i[©(¿ ¡ s ¢ `)]M¡i:

At this point, the term (20) can be used, instead

of (18), in (6) and (7). Note that the channel coding

approach proposed in Section IIB2 can be interpreted

as a multiple observations scheme, where M ¡ 1 (over
M) observations are discarded.

B. Joint Decoding and Fusion

In the case with hard-output detection followed by

joint decoding/fusion, expression (9) for a scenario

with repetition coding and multiple observations at the

sensors has to be modified, similarly to the derivation

in Section IVA, as follows:

Pmult. obs.e, noisy =
1

2

N£MX
i=kM

μ
N £M
i

¶
[g(p,1)]i[1¡ g(p,1)]N£M¡i

+
1

2

kM¡1X
i=0

μ
N £M
i

¶
[1¡ g(p,0)]i[g(p,0)]N£M¡i:

We now derive the MAP decoding/fusion

strategies for block coded scenarios. In the case with

hard-output detection followed by (hard-input) joint

decoding/fusion, in order to take into account the

statistical characterization of the observation noise

expression (10) has to be modified as follows:

Ĥ = argmax
j=0,1

P(Hj j crx) = argmax
j=0,1

P(crx jHj)P(Hj)

= argmax
j=0,1

N+LY
i=1

P(ci,rx jHj) (21)

where the irrelevant term P(Hj) = pj = 1=2 has been
discarded and the probability P(ci,rx jHj) can be
written, after a few manipulations, as

P(ci,rx jHj) =

8>>>><>>>>:
(1¡p)©(¿ ¡ s ¢ j)+pQ(¿ ¡ s ¢ j)

if ci,rx = 0

p©(¿ ¡ s ¢ j) + (1¡p)Q(¿ ¡ s ¢ j)
if ci,rx = 1:

In a block coded scenario with joint

detection/decoding/fusion, the MAP estimation

strategy (13) has to be modified as follows:

Ĥ = argmax
j=0,1

P(Hj j r, f) = argmax
j=0,1

P(r jHj ,f)P(Hj)

= argmax
j=0,1

N+LY
i=1

P(ri jHj ,fi)

which can be rewritten, after a few manipulations, asQN+L
i=1 ¨ (0,ri,fi)QN+L
i=1 ¨ (1,ri,fi)

H0
?
H1

1

where

¨ (m,ri,fi)
¢
=©(¿ ¡m ¢ s)exp

Ã
¡2 rifi

p
Ec

N0

!

+[1¡©(¿ ¡m ¢ s)]exp
Ã
2
rifi
p
Ec

N0

!
:
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Fig. 2. Codebook perspective on considered distributed detection schemes. (a) Ideal communication links (no communication noise)

between sensors and relay. (b) Noisy communication links. In each case, on the left the two possible codewords at sensors and relay are

shown, whereas on the right possible received words at the AP are shown.

As considered in the presence of separate decoding

and fusion, in the joint case with block channel

coding one could consider multiple observations with

local fusion as well. For the sake of conciseness, this

is not considered.

V. IMPACT OF NOISY COMMUNICATION LINKS
TOWARDS THE RELAY

The previous derivations in coded scenarios are

based on the assumption of ideal communication links

between the sensors and the relay. In this section, we

briefly discuss the impact of noisy communication

links between the sensors and the relay. No analytical

derivation or numerical results are presented. The

considerations which are carried out are simply meant

to give some guidelines on the benefits brought by

the distributed use of properly designed block error

correction codes.

We first consider the case with ideal observations

at the sensors. In Fig. 2 we give a pictorial description

of how the communication noise influences data

transmission to the relay. As previously seen, two

possible codewords are selected at the sensors and

relay, namely c(0) and c(1), which are shown in Fig. 2

as a filled circle and an empty circle, respectively. In

the scenario with no communication noise between

the sensors and the relay (Fig. 2(a)), we denote

the Hamming distance between the two codewords

as d. If c(0) = 0 and c(1) = 1, then d =N +L. The
presence of noisy communication links from the

sensors and the relay to the AP is such that the word

crx (one of the 2
N+L possible binary sequences of

length N +L) received at the AP may be different
from the codeword transmitted by the sensors

and the relay. In particular, crx may not even be a

codeword. Carrying out decoding and fusion at the AP

corresponds to associating the received word to one

of the information sequences f0,1g. It is intuitive that
the larger d is, the more robust the system is against

noisy communication links between the sensors/relay

and the AP.

In the presence of communication noise between

the sensors and the relay (Fig. 2(b)), the latter may

receive a sequence of bits which differs from that sent

by the sensors. Therefore, the parity bits generated by

the relay may lead to the association of H0 and H1 to
two codewords c(0)0 and c(1)0 which are at a distance
d0 < d. As a consequence of this decreased distance,
the system performance will be worse than in the

previous scenario, since the probability of associating

(through decoding and fusion) the received word to

the wrong phenomenon status will increase. This can

be understood from the codebook scenario at the AP,

where the received word at the AP might belong to

the portion of the signal space which is associated

(by decoding and fusion) to the wrong phenomenon

status.

The presence of noisy observations may lead to

the association of the phenomenon statuses H0 and
H1 to two codewords c

(0)00 and c(1)00 at a distance
smaller than d. In particular, in the presence of both
1) observation noise and 2) communication noise from

the sensors to the relay, when the intensities of these

two noises are sufficiently small, their negative effects

tend to add, so that the distance d00 between c(0)00 and
c(1)00 might be even smaller than d0.
Obviously, an open problem is to quantify

precisely the decrease of the error correction

capability t of a code in the presence of noisy
communication links between the sensors and the
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Fig. 4. Probability of decision error, as function of SNR at AP, in scenario with N = 16 sensors and AWGN communication links. Two

values for sensor SNR are considered: (a) 20 dB (error-free observations) and (b) 10 dB (noisy observations). Various coding strategies

are considered.

Fig. 3. Probability of decision error, as function of SNR at AP,

in scenario with N = 16 sensors, Rayleigh faded communication

links, and error-free observations at sensors. Various sensor

network architectures are considered.

relay. In fact, the parameter t depends on the particular
structure (codebook) of the considered error correction

code. An interesting research direction, which goes

beyond the scope of this paper, is the design of robust

(fault tolerant) error correcting codes for the proposed

distributed detection schemes.

VI. NUMERICAL RESULTS

We now present numerical results associated with

our analytical framework. In particular, as component

channel codes, we consider some Bose, Chaudhuri,

and Hocquenghem (BCH) codes with different values

of t [21, p. 438].4 In particular, the following BCH
codes are considered: 1) (31,16) with t= 3, 2) (63,30)
with t= 6, and 3) (127,64) with t = 10.

4We remark that the BCH code is one of the block channel codes

that it is possible to consider. However, the same results would be

asymptotically obtained with any code with the same value of t.

In Fig. 3, the probability of decision error is

shown, as a function of the SNR °b, in a scenario with
N = 16 sensors, error-free observations at the sensors,
and Rayleigh faded communication links (according

to the model in (3)). Five sensor network schemes

are considered: 1) uncoded with single observations,

2) (31,16) BCH coded [21, p. 438] (the corresponding

BCH code has t= 3) with single observations at
the sensors hard-input separate decoding/fusion,

3) (31,16) BCH coded with single observations at the

sensors and hard-input joint decoding/fusion, 4) with

M = 3 observations, repetition coding, and separate

decoding/fusion, and 5) with M = 3 observations,

repetition coding, and joint decoding/fusion. One can

observe that the probability of decision error in case 2

shows a “waterfall” behavior, which is due to the

concatenation of the decoding and fusion operations.

However, the improvement brought by the presence

of block channel coding, with respect to schemes with

repetition, becomes apparent at very low probabilities

of decision error, which may not be of practical

interest.

In Fig. 4, the probability of decision error

is shown, as a function of the SNR at the AP,

in a scenario with N = 16 sensors and AWGN
communication links. Two values for the sensor

SNR are considered: (a) 20 dB (basically error-free

observations) and (b) 10 dB (noisy observations).

Six coding strategies are considered: 1) uncoded,

2) (31,16) BCH coded with single observations at

the sensors and hard-input separate decoding/fusion,

3) (31,16) BCH coded with single observations at

the sensors and soft-input joint decoding/fusion,

4) with M = 2 observations, repetition coding, and

joint decoding/fusion, 5) with M = 3 observations,

repetition coding, and separate decoding/fusion,

and 6) with M = 3 observations, repetition coding,

and joint decoding/fusion. In a scenario with ideal
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observations (case (a)), one can observe that the BCH

coded network with soft-input joint decoding/fusion

at the AP has a performance significantly better

than that associated with the BCH coded schemes

with hard-input separate decoding/fusion. This is

to be expected, since in a scenario with soft-input

decoding no information is lost upon reception of

the observables from the communication links. Note,

however, that the proposed block coded scheme

outperforms a scheme with repetition coding only at

very low values of the probability of decision error.

As can be observed comparing the results in

Fig. 4(a) with those in Fig. 4(b), when the observation

quality reduces the proposed detection/decoding/fusion

strategies they become less effective, since the quality

of the sensors’ observations heavily affects the system

performance, and this is more pronounced in the

presence of joint decoding/fusion. One can also

observe that the probability of decision error curve

reaches a floor, due to the observation noise (which is

independent of the communication noise). As before,

the schemes with multiple observations at the sensors

outperform those with block channel coding.

We now investigate the impact of multiple

observations on the performance of block coded

scenarios. In Fig. 5, the probability of decision error

is shown, as a function of the SNR at the AP, in a

scenario with N = 16, AWGN communication links,
and noisy phenomenon observations (with observation

SNR set to 10 dB). In all cases, separate decoding

and fusion are considered. As can be seen from

the obstained results, in the BCH coded case the

impact of the use of multiple observations becomes

noticeable for °b &2 dB. In this SNR region, it can
be observed that the performance with a given odd

value of M (either 1 or 3) degrades, relatively, when

M is increased to the consecutive even value. This

is because in the presence of noisy observations,

increasing the number of decisions to be fused from

an odd number to the next even one does not improve

the “intrinsic” quality of the majority-like fusion but,

instead, degrades it–this degradation disappears if

the observation noise reduces (e.g., the observation

SNR is increased to 20 dB). One should also note

that, when the number of observations is sufficiently

large (e.g., M ¸ 3), the use of them becomes effective

for the BCH coded scheme, which can outperform the

corresponding (for the same value of M) repetition
coded scheme. In particular, this effect is evident also

for values of interest for the probability of decision

error (e.g., Pe ' 10¡6). However, for large values
of °b the probability of decision error of block and
repetition coded schemes reaches, for a given value of

M, the same floor.
Finally, we investigate the performance of the

proposed distributed detection/decoding schemes in

large scale sensor networks, when N is increased

to 30 and 64, by considering proper BCH codes. In

Fig. 5. Probability of decision error, as function of SNR at AP,

in scenario with N = 16, AWGN communication links, and noisy

phenomenon observations (with observation SNR set to 10 dB).

Various coding strategies, with various numner of observations,

are considered. In all cases, decoding and fusion are separate.

Fig. 6. Probability of decision error, as function of the SNR at

AP, in scenario with AWGN communication links and noisy

phenomenon observations (with observation SNR set to 10 dB).

Various coding strategies with separate channel decoding and

fusion are considered. Two values for number of sensors N are

considered, namely, N = 30 and N = 64.

Fig. 6, the probability of decision error is shown, as

a function of the SNR at the AP, in a scenario with

AWGN communication links and noisy phenomenon

observations (with observation SNR set to 10 dB).

For each value of N, the performance of the system
with multiple observations and BCH coding is

compared with that associated with the same number

of multiple observations and repetition coding. One

can observe that for °b &4 dB the scheme with
multiple observations and BCH coding becomes the

winning strategy. This confirms the results shown in

Fig. 5 also for large scale sensor networks. However,

with respect to the scenario with a smaller value of N
(i.e., N = 16) shown in Fig. 5, one can observe that
this effect appears for lower values of the probability

of decision error, which may not be of interest.

Therefore, for large scale sensor networks repetition
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coding seems the winning strategy. We remark that in

[22] large sensor networks are analyzed by resorting

to low-density parity-check (LDPC) codes.

VII. CONCLUDING REMARKS

In this paper, we have studied how to combine

detection, decoding, and fusion at the AP in sensor

networks for decentralized detection of a spatially

constant binary phenomenon. To this end, we have

embedded simple distributed channel codes (either

block or repetition) into sensor network architectures.

The performance of the proposed schemes has been

analyzed in scenarios with noisy observations and

communications. We have also considered the use

of multiple observations at the sensors: without local

fusion this leads to the use of repetition coding; in the

presence of local fusion, block channel coding can

then be considered. Repetition coding guarantees the

best performance, with respect to simple systematic

block coding strategies, when ideal observations at the

sensors are considered. In fact, the best performance

for practical values of the probability of decision

error can be obtained. When the observation noise

increases, the use of multiple observations with block

channel coding becomes the winning strategy for

intermediate SNR values. However, the block and

repetition coded schemes approach the same limiting

(for high channel SNR) probability of decision error.

In large scale sensor networks, repetition coding is

attractive for practical values of the probability of

decision error.
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