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Abstract—The goal of this paper is to investigate Ultra Wide-
Band (UWB) localization with Time Difference of Arrival (TDoA)
processing at the anchors. We consider scenarios where the
anchors are placed very close to each other and the target to
be localized is around the group of anchors. All target-anchor
communications are assumed to be in Line-Of-Sight (LOS). Since
our analysis shows that symmetries in anchors’ placement, with
respect to the target position, degrade the positioning accuracy
of standard algorithms, we propose to use a Subset Selection (SS)
strategy, where position estimates obtained with properly selected
subsets of asymmetric anchors are fused together to get the
final localization output. Our results show improved localization
accuracy with respect to the use of all anchors, especially in
estimating the angle of arrival. Finally, we analyze the impact of
an inaccurate time synchronization among the anchors, deriving
guidelines for hardware implementation.

Index Terms—Smart Industry, Localization, Ultra WideBand
(UWB), Time Difference of Arrival (TDoA), Subset Selection,
Data Fusion, Synchronization.

I. INTRODUCTION

A key aspect in modern communication networks is user and
object positioning to enable enhanced location-based applica-
tions [1]. The increasing interest towards the Internet of Things
(IoT) and related relevant applications, such as smart buildings
and industries, is pushing in this direction [2]-[6]. IoT-based
solutions can be beneficial for industrial applications, leading
to Industrial IoT (IIoT) and, more generally, enabling the
Industry 4.0 paradigm. In fact, knowing the positions of
users and objects inside a smart factory is a key enabling
technology for factory automation. In this scenario, a multitude
of low-energy low-cost devices and controllers cooperate to
manage relevant factory processes, together various available
Information and Communication Technologies (ICT) [7].

In particular, knowledge of users’ and devices’ positions
may improve the safety in scenarios where people and au-
tonomous systems coexist [8]. Besides the safety application
considered in our work, localization can applied to different
industrial contexts in combination with various technologies.
In [9], a mitigation scheme for the impairments caused by
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typical industrial environments is proposed for a localization
system based on Ultra Wideband (UWB) and Time Differ-
ence of Arrival (TDoA) technologies in commercial devices.
In [10], modelling and simulation is proposed for a Received
Signal Strength Indicator (RSSI)-based positioning system
aimed at localizing Automatic Guided Vehicles (AGVs) in
smart factory environments. In [11], localization is performed
by relying on Radio Frequency IDentification (RFID) tags
whose positions are estimated from the signal RSSI and phase.

Radio-based positioning accuracy may not be high in an
indoor environment, because of signal propagation limitations
(e.g., obstructions, multipath, and interferences) [12]. More
generally, positioning can leverage existing radio network
infrastructures, such as Bluetooth, WiFi, cellular (4G/5G) [13].
UWB technology is attractive, because of the high time
resolution and, consequently, accurate target positioning in
many scenarios [14], [15].

In radio-based positioning, the target position is obtained by
estimating the distances between the target itself and reference
nodes, referred to as anchors. Such distance estimation is per-
formed on the basis of given signal characteristics, e.g., RSSI,
Angle of Arrival (AoA), Time of Flight (ToF), TDoA [16].
In particular, in TDoA-based techniques the target transmits
a beacon signal and the positioning system computes the
difference between the propagation times at pairs of anchors,
under the assumption of sufficiently accurate synchronization.
Unlike methods based on the received signal strength, TDoA-
based localization is more accurate and robust against envi-
ronmental changes [17]. TDoA schemes with UWB commu-
nications have been exploited in various scenarios: see, for
example, [18]-[21] and references therein.

Standard literature solutions consider “classical” scenarios,
where the target lies inside the area to be monitored and the
anchors are along the perimeter of the area itself. In this
work, we consider a “non-classical” scenario in which the
anchors are concentrated on a single “hotspot” with limited
dimensions, whereas the target can move around it. This
scenario is relevant for various applications in which anchors’
placement along the perimeter of the area of interest may be
costly or cannot be carried out. A relevant application scenario
is in smart warehouses, where human operators and AGVs
coexist. In this case, the anchors may be placed on the AGV
to localize human operators around it. Even if the relative
position between anchors and target is not relevant from a
theoretical point of view, e.g., to determine the limiting per-
formance in terms of Cramer-Rao Lower Bound (CRLB) [22],
it influences the performance of a localization algorithm. In



fact, the presence of symmetries in the anchors’ placement,
with respect to the target position, can significantly degrade
the localization accuracy [23], especially if the anchors are
concentrated on a single hotspot.

We consider a scenario where multiple anchors are con-
centrated in a single hotspot and investigate the performance
of TDoA-based UWB localization. This scenario has partial
similarity with that in [24] (referred to as Large Equal Radius,
LER), in which (i) the anchors are (almost) equidistant from
a proper reference point and (ii) the distances from such a
point are much longer than those from the anchors to the
object to be located. However, even if in our scenario the
anchors may be considered equally distant from the center of
gravity of the hotspot, this distance is typically (much) shorter
than each target-anchor distance. The main contributions of
our paper can be summarized as follows: (i) an extensive
performance analysis of various localization algorithms and
schemes is carried out; (ii) a method, based on the idea
of Subset Selection (SS), to avoid geometric symmetries of
the anchors’ relative positions, with respect to the target, is
considered; and (iii) the impact of a synchronization error
between anchors is investigated to derive hardware design
guidelines. The key idea of the SS approach is to use a
standard localization algorithm, but performing localization
only considering a few properly selected anchors. In particular,
various position estimates, obtained from different subsets of
anchors, are considered. The best subset can be selected or
the various estimates can be fused together to improve the
overall localization accuracy. We refer to the latter approach
as SS with Data Fusion (SSwDF). A state of the art TDoA 3D
geometric algorithm is applied jointly with the considered SS
strategy: our results show accurate estimation of the target
angle of arrival with respect to the hotspot with a small
estimation dispersion (i.e., error variance). The considered
scheme is robust, given that the target position estimation error
has an average relative error (with respect to the distance)
smaller than 10% for a distance between target and hotspot
up to 10 m. A significant performance improvement, in terms
of localization accuracy, is achieved by using the considered
SSwDF strategy, as shown by direct comparison with the
corresponding theoretical CRLB.

The structure of this paper is the following. Section II is ded-
icated to the system model. In Section III, the considered SS
strategy for improved localization is described. In Section IV,
numerical results are presented. In Section V, the impact, on
the positioning accuracy, of a synchronization error between
the anchors is analyzed. Finally, in Section VI concluding
remarks are given. In the remainder of this paper, the following
notation will be used: boldface lowercase and UPPERCASE
letters denote vectors and matrices, respectively; £ and z will
denote the measurement and an estimate of the true value z,
respectively.

II. SYSTEM MODEL

In Fig. 1, we show an illustrative representation of the
considered scenario. The hotspot includes N anchors, whose
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Fig. 1. System model: a target, equipped with UWB transceiver (red circle),
is placed at distance (on the x — y plane) R from an hotspot, equipped with
N anchors (blue diamonds).

Cartesian coordinates are given by the following three-
dimensional vectors:
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where T denotes the transpose operator. The target, placed
around the hotspot, has coordinates given by the column vector
8 = [S4,8y,5:)7. The estimated target position is instead
denoted as 8 = [8,,85,,5.]7. The distance r; between the
target and the ¢-th anchor can be expressed as follows:

’I",':HS—G,Z‘H:CTi (1)

where || - || is the Euclidean norm, ¢ ~ 3-10% m/s is the speed
of light, and 7; is the ToF between the target and the i-th
anchor. The three-dimensional distance between the target and
the hotspot (as group of anchors) is denoted as Rzq = ||s—a|,
where a is the Center of Gravity (CoG) of the anchors:

1 N
NZai.
i=1

Finally, we denote as R the two-dimensional distance between
the projections of @ and s on the = — y plane.

(1>

a

A. TDoA Measurements

As anticipated in Section I, TDoA algorithms do not rely on
the absolute ToFs measured at the anchors after the reception
of a target beacon, but on the relative differences between
them.! Let us assume that a; (j € {1,2,...,N}) is the first
anchor receiving the beacon transmitted by the target. The
TDoA between the i-th anchor and the reference one, denoted
as At; (i # j), can be computed as the difference between
the ToFs measured at the two anchors, i.e.,

ie{l,...,N}/j )

where 7/ is the ToF at the reference anchor a;. Note that,
by definition, A7; > 0. In practice, however, only measured
TDoAs, rather than the true TDoAs, are available. These
measured TDoAs are denoted as

Ar=1—1

7y — 7

Arj=%—7 = ie{l,...,N}/j.

Note that the number of anchors receiving the transmitted beacon may be
smaller than NV, e.g., due to environmental interference and obstacles. Without
losing the generality of our approach, we assume that all anchors receive the
beacon and can collaborate to target localization.



It is worth noting that the accuracy of (2) may be affected
by limited clock synchronization between the anchors, i.e.,
the ToFs 7; and 7’ need to refer the same time axis [25]. In
the following, we first assume that the anchors are perfectly
synchronized with each other. In Section V, we then discuss on
the impact of imperfect time synchronization among anchors,
in order to derive hardware design guidelines.

B. UWB Communication Channel Model

The statistical characterization of the error noise in the
measured distance 7; (i € {1,...,N}) depends on UWB
signalling and channel status. All the target-anchor commu-
nication links are assumed to be in Line-Of-Sight (LOS). In
this paper, we consider the simple, yet accurate, statistical
error model proposed in [26]. In particular, the noisy ToF
measurement in the UWB LOS link between the target and
the -th anchor can be expressed as

T =Ti+0;

where §; ~ N (pi,0?). Resorting to experiments with point-
to-point two-way ranging, p1; and o2 are shown to be approx-
imately linear functions of r;, i.e., [26]

i

wi(ry) (I1Ti+(I2/CZQ1Z+q€2 3
ri

oi(r;) =~ 51Ti+52/0251;+%2- “)

Expressions (3) and (4) are intuitive, since the larger the nodes’
distance, the higher the expected measurement noise. The
parameters {q1, ¢z, 31,02} in (3)-(4) can be obtained using
a standard Least Square (LS) estimation on experimentally
acquired data.

In particular, we consider an experimental setup with a
single link between decaWave DW1000 UWB nodes [27].
Applying the LS method described in [26] to approximately
10% transmissions, one obtains q1 = 0.0042, g2 = 0.01 m,
B1 = —0.0003, and B> = 0.0302 m. The use of these
parameters for simulation purposes is meaningful as decaWave
DW1000 UWB nodes are currently considered for experimen-
tal implementation of the proposed localization system.

We remark that the considered SS-based approach to TDoA-
based localization does not depend on the specific statisti-
cal measurement error model. In other words, provided that
the communication standard does not change (namely, IEEE
802.15.4a is used), the use of other UWB nodes (different from
decaWave DW1000) would require to change the values of the
parameters in equations (3) and (4). However, the considered
method would still apply.

III. LOCALIZATION STRATEGY
A. Positioning Algorithms

TDoA-based 3D positioning geometric algorithms leverage
the geometric structure of the scenario to determine the
unknown target position. In particular, standard geometric
algorithms determine the target position by solving a linear
system of equations of the following type:

Es=b )

where E and b are proper matrix and vector depending on
the specific scenario, i.e., the anchors’ positions and the
anchor-target distance measurements. Assume (for notational
simplicity) that a; is the first anchor which receives the beacon
from the target, i.e., 7/ = 7.

The Linear Hyperbolic Positioning System (LinHPS) [28] is
our geometric algorithm of choice. In this case, E is a matrix
of size (Nz_l) x 3 and b is a vector of size (N2_1) defined,
respectively, as follows:

T
E = [EQT,E3T,...7Eﬁ71]
b = [brY,...6h ]
with
Ei = [eF el ... el "
[z,z—i—l 1,142 1,N]T 122’37 ,N—].
b = [biit1,bii42,...,biN]
where
€ = ZC[E'k(ai—al)—&'i(ak—al)}
— —— 9 — —
b = c|Ari (A7, = llanl?) + (A7 = Ary) llaa]

—_ —2
+A7 (llail 2 = A7 )] -
The LS solution of system (5) is
s=E"b

being E* the Moore-Penrose pseudoinverse of E [29], as E
is not, in general, a square matrix. Note that solving (5) has
a complexity on the order of O(N?) [30].

The performance of LinHPS has been compared with those
of other algorithms, either geometric or from the soft comput-
ing domain. In the former case, the Plane Intersection (PI) [31]
and the Two-Stage Maximum-Likelihood (TSML) [32] algo-
rithms have been considered. In the latter case, Particle Swarm
Optimization (PSO) [33] has been used. Our results, not shown
here for lack of space, show that the considered LinHPS-based
scheme employing all the available anchors achieves the best
localization accuracy. Moreover, the use of the SS strategy
(introduced in the following Subsection III-B) improves the
performance of the “standard” LinHPS-based scheme (i.e.,
using all the available anchors), allowing to approach the
CRLB (as will be shown in Section IV). In this sense,
the LinHPS-based SS strategy achieves the best performance
among all considered algorithms. Finally, the inherent iterative
nature of the PSO leads to a computational complexity which
may be unfeasible in most realistic applications with strict
latency and computational constraints (e.g., in particular IoT
scenarios).

B. Subset Selection

In [23], it has been shown that the main drawback of the
LinHPS with all the anchors closely placed on the hotspot is
that the performance degrades in the presence of symmetries,
with respect to the target position, in the anchors’ placement.
In fact, standard localization algorithms use all the anchors,
under the assumption that they all have the same reliability



(since the noise statistical model is the same for all the
anchors). However, the presence of geometric symmetries may
hinder the solution of the localization problem. This is due to
the fact that some anchors may be collinear with respect to a
proper plane. In order to avoid this, one can heuristically move
the anchors by a few centimeters (e.g., 10 cm). Our results,
not shown here for conciseness, do not show any relevant
improvement. This is due to the fact that, especially at large
target-hotspot distances, the anchors are still almost collinear
with respect to the target. This motivated us to consider SS.

Although, in principle, an optimal algorithm should rely on
all available measurements, its derivation may be challenging
and its complexity may be high. Rather than deriving this
algorithm, in this subsection we consider a simple approach,
denoted as SS, to improve the performance of a standard
(i.e., link quality-agnostic) positioning algorithm. The key
idea of this paper is to “strongly break” such symmetries by
considering only subsets of anchors.

Assuming that all measurements are available, the SS
strategy leads to performing localization with a subset of
anchors & C A of size |S| = N,y < N. The subset is
selected, among all the available subsets with V,, anchors, in
such a way that the corresponding anchors’ relative positions
(with respect to the target position) are as asymmetric as
possible. In principle, any anchor can be selected for inclusion
in the subset. However, in realistic scenarios some anchors
may not receive the target beacon (because of obstructions)
or the target-anchor communication link may be in Non-
Line-Of-Sight (NLOS) condition (the corresponding distance
measurement may be very noisy). Dynamic SS, based on link
quality estimation, is the subject of current research activity.

Note that the asymmetries in the anchors’ placement
strongly depend on their relative positions with respect to
the target. Since the target position is unknown, one has
to choose the subset so that the anchors are (on average)
asymmetrically placed for all possible target positions. To this
end, the following data fusion strategy can be applied to further
improve the positioning accuracy. For a given value of IV, let
us consider M (partially overlapping) subsets Sy, So, ..., S,
which are representative of asymmetric anchors’ placements
for different target positions (for instance, different sectors
around the hotspot). At this point, denoting as §; the position
estimate with the ¢-th subset, ¢ = 1,2,..., M, one may fuse
these estimates by computing the CoG of all of them, thus
leading to the following (arithmetic) average estimate:

1 M
Sar =57 ;s (6)

The SSwDF strategy has some similarities to the Divide
And Conqueror (DAC) approach proposed in [34]. The DAC
approach is based on low-complexity Maximum Likelihood
(ML) estimators in properly defined sub-problems and then
merging together the obtained solutions to derive a final
estimator. Such an approach was effectively applied to ML po-
sition estimation with AoA and TDoA measurements in [35].
However, while the goal of [35] is to achieve the same per-
formance of standard ML solutions (without the introduction

TABLE I
ANCHORS’ POSITIONS (IN METERS).

Anchor | 3D coordinates [m]
a; [0,0,0.4]T
as [0,1.12,0.4]7
a3 [1.2,0,0.4]T
ay [1.2,1.12,0.4]T
as [0,0,2]T
as [0,1.12,2]7
a7 [1.2,0,2.2]7
as [1.2,1.12,2.2]T
agy [1.2,0,3.6]7
alo 1.2,1.12,3.6]7
a1 1.2,0.56,3.1]T
ais 1.2,0.56,0.4]T
a [0.8,0.56,1.725]T
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Fig. 2. Anchors’ placement for simulations.

of sub-problems) with lower complexity, in our manuscript
we focus on improving the performance of the considered
LinHPS positioning algorithms. In fact, the use of subsets
allows to eliminate symmetries in anchors’ placement, which
are detrimental for the overall system performance (in terms
of localization accuracy).

IV. NUMERICAL RESULTS

In order to evaluate the system performance, we consider an
illustrative setup,> where the hotspot accommodates N = 12
anchors at the positions given in Table 1. The approximate
hotspot size is 1.5 m x 1.5 m x 4 m and the chosen placement
is compliant with practical anchors’ positions on an AGV.> A
pictorial description of the considered anchors’ placement is
given in Fig. 2. This setup is referred to as symmetric, since
there are symmetries in the anchors’ placement (some of the
anchors have the same value of one of the coordinates). The
target coordinates are the following:

s = [Rcos6, Rsinf,1]"

where R (dimension: [m]) has been defined at the end of
Subsection II, whereas 6 is the target angle with respect to
the CoG projection on the x — y plane. The target height
s, = 1 m is representative of a target (e.g., identification
tag) worn by a person. We will consider various values for
R in the range from 5 m (representative of a target close to

2Similar considerations can be carried out for any other scenario.
3This is relevant to allow target estimation in the surroundings of the AGV.
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Fig. 3. Estimated positions when the target is positioned at R = 5 m and
0=0,tn/4, 7,7+ /4

the hotspot) to 15 m (representative of a target far from the
hotspot). Moreover, 7' = 10° runs with independent beacon
transmissions from the target are performed for statistical
analysis.

We preliminarily investigate the performance of the LinHPS
algorithm when all the anchors are used by the positioning
algorithm. In Fig. 3, various estimated positions are shown
(each point corresponds to a different simulation run) when the
target is positioned at R = 5mand 6 = 0, 7 /4, 7, m £ 7 /4—
at R = 15 m, a performance degradation is observed (the
results are not shown for lack of space). It is worth noting
that, for each true position, the estimates concentrate around it.
Moreover, the target’s AoA can be accurately estimated in all
directions. As already pointed out in [36], this is due to the fact
that the target AoA can be estimated by considering any pair
of noisy distance estimates between the target and anchors.
Moreover, the specific hotspot geometry with collinear anchors
leads to very similar angle estimates for any target-anchor
pair. Therefore, one can conclude that the target AoA can be
accurately estimated.

We first analyze the impact of the number of anchors per
subset, i.e., the parameter N,,. This corresponds to consider-
ing M =1 (i.e., the estimate derives from a single subset). The
following subsets S(V=v), N,, € {6,7,8}, are considered:*

6

SO = {az,a3,a6,a7,a9,a11}

7

S = {ay,a3,a6,a7,a9,a11,a12}

8

S® = lai,as,a3,a6,a7,a9,a11,a12} .

These subsets have been heuristically chosen so that the
anchors’ configuration is (on average) as asymmetric as pos-
sible with respect to the target position. In Fig. 4, the three-
dimensional views of the chosen subsets are shown: (a) S ©),

4The performance with N,y < 5 degrades significantly.

(b) S, and (c) S®). In each subfigure, the anchors of the
corresponding subset are highlighted in red.

We now analyze the following concise system performance
indicators.

o Localization pattern, defined as the ensemble of average
position estimates (projected on the = — y plane), where
the target lies along the circle with radius R.

o Angular error, defined as

b=0-/3 )

being /- the angle operation.
o Distance error (with sign), defined as

d = —sign (|v| - 3 ) (8 - B) ®)

where sign(z) is the sign operation. The indicator (8) is
expedient to determine if the estimated position overes-
timates or underestimates the true distance.

Note that (7) and (8) represent the radial and angular com-
ponents of the estimation error. In fact, the results in Fig. 3
show that the AoA is well identified, whereas the estimated
distance can assume values in a non-negligible range. These
performance indicators may be relevant in applications where
one needs to identify the region (e.g., a sector around the
hotspot) where the target lies, but AoA techniques (typically
based on the use of multiple antennas) are not applicable.

In Fig. 5, the localization pattern is shown considering the
LinHPS algorithm with a single (M = 1) subset. Various
values of the number N,, of available anchors in the subset,
namely, 6, 7, 8, and 12 (if N,, = 12, all anchors are used
together), are considered. One can observe that the use of SS
improves the performance, i.e., the average location estimate
with a smaller number of anchors (without modifying the
localization algorithm) is closer to the true position than in
the case with the use of all the anchors. This is due to the fact
that in the considered subsets the anchors are placed, with
respect to the target, asymmetrically. Moreover, it seems that
N, = 6 is the best choice, since it guarantees the best average
position estimate.

In Table II, the mean and standard deviation of the distance
error with sign (ug and o4, respectively) and of the angular
error (i and oy, respectively) are shown for SS and various
values of N,, and R. For each case, the average, minimum,
and maximum values, for all considered values of angle 6,
are shown. It is worth noting that the conclusions drawn from
Fig. 5 are confirmed in this case as well—we remark only
that the standard deviations of both radial and angular errors
with N,, = 6 are larger than those with N,, = 7. We
can then conclude that setting N,, = 7 leads to the best
tradeoff between average positioning accuracy and dispersion
of the estimates around this average value. Therefore, in
the remainder of this section, we will focus on a scenario
with N,, = 7, considering various subsets and data fusion
according to (6).



x [m]

(a) (b)

y [m] x [m] i y [m]

©

Fig. 4. Three-dimensional views of the chosen subsets: (a) S (6), b)) S (7), and © S (8). Anchors in the subsets are highlighted in red.
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Fig. 5. Localization pattern considering the LinHPS algorithm with a single
(M = 1) subset. Various values of the number N, of available anchors in
the subset, namely, 6, 7, 8, and 12, are considered.

In the SSWDF case, the following M = 5 selected subsets,
heuristically chosen among all the possible subsets to be as
much asymmetric as possible, are considered:

S = {a2,a3,a6,a7,a9,a11,812}
So = {ai,a4,a5,a3,a10,011,a12}

5 An exhaustive search among all the possible subsets has been performed
and those with best localization performance have been chosen. The inves-
tigation of (possibly) optimal anchors’ placement and dynamic SS may be
subject of future work.

TABLE II
MEAN AND STANDARD DEVIATION OF THE DISTANCE ERROR WITH SIGN
AND OF THE ANGULAR ERROR FOR SS AND VARIOUS VALUES OF N,y AND
R. FOR EACH CASE, THE AVERAGE, MINIMUM, AND MAXIMUM VALUES,
FOR ALL CONSIDERED VALUES OF ANGLE #, ARE SHOWN.

R =5m R =15m
Now 2 g 7 3 2 g 7 3
AVG -0.23 -0.17 -0.08 0 -3.53 =291 -1.75 -0.21
ng [m] MIN -0.28 -0.23 -0.12 -0.02 -3.81 -3.48 -2.09 -0.42
MAX -0.16 -0.12 -0.01 0.02 -3.36 -2.55 -1.42 0.17
AVG 0.41 0.61 0.67 0.72 2.11 3.59 4.53 8.41
oq [m] MIN 0.37 0.46 0.5 0.52 2.02 3.18 3.92 5.22
MAX 0.49 0.72 0.78 0.84 242 4.08 5.39 93.6
AVG 0 0.01 0 0.04 0 0 0 0.02
[Lw [deg] MIN -0.15 -0.23 -0.21 -0.22 -0.33 -0.52 -0.51 -0.42
MAX 0.15 0.27 0.2 0.29 0.33 0.67 0.48 0.46
AVG 0.97 1.46 2.54 3.55 0.8 3.82 4.68 5.17
Tafy [deg] MIN 0.93 0.95 1 1.08 0.81 2.08 2.88 3.08
MAX 1.12 1.91 3.87 5.62 1.4 6.07 6.76 7.32
S3 = {ai,a3,a3,a4,0a5,a3,a10}
54 - {02,03,05,06,017,018,0/9}
S5 = {ai,a2,a7,a5,a9,011,012} .

In Fig. 6, the three-dimensional views of the chosen subsets
are shown: (a) Si, (b) Ss, (¢) Sz, (d) Sy, and (e) Ss. In
each subfigure, the anchors of the corresponding subset are
highlighted in red. It can be observed that, even though some
symmetries may still exist (depending on the relative target-
hotspot position), most of these symmetries disappear.

During our tests, we observed that estimates’ outliers may
appear, i.e., one (or more) of the position estimates, associated
with some of the considered subsets, can significantly differ
from the others, thus biasing the average in (6) in the SSwWDF
case. This limitation can be overcome by eliminating outliers
before averaging—this outlier elimination is practically fea-
sible by checking if its distance from the others is over a
pre-defined threshold.

In Fig. 7, the position estimates are shown when the target
is positioned at § = 0,+7/4, 7,7 + 7/4, for R = 5 m and
Ny, = 7, comparing (a) SS with M = 1 (no data fusion) and
(b) SSWDF with M = 5. Comparing the results in Fig. 7 with
those in Fig. 3, one can observe that, although the use of a
single subset improves the average localization performance,
the dispersion of the estimates increases (as also observed
in Table II). On the other hand, the SSwDF approach with
M = 5 drastically improves the positioning accuracy, since
the position estimates concentrate around the true value.

In Fig. 8, the distance error with sign is shown, as a function
of R, for § = 0°—similar considerations hold for other values
of #—and various subsets comparing the performance without
data fusion (i.e., single subset) and with data fusion (SSwDF
with M = 5). The confidence interval p 4 ¢ is also shown. In



(d)

Fig. 6. Three-dimensional views of the chosen subsets: (a) S1, (b) S2, (¢) S3, (d) S4, and (e) Ss. Anchors in the subsets are highlighted in red.

case (a), the absolute value is shown, whereas in case (b) the
relative value, with respect to R is considered. The average
distance error is approximately the same for all the subsets, but
the standard deviation can be drastically reduced using data
fusion. As expected, increasing the distance leads to a minor
performance degradation in terms of average error (from a
few centimeters to at most 2 m), but the standard deviation
increases. This corresponds to an increase of approximately
1% (for R =5 m) to 10% (for R = 15 m). This is due to the
noise model in (3)-(4), in which the standard deviation of the
measured ToF increases with the target-anchor distance, thus
leading to a worse localization accuracy for increasing values
of the hotspot-target distance R.

In Fig. 9, the angular error is shown, as a function of R,
for § = 0° and various subsets (comparing the performance
without and with data fusion). The confidence interval u + o
is also shown—similar considerations hold for other values of
6. Considerations similar to those carried out for the distance
error with sign in Fig. 8 apply here. However, it is worth noting
that the standard deviation has a bimodal behaviour, namely:
below a given threshold distance (between 10 m and 12 m),
it is approximately constant, whereas above this threshold it
rapidly increases. Moreover, it can also be observed that the
use of data fusion does not always lead to a standard deviation
reduction at longer distances. As an example, at R = 15 m the
use of Sy leads to a small standard deviation, but the use of
Sy leads to larger standard deviation. In this case, data fusion
worsens the overall performance with respect to that of So.
An interesting research direction is the derivation of adaptive
data fusion strategies with dynamic SS.

In Table III, the mean and standard deviation of the distance
error with sign and of the angular error are summarized
for scenarios without SS (N,, = 12) and with SSwDF
(Nay = 7 with M = 5), considering two values of R. For
each case, the average, minimum, and maximum values for
all considered values of the angle 6 are shown. The relative
percentage, with respect to the true distance R, is shown
between round brackets for the distance error with sign. One
can observe that, for both values of R, the distance error with
sign drastically reduces towards zero, i.e., the target-hotspot
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TABLE III
MEAN AND STANDARD DEVIATION OF THE DISTANCE ERROR WITH SIGN
AND OF THE ANGULAR ERROR FOR SCENARIOS WITHOUT SS (Nay = 12)
AND WITH SSWDF (N = 7 WITH M = 5), CONSIDERING TWO VALUES
OF R. FOR EACH CASE, THE AVERAGE, MINIMUM, AND MAXIMUM
VALUES FOR ALL CONSIDERED VALUES OF THE ANGLE 6 ARE SHOWN.

R=5m R=15m
w/o SS SSwDF w/o SS SSwDF
G | 023 | om 353 162
(46%) | (1.6%) | (235%) | (-1.62%)
028 | 0.1 331 103
pa fml | MIN Sy | (22%) | (254%) | (12.9%)
016 | -0.06 336 144
MAX (B0 | (12%) | (-224%) | (-9.6%)
041 0.29 210 .00
AVG | g2 | (58%) | (141%) | (13.5%)
037 026 200 187
oa ml | MIN 1 ohgy | 2% | (135%) | (12.5%)
049 034 242 202
MAX | 98%) | 68%) | (161%) | (14.8%)
AVG 0 2001 0 2001
jy ldeg] | MIN | 015 | -0.08 2033 202
MAX | 0.15 0.05 033 0.12
AVG | 097 09T 08 23T
oy ldeg] | MIN | 093 0.85 0.81 113
MAX | 112 0.98 1.4 3.01

distance is well measured. On the other hand, the angular error
slightly increases. However, it remains limited and, therefore,
it can be concluded that the target AoA is still well estimated
in all cases.

We finally analyze the localization error in terms of the es-
timated Root Mean Square Error (RMSE), defined as follows:

T
1 .
RMSE £ > lls — ™|
i=1

where 3%) denotes the estimated (3D) position at the k-th
simulation run (k = 1,2, ...,T). The RMSE can be compared
with a theoretical benchmark given by the CRLB on the
positioning error. In particular, we resort to the approach
proposed in [37] for the calculation of the CRLB, based on
the assumption of zero-mean and constant (with respect to the
target-anchor distance) variance TDoA measurements. Even if
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Fig. 7. Position estimates when the target is positioned at 6 =

0,+m/4,m,m + w/4, for R = 5 m and Nay = 7, comparing (a) SS with
M =1 (no data fusion) and (b) SSWDF with M = 5.

our noise measurement model (3)-(4) assumes a measurement
noise with non-zero mean and variance linearly dependent
on the target-anchor distance, the approach in [37] allows
to derive a reasonable performance benchmark, provided that
the correct noise variance is considered for each target-anchor
distance.® In particular, following the derivation in [37] one
can write:

CRLB = \/tr {J-s, {a:}Y )}

®Note that the CRLB for UWB TDoA-based positioning is also derived
in [38], [39] for another noise model, which assumes an exponential depen-
dence of the variance with respect to the target-anchor distance. This, however,
is not coherent with our model.
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Fig. 8. Distance error with sign, as a function of R, for # = 0° and
various subsets (comparing the performance without and with data fusion).
The confidence interval p =+ o is also shown. In case (a), the absolute value is
shown, whereas in case (b) the relative value, with respect to R, is considered.
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Fig. 9. Angular error, as a function of R, for # = 0° and various subsets
(comparing the performance without and with data fusion). The confidence
interval p & o is also shown.
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Fig. 10. Positioning error, as a function of the target-hotspot angle, for
various values of the target-hotspot distance R. The performance of various
positioning schemes is compared with the theoretical CRLB.

where: tr{-} is the trace operator; J is the so-called Fisher
information matrix (in the current case, it is 3 X 3 matrix);

and J ! is the inverse of J. The generic element of the Fisher
information matrix can be written as
Nl N S a S CL(])
k— k: kE— %
J _
* O¢RLB Z Z Tj
i=1 j=
(1) (4)
Sy —a Sp—a
£ ¢ ku ( € {.’E, Y, Z}
r; Tj

where ocrrp is the standard deviation of the noisy measure-
ments of the range difference, which is assumed to be con-
stant. The standard deviation in (4) is associated with a ToA
approach and depends on the anchor-target distance. Since a
range difference measurement corresponds to the difference
between two Gaussian-distributed range measurements (with
the same standard deviation), the range difference measure-
ment has a Gaussian distribution with standard deviation equal
to /2 times the one of the range measurements. Considering
the standard deviation in correspondence to the arithmetic
average of the distances between the target and all anchors,
from (4) we define:

N

OCRLB = Jifvz;n + B2

In Fig. 10, the positioning error is shown, as a function
of the target-hotspot angle, for various values of the target-
hotspot distance R. The performance of various positioning
schemes (without and with data fusion) is compared with the
theoretical CRLB. As already observed before, moving from
N,y = 12 (namely, using all the anchors) to N,, = 7 with
a single subset, the performance degrades due to the fact that
the variances of both angle and distance estimates increase.
However, using 5 subsets with data fusion allows to improve
the performance, moving closer to the theoretical benchmark
given by the CRLB with N,, = 12. We remark that the
comparison with the CRLB with N,, = 12 is meaningful,

TABLE IV
AVERAGE (OVER THE TARGET-HOTSPOT ANGLE) ESTIMATION ERROR (IN
METERS) FOR THE SCHEMES CONSIDERED IN FIG. 10.

Scheme R=5m | R=15m
Benchmark (CRLB with N,y = 12) 0.18 1.27
LinHPS (with N,, = 12) 0.41 3.73
w/o SS (with Nay, = 7) 0.6 3.79
SSwDF (with Nay = 7) 0.27 2.19

as the scheme with data fusion encompasses all anchors (i.e.,
the union of the considered subsets includes all anchors).

In Table IV, we summarize the average (over the target-
hotspot angle) estimation error (in meters) for the schemes
considered in Fig. 10. It is worth noting that SSWDF allows
to reduce the average estimation error of approximately 35%
with respect to the LinHPS using all the anchors. Moreover,
the final performance is relatively close to the theoretical
benchmark limit predicted by the CRLB.

V. IMPACT OF SYNCHRONIZATION ERROR

While in the previous section we have analyzed the system
performance under the assumption of perfect time synchro-
nization among the anchors, we now investigate the impact
of imperfect synchronization. In fact, the reliability of a
TDoA localization algorithm strictly depends on clock syn-
chronization between the anchors. As already outlined in [40],
a synchronization bias ¢; affecting the ToF measurements
consists of a shift of the mean value of the ToF measurement
1; introduced in Subsection II-B, i.e.,

pi =Tifc + €. ©)

The inter-anchor synchronization bias ¢; is modeled as a
random variable with mean 7gyyc, uniformly distributed in
the interval [sync(1 — Qsync)s Msync (1 + Qsync)], Where 7sync
and oy are proper parameters to be experimentally set.
This model is representative of a random clock drift around a
deterministic (known) parameter 7sync.

In Fig. 11, the RMSE is shown for various synchronization
levels (i.e., values of 7sync and agync) and target-hotspot
distances (namely, R = 5 m and R = 15 m), comparing
the performance without SS and with SSwWDF. The simulation
setup is the same of Section IV. The target-hotspot angle 6
is set to 0°—similar considerations hold for other angles. It
can be observed that the presence of a synchronization bias
leads to a clear performance degradation; in particular, the
stronger the synchronization bias, the more significant such a
degradation. One can see that the RMSE increase starts to be
significant, for every value of agyne and R, for 7y > 1 ns.
This can be considered as a guideline for hardware design in
order to achieve good performance with the proposed TDoA-
based scheme. Moreover, the use of SS leads to a performance
improvement. This means that in the presence of SS and
data fusion the synchronization bias becomes less crucial;
however, it is still true that 7y, = 1 ns is a critical value
to obtain a limited performance degradation. Such limit can
be practically achieved with cabled anchors, by developing an
accurate clock source distribution able to guarantee a precise
timing synchronization between devices [41].
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Fig. 11. RMSE for various synchronization levels and target-hotspot dis-
tances, comparing the performance without SS and with SSwDF.

VI. CONCLUDING REMARKS

In this paper, we have tackled the problem of determining a
target position using UWB communications and TDoA-based
processing at the anchors. We have considered a scenario with
anchors placed on a single hotspot (with sufficiently small
dimensions) and the target moving around it. Since our results
show that the localization accuracy reduces if the anchors
exhibit symmetries in their placement, we have considered a
SS method to break such symmetries. Our results show that,
with a geometric algorithm (LinHPS), the target AoA can be
estimated with an average error of at most 3° when the target
is at 15 m, while the distance is typically underestimated
(average errors of at most 10 cm and 4 m can be obtained
at distance R equal to 5 m and 15 m, respectively). The use
of data fusion allows to further improve the performance, al-
lowing to approach the theoretical performance limit predicted
by the CRLB. Finally, the impact of a synchronization error
between anchors, modeled as a bias, has been investigated,
showing that a bias on the order of 1 ns leads to a significant
localization accuracy degradation. Future work will be devoted
to the design of dynamic SS strategies to take into account
NLOS conditions due to the specific environment and hotspot
design.
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