
IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019 7971

A Wave-Based Request-Response Protocol for
Latency Minimization in WSNs

Riccardo Monica , Member, IEEE, Luca Davoli , Member, IEEE, and Gianluigi Ferrari , Senior Member, IEEE

Abstract—Transmission latency is a key performance metrics
in most wireless sensor network (WSN) applications. Nodes in
a WSN often keep their radio transceivers off, and turn them
on periodically using a duty cycling mechanism. The latter is a
major source of delay in the network, because transmissions must
wait for the next receiver wake-up. In this paper, we present a
cross-layer approach to minimize latency of a request-response
(RR) protocol adopted in an IEEE 802.15.4-based WSN where the
IPv6 routing protocol for low-power and lossy networks (RPLs)
is used. Extra wake-ups are generated dynamically to match the
predicted arrival time of the response packet, in order to reduce
the duty cycling delay. The proposed approach is verified with the
Cooja simulator, relying on the Contiki operating system (OS).
The observed experimental results show a shorter RR delay with
respect to a phase alignment (PA) approach.

Index Terms—Network latency, request-response (RR) proto-
col, routing protocol for low-power and lossy network (RPL),
wireless sensor networks (WSNs).

I. INTRODUCTION

ENERGY efficiency and latency are key performance met-
rics in most wireless sensor network (WSN) applications.

The radio transceiver is one of the components with the high-
est power consumption on a low-power wireless sensor node.
Therefore, nodes of a WSN often keep their radio transceivers
off as much as possible, to prolong their batteries’ lifetimes.
Since a node cannot receive any data when the transceiver
is turned off, a duty cycling mechanism must be used at the
medium access control (MAC) layer, to periodically turn the
radio on. Hence, duty cycling is a major source of delay,
because packets must wait at the sender node for the receiver’s
wake-up before they can be sent.

The IPv6 routing protocol for low-power and lossy networks
(RPLs) [1] has been proposed to provide IP(v6) connectiv-
ity on low-power radios. RPL leads to a tree-like network
topology, anchored at a sink node. In a typical WSN, nodes
proactively send periodic sensor reading updates to the sink,
complying with an update frequency that is limited by power

Manuscript received October 15, 2018; revised February 20, 2019 and
April 8, 2019; accepted April 25, 2019. Date of publication May 2, 2019; date
of current version October 8, 2019. The work of L. Davoli and G. Ferrari was
supported in part by the European Commission H2020 Framework Program
through AFarCloud Project “Aggregate Farming in the Cloud” under Grant
783221 and in part by the “Iniziative di Sostegno alla Ricerca di Ateneo”
Program of the University of Parma through “Multi-Interface IoT Systems
for Multi-Layer Information Processing” Project. (Corresponding author:
Luca Davoli.)

The authors are with the Department of Engineering and Architecture,
University of Parma, 43124 Parma, Italy, (e-mail: riccardo.monica@unipr.it;
luca.davoli@unipr.it; gianluigi.ferrari@unipr.it).

Digital Object Identifier 10.1109/JIOT.2019.2914578

constraints and network throughput. However, specific appli-
cations require sensor nodes to be queried aperiodically,
using a request-response (RR) protocol, when sensor data
are urgently needed in response to external unpredictable
events (e.g., alarms, user interaction, etc.). Hence, the query
should be answered as quickly as possible, to increase the
responsiveness.

The main contribution of this paper is a cross-layer approach
for delay optimization of an RR protocol. The approach
requires the transmission of a single pair of IP packets: a
request by the sink node and the response by the sensor node.
The duty cycling delay is reduced by making the nodes wake
up as if they were “hit” by (upward and downward) “waves,”
i.e., sequentially according to their depths. Namely, we con-
figure the nodes wake-up phases so that: a wave of wake-ups
carries downward the request packet from the sink to the
required sensor node with a minimal delay; and a dynamic
second wave is generated symmetrically for the response
packet moving upward in the network toward the sink. The
proposed approach is tested with the Contiki operating system
(OS) in the Cooja simulator [2], showing a shorter RR delay
with respect to a simpler phase alignment (PA) approach, as
the one used in the RAWMAC low-latency harvesting proto-
col [3] and based on the use of static waves. Our analysis
highlights interesting tradeoffs between RR delay and energy
consumption.

The rest of this paper is organized as follows. In Section II,
an overview of related work on duty cycling mechanisms
is provided. Section III briefly introduces ContikiMAC [4],
RPL, and RAWMAC protocols. The proposed approach is
described in Section IV, while experimental results are shown
in Section V. Finally, in Section VI we draw our conclusions.

II. RELATED WORK

In the literature, it is possible to identify the following two
main categories in radio duty cycling mechanisms: 1) syn-
chronous mechanisms, requiring a complete synchronization
between neighboring nodes (e.g., T-MAC [5]) and 2) asyn-
chronous mechanisms, not depending on any a-priori synchro-
nization and to be further subdivided into sender-initiated (e.g.,
B-MAC [6]) and receiver-initiated (e.g., BladeMAC [7]). As
illustrative examples, with the WiseMAC protocol [8] nodes
learn the wake-up phase of each other through a phase-lock
optimization; in the X-MAC protocol [9], the sender wakes
up the receiver using short preambles. The CXMAC proto-
col is a simplified implementation of X-MAC, where a mote
periodically sends a short probe; when a potential receiver
wakes up and gets such a probe with its own address, it replies

2327-4662 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1262-6348
https://orcid.org/0000-0002-4396-8885
https://orcid.org/0000-0001-6688-0934

7972 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019

with an ACK [10], [11]. In [12], a data aggregation approach
for WSNs, based on the joint generation of a conflict-free
schedule and an aggregation tree, is proposed. In [13], the
latency minimization problem is supported in a cloud-oriented
way with an aggregation scheme centered at the cluster head.
Finally, a joint duty-cycle optimization control is proposed
in [14], trying to define a global power management strat-
egy suitable for WSNs, especially in industrial scenarios. The
derivation of traffic latency minimization approaches in het-
erogeneous environments represents an interesting research
activity which goes beyond the scope of this paper and will
be the subject of future works.

The approach proposed in this paper relies on the RPL pro-
tocol, which is recalled in Section III-B. The opportunistic
routing in wireless sensor networks (ORWs) [15] is a routing
mechanism that forwards packets to the first awaken neighbor
offering routing progress toward the destination node. In [16],
an RPL routing metric for delay minimization is presented.
The routing over low power and lossy networks (ROLL)
Working Group [17] has specified OF0 [18], in which the
only routing metric adopted refers to the hop count. The min-
imum rank with hysteresis objective function (MRHOF) [19]
minimizes metrics that are additive along a route, and uses hys-
teresis to reduce churn in response to small metric changes.
Other existing approaches rely on: predetermined scheduling
mechanisms, such as WirelessHART [20] or time-slotted chan-
nel hopping (TSCH) [21]; periodic and asynchronous wake-up
mechanisms, such as low power listening (LPL) [22] or low
power probing (LPP) [23]; dynamic slot allocation schemes,
such as GoMacH [24], ZMAC [25], and iQueue-MAC [26].

III. ContikiMAC, RPL, AND RAWMAC

The proposed approach is based on ContikiMAC, RPL,
and RAWMAC [3]. A short overview of these protocols is
presented in the following.

A. ContikiMAC

ContikiMAC is an asynchronous and sender-initiated radio
duty cycling protocol. The nodes periodically wake up to
check for possible incoming packet transmissions. The period
between wake-ups, defined as cycle time, is denoted as CT .
All nodes in a network have the same cycle time, but relative
wake-up phases between pairs of nodes are essentially ran-
dom, as they depend on the power-on instants of the nodes. A
sender repeatedly transmits its packet until it receives a link-
layer acknowledgment (ACK) from a receiver. This implies
that the packet is repeated, in the worst case, for an entire cycle
time, to ensure that the receiver awakes at least once. When
the receiver detects a packet transmission during a wake-up, it
keeps its radio transceiver on to receive the entire packet. Then,
if the receiver is the recipient of the packet, an ACK packet is
sent back to the sender. In order to reduce energy consump-
tion and radio channel occupancy, ContikiMAC introduces a
phase-lock mechanism. By recording, for each neighboring
node, the last instant an ACK was received, a node can esti-
mate the wake-up time of each neighbor, assuming a constant
wake-up period CT . Then, a transmission is started a small
guard time Pg (dimension: ms) before the estimated receiver’s
wake-up.

B. RPL Routing Protocol

RPL is a distance-vector routing protocol based on the orga-
nization of the nodes in a tree-like network topology, referred
to as destination-oriented directed acyclic graph (DODAG).
The tree is anchored at a node, denoted as DAG root, and the
cost of each path is evaluated according to metrics defined in
an objective function (OF). Each node selects a parent node,
which is the neighboring node with the shortest path to the
root node. Thus, unicast communications between any node
and the DAG root are optimized according to the metric. The
current RPL implementation for the Contiki OS adopts, as
default, the expected transmission count (ETX) metric [27],
which tries to minimize the average number of packet trans-
missions required in order to deliver a packet to the ultimate
destination. Nevertheless, other solutions can be adopted, lead-
ing, for example, to paths with the smallest number of poor
quality links or of intermediate hops. RPL uses two types of
control messages to maintain the topology: 1) a node broad-
casts DODAG information objects (DIOs) to inform nearby
nodes about its distance to the DAG root and 2) destination
advertisement objects (DAOs) are unicast messages sent to the
selected parent, used to populate the routing tables of ancestor
nodes in the DODAG. Moreover, RPL uses a trickle mecha-
nism to reduce the transmission of redundant DIO messages
when the network is stable.

C. RAWMAC

RAWMAC is an adaptation layer in which RPL configures
the ContikiMAC wake-up phase. In detail, in a WSN where
nodes send data to the root node, RAWMAC reduces the delay
between the instants of packet creation at the sensor node and
reception at the root node. A node with RAWMAC exploits
ContikiMAC phase discovery mechanism to align its phase
so that it wakes up right before its preferred parent. When a
node receives, at its own wake-up time, a packet to be routed
upward, the parent wake up is about to occur. Therefore, a data
propagation wave is created, from the leaves of the DODAG
to the root. Packets traveling along this wave can reach the
root node with minimal latency.

IV. PROPOSED APPROACH

We consider a generic RR protocol in a network organized
as an RPL DODAG, in which a request IP(v6) packet is sent
by the DAG root node downward, toward a target node in the
network. After a known processing time, the target node sends
back a response upward to the DAG root. Our main goal is to
minimize the delay between the generation of the request and
the reception of the response at the DAG root.

To minimize the downward delay from the root node to the
target, the nodes align their radio wake-up phases so that they
wake up in downward sequence, i.e., each node wakes up right
after its parent in the RPL DODAG. Therefore, nodes which
relay packets from parent to child have to wait only a short
time for the wake-up of the next-hop node. The downward PA
approach is detailed in Section IV-A.

To minimize the upward delay of the response from the
target node to the DAG root, intermediate nodes traversed by
the request schedule an extra wake-up when the response is
going to traverse them toward the DAG root. Therefore, nodes

MONICA et al.: WAVE-BASED RR PROTOCOL FOR LATENCY MINIMIZATION IN WSNs 7973

which relay the response have to wait only a short time for the
wake-up of the parent node. The upward response transmission
optimization is described in Section IV-B.

In Section IV-C, the proposed protocol is integrated with
the RAWMAC low-latency harvesting protocol [3]. Both
approaches in Sections IV-A and IV-B introduce new types
of wake-ups, which may interfere with the ContikiMAC
phase-lock mechanism: this issue is addressed in Section IV-D.

A. Wake-Up Phase Alignment

Nodes can, in principle, generate packets at any time, but a
node can receive packets to be routed only at a wake-up. To
reduce the downward delay for packet relay, each node shifts
its wake-up phase so that it is aligned with that of its parent. A
positive time offset Po (dimension: ms) is added to the phase,
in order to account for the time necessary to receive the packet
and send it to the next node. The offset Po should be chosen
carefully: if it is too short, the packet may “miss” the wake-up
of the next node and, then, the packet needs to wait a whole
cycle time for the next wake-up; if it is too long, the packet
waits uselessly and the transmission delay increases.

When a node C receives an ACK from its parent B at time
tC,B, it changes its own wake-up phase φC to the following φ′

C:

φ′
C = (

tC,B + Po
)

mod CT (1)

where the modulus operator (a mod b)
.= a−�a/b�b. To

prevent frequent updates due to small inaccuracies in the mea-
surement of tC,B, the phase is updated only if changed by more
than a (properly chosen, as will be shown in Section V-A)
threshold �Po, i.e., if |φ′

C − φC| > �Po.
After the PA has completed, the network behavior for the

RR protocol is shown in Fig. 1, in which, on the left, the
request packet transmission from the root node to a target
node is carried out. Nodes seem to wake up in succession
when hit by waves, which carry packets which quickly reach
the destination. The packet may be created at any time with
a uniform distribution, so it waits at the root (on average) a
time interval equal to CT/2 for the next wave. The root starts
transmitting a little earlier (by the guard time Pg) than the
predicted wake-up time. Then, every intermediate hop adds
Po to the delay. Finally, the reception time at the last node is
denoted as P�. The total downward average delay can thus be
(theoretically) written as

Dd(h) = CT/2 + Pg + (h − 1) Po + P� (2)

where h is the depth of the target node, i.e., the number of
hops from the DAG root.

The response packet is transmitted back to the root node
as illustrated in the right part of Fig. 1. A request is indeed
able to quickly reach (propagating downward) the target node.
However, in the upward direction, the response packet has to
wait CT − Po, at each intermediate node, for the next wake-
up of the parent node. Therefore, the theoretical average RR
delay at the DAG route with downward PA is

Dr(h) = Dd + h(CT − Po)

= CT/2 + (h − 1) CT + (CT − Po) + Pg + P�. (3)

For sufficiently large values of h, Dr is almost independent
of Po. In particular, a similar result would be obtained in

Fig. 1. Timeline of a request packet Q (left) and the corresponding response R
(right) after PA. Red vertical lines represent wake-ups, while light blue back-
ground rectangles highlight where the node’s radio is on. Packet transmission
and reception are displayed in black and white, respectively.

RAWMAC, where Po is chosen differently to optimize the
upward wave instead of the downward wave.

A correction term Dcoll(h) may be added to the delay
expression in (3) to account for collisions. In the CSMA MAC
layer of Contiki OS: after the first collision, the first retrans-
mission attempt is performed after a back-off time uniformly
distributed within [CT , 5CT] (mean: 3CT); after a second col-
lision, the second retransmission is attempted after a back-off
time uniformly distributed within [CT , 9CT] (mean: 5CT); and
after the third collision, a final retransmission is attempted
after waiting a back-off time uniformly distributed within
[CT , 13CT] (mean: 7CT). After a fourth collision, the packet
is dropped [28]. Therefore, the average collision delay Dc,hop
over a single hop is

Dc,hop =

⎧
⎪⎨

⎪⎩

0, if 0 collisions
3CT , if 1 collision
(3 + 5)CT , if 2 collisions
(3 + 5 + 7)CT , if 3 collisions.

(4)

Hence, indicating the packet collision probability as pc, the
probabilities of exactly zero, one, two, and three collisions
can be evaluated as follows:

pc,0 = (1 − pc)/pc,tot

pc,1 = pc(1 − pc)/pc,tot

pc,2 = p2
c(1 − pc)/pc,tot

pc,3 = p3
c(1 − pc)/pc,tot (5)

where pc,tot = (1 − p4
c) is a normalization coefficient.1 Hence,

from (4) and (5), the average supplementary collision delay
for a single hop can be computed as follows:

D′
c,hop = 0 pc,0 + 3CT pc,1 + 8CT pc,2 + 15CT pc,3. (6)

Therefore, since the delay D′
c,hop affects each hop upward and

downward, the total Dcoll(h) for a target node at depth h can
be expressed as

Dcoll(h) = 2h D′
c,hop

= 2h (1 − pc)
3CT pc + 8CT p2

c + 15CT p3
c(

1 − p4
c

) . (7)

Finally, since typically the packet collision probability
pc � 1, it can be concluded that (1 − p4

c) � 1, pc,2 � pc,1,

1Note that since a packet is dropped at the fourth collision, the supplemen-
tary collision delay in (5) is computed considering only the cases in which
eventually a packet goes through.

7974 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019

Fig. 2. Timeline of a network with PA and response optimization. A request
Q is sent from the root node and a response R is received. Standard wake-ups
are represented by red vertical lines. Green lines represent extra wake-ups.

and pc,3 � pc,1. This allows to approximate Dcoll(h) as
follows:

Dcoll(h) � 2h 3CT pc. (8)

B. Response Delay Optimization

The upward delay experienced by the response packet is
minimized by creating a second wave of extra wake-ups,
denoted as response wave (RW), from target node to root node.
This second wave is created on-demand, upon detection of a
request packet. Packets which belong to an RR protocol are
marked in the differentiated services (DSs) field (6 bits) of
the IPv6 header. We define the “Request” DS code point as
000001 (request packets) and the “Response” DS code point
as 000011 (response packets). These two code points should
not interfere with any other protocol, because DS values with
the least significant bit set to 1 are unassigned (i.e., free to
use) according to RFC 2474 [29].

Whenever a node routes a request message, it schedules
an RW wake-up at the predicted response arrival time. The
desired behavior is shown in Fig. 2. Each hop adds a delay
time Po for the request and a further delay Po for the response.
An additional short fixed time Pe is due to response process-
ing at the target node. Therefore, given the forwarding of a
request packet in correspondence to a wake-up at time tQ,
the response packet is predicted to arrive at the following
instant tR:

tR(r) = tQ + 2 Po(r − 1) + Po + Pg + Pe + P� (9)

where r is the number of hops (in the DODAG) between the
current node and the target node. The RPL implementation
was modified so that nodes include the hop count r for each
descendant node in the DAO messages. A special case occurs
for the DAG root: if it generates a packet too close to the next
wake-up, it must wait a whole cycle time CT to send it. A
response packet at the DAG root node relative to a request
generated at time tG is predicted to arrive at the following
instant:

t′R(r) =
{

tW + tR(r) − Po, if tW − tG > Pg
tW + tR(r) + CT − Po, otherwise (10)

where tW is the time of the next wake-up of the first-level
child node and r corresponds, in this case, to the depth of the
target node.

If a node does not receive a response packet at the scheduled
RW wake-up, it assumes that packet transmission failed and
that the packet is going to be retransmitted later. The RW
wake-up is repeated WR times, every CT , attempting to create

Fig. 3. Wake-ups of a network where both PA and RAWMAC are in effect.
Root node wake-ups are represented by black vertical lines. PA and RAWMAC
wake-ups are represented by red and orange lines, respectively.

another wave for the retransmission; after WR unsuccessful
attempts, the response packet is declared lost.

We remark that when a request packet is routed downward:
1) the next hop and the hop count r to the target node are
found in the RPL database and 2) the radio duty cycle (RDC)
layer predicts the response time using (9) and schedules an
RW wake-up. Whenever a response packet is routed upward:
1) the RDC layer is informed so that no more RW wake-ups
are generated and 2) phase-lock is ignored, so that the packet
is sent immediately by the MAC layer to take advantage of
the RW wake-up.

The total upward average delay is thus (theoretically)
equal to

Du(h) = Pg + (h − 1) Po + P�. (11)

The average RR delay Drr is computed by adding the down-
ward delay Dd (2), the upward delay Du (11), and the
processing time Pe, obtaining

Drr(h) = Dd(h) + Pe + Du(h)

= CT/2 + 2 (h − 1) Po + 2Pg + 2P� + Pe. (12)

The delay Drr is expected to be lower than Dr (3), because,
in general, 2Po < CT .

C. Integration With RAWMAC

Unlike the PA procedure proposed in Section IV-A, the
RAWMAC protocol aligns the node wake-ups to minimize the
upward delay to the root node [3]. In the following, we inte-
grate RAWMAC and PA by performing two wake-ups at each
duty cycle. The PA wake-up is scheduled Po after the parent
PA wake-up, while the RAWMAC wake-up is scheduled Po
before the parent RAWMAC wake-up. The root node wakes
up only once for each duty cycle, covering both RAWMAC
and PA wake-ups (as shown in Fig. 3).

Given the PA wake-up phase φPA
B of a node B, the

RAWMAC wake-up phase φRAW
B is

φRAW
B =

(
φPA

B − 2 Po hB

)
mod CT (13)

where hB is the depth of node B in the RPL tree. When a node
B receives from parent A an ACK due to the PA wake-up at
time tPA

B,A, it sets its own wake-up phases as follows:

φPA
B =

(
tPA
B,A + Po

)
mod CT

φRAW
B =

(
tPA
B,A + Po − 2 Po hB

)
mod CT . (14)

Conversely, when node B receives from parent A an ACK
due to the RAWMAC wake-up at time tRAW

B,A , it sets its own

MONICA et al.: WAVE-BASED RR PROTOCOL FOR LATENCY MINIMIZATION IN WSNs 7975

Fig. 4. Two requests are sent by the DAG root to nodes at depths 2 (left)
and 3 (right), respectively. The first response follows the next upward wave
and reaches the root at its next wake-up. The second response misses it and
follows the subsequent one.

wake-up phases as follows:

φRAW
B =

(
tRAW
B,A − Po

)
mod CT

φPA
B =

(
tRAW
B,A − Po + 2 Po hB

)
mod CT . (15)

The method to differentiate between RAWMAC ACKs and PA
ACKs is presented in Section IV-D.

According to the phase-lock mechanism of ContikiMAC
(Section III-A), a node B sends a packet at the next wake-up
of a neighbor node C. When two wake-ups are performed at
each duty cycle, two phases are estimated by node B: φRAW

C
and φPA

C . Upon receiving a PA ACK from node C, node B
computes φRAW

C using (13). The specular equation computes
φPA

C given φRAW
C . We remark that (13) depends on hC: since

in an RPL DODAG a node communicates only to its parent
and children, hC can be inferred as

hC =
{

hB − 1, if C is B’s preferred parent
hB + 1, otherwise. (16)

Fig. 4 illustrates the behavior of an RR protocol when both
RAWMAC and PA are used. Requests follow a downward
wave generated by PA and responses follow an upward wave
generated by RAWMAC. For small values of h, the average
delay is constant and equals to Dm(1) = CT/2 + Pg + P� +
CT −Po. The delay does not depend on the hop count as long
as the response can catch the next upward wave. Each hop
requires a time offset Po for the request and a time offset Po
for the response, so that the accumulated multihop delay is

Da(h) = 2 Po(h − 1) + Po + Pg + P� + Pe. (17)

A packet misses an upward wave whenever the accumulated
hop delay Da(h) exceeds a multiple of a cycle time CT . Taking
into account (17), whenever the depth h is such that

h > 1 + (
nCT − Po − Pg − P� − Pe

)
/2Po (18)

with n ∈ {1, 2, 3, . . .}, then the delay Dm increases by nCT .
Hence, the theoretical RR delay Dm increases in discrete steps
as follows:

Dm(h) = CT

2
+ Pg + P� + CT − Po + CT

⌊
Da(h)

CT

⌋
. (19)

In general, the delay Dm(h) is not shorter than the RW
delay Drr(h) (12). However, the RW approach is based on
the assumption that requests are sent by the DAG root and
responses are sent by other nodes in the network, as the upward
wave is created only on-demand. Conversely, as both upward
and downward waves are always active in RAWMAC, requests
from nodes to the DAG root and requests from DAG root to
the nodes are optimized simultaneously.

D. Link-Layer Acknowledgment Modifications

The approaches proposed in Sections IV-B and IV-C add
extra wake-ups to the standard duty cycle: this interferes
with the ContikiMAC phase-lock mechanism. In addition to
wasted energy and delayed/failed transmissions, incorrect par-
ent phase estimation may cause a phase change in the whole
RPL DODAG subtree due to wake-up PA (Section IV-A).
Therefore, we modify the link-layer ACK packet so that the
type of generating wake-up can be inferred from it. Three
kinds of ACKs are possible: 1) a standard RDC ACK, due
to a PA wake-up; 2) an RW ACK, caused by the RR extra
wake-ups; and 3) an RAWMAC ACK, caused by RAWMAC
wake-ups. Phase update should not be performed in 2),
because RW wake-ups do not depend on the node phase. In
cases 1) and 3), the node receiving the ACK estimates the
sender phase as described in Section IV-C.

According to the IEEE 802.15.4 standard [30, Sec. 7.3.3],
the ACK packet (Imm-Ack) is composed of 5 bytes at the
MAC layer: the first 2 bytes hold a bitmask (Frame Control
Flags), where bit 7 is unused and bit 5 (Ack Request) is
meaningless for Imm-Ack packets. We exploit these bits to dif-
ferentiate between standard PA, RW, and RAWMAC ACKs,
setting these two bits as follows: {b5, b7} = {0, 0} for PA;
{0, 1} for RAWMAC; and {1, 1} for RW.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

The proposed approach is implemented in Contiki OS,
v. 2.6, carrying out the tests via Cooja, a Java-based simu-
lator for Contiki-based wireless sensor nodes [2]. The radio
transmission range is set to 50 m, with 100% transmission
success rate. Nodes at distances between 50 and 100 m from
the transmission source are set in the “interference” range,
meaning that the received data cannot be decoded.

The test network, shown in Fig. 5, comprises 11 nodes and
self-organizes into an RPL DODAG using the standard ETX
RPL metric. Node 11 has been configured as the DAG root.
The remaining ten nodes act as servers and are queried by
the root. A UDP “echo” RR protocol has been implemented
at the server nodes, with UDP packets sent by the root to
each server node. The UDP payload consists of 15 bytes and
contains a unique request identifier. Upon reception of a UDP
packet destined to itself, a server node sends a response packet
containing the same payload to the root node. If the request
packet contains the Request code point in the IPv6 DS field,
the Response code point is set in the response packet. The
delay is computed as the time difference between the instant
of request generation and the reception of the corresponding
response at the transport layer of the root node.

For a more accurate timing, most nodes generate ACK pack-
ets in hardware, before handling the received packet to the
operating system (Contiki OS). Hence, by default, the node
firmware cannot change flags in the ACK packet, which is
required by our approach (as highlighted in Section IV-D).
Therefore, we modified the Cooja hardware simulator, so that
Frame Control Flags could be set or unset by manipulating an
appropriate control register.

The management of extra wake-ups does not require a
significant algorithmic complexity. Each node maintains an

7976 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019

Fig. 5. RPL-based network used in the experimental evaluation. Nodes are
represented by small circles, with node ID displayed inside each circle. Node
11 is the DAG root. Grid spacing is 10 m. Solid or dashed segments connect
nodes within radio transmission range of each other. Solid segments represent
the links chosen by RPL to form the DODAG. Numbers near the nodes indi-
cate the depth h in the RPL DODAG. For illustration purposes, transmission
and interference range of node 8 are displayed with two concentric circles,
green and yellow, respectively.

TABLE I
FIXED PARAMETERS

TABLE II
EXPERIMENTAL CONFIGURATIONS

ordered list of the extra wake-ups which are currently active.
In our implementation, an entry in the list contains information
on the phase offset of the wake-up (2 bytes), the number of
cycle times before the first wake-up is performed (1 byte),
the number of wake-ups yet to be performed down from WR
(1 byte), and the IPv6 address of the target node (16 bytes).
Hence, for each RR simultaneously active in the network,
20 bytes are needed in the memory of each traversed node.

Six experiments have been carried out to evaluate the
behavior of the proposed protocols. The fixed parameters
are shown in Table I. In detail, the value chosen for
Pg corresponds to the default guard time of ContikiMAC
for Sky nodes [31], computed as 10 · CHECK_TIME +
CHECK_TIME_TX, i.e., 10 · 2(tc + tr) + 6(tc + tr), where tc
is the interval between consecutive clear channel assessments
(CCAs), and tr is the time for each CCA, as defined in [4],
with tc = 1/2000 s and tr = 1/8192 s. Packet reception time
Pl corresponds to the estimated time required at the physical
layer to receive and acknowledge a packet, which is limited to
a 127-byte maximum payload [30]. The response computation

Fig. 6. Histogram bars show the average RR delay in the whole network in
each experiment. Error bars high and low limits are set to the average delay of
the two target nodes with highest and lowest average delay, respectively. The
diamonds mark the theoretical average delay, with reference to parameters in
Tables I and II.

time Pe depends on the application layer and has been mea-
sured empirically for our echo protocol. The phase offset Po
and the phase update threshold �Po have been set according
to [3], where the best Po has been estimated as around 35 ms
([3, Fig. 6(a)]) and the best �Po in between 7 ÷ 9 ms ([3,
Fig. 7]).

In each experiment, the root first waits 1 min for the for-
mation of the RPL DODAG. Then, the root node sends 250
requests, subsequently, to each of the ten server nodes, for
a total of 2500 requests. A request is sent every interval
TRR = 4 s plus an additional random time uniformly dis-
tributed between 0 s and 1 s. If the response does not reach
the root node within 5 s after the generation of the request, the
response is considered lost and is not included in the results.
Overall, about 1% of the responses were lost. The nodes’ con-
figurations, for each experiment, are summarized in Table II.
As can be seen from the results, PA is always effective in min-
imizing downward delay. The cycle time was set to: 0.125 ms
(8 Hz) in experiments A and B; and 0.250 ms (4 Hz) in exper-
iments C, D, E, and F. Cycle times within this range have
been used in the original design of ContikiMAC [4] and in
previous works [3], [10], [16], [28], [31]. In a real applica-
tion, the cycle time CT depends on several factors (e.g., on
the available energy to be consumed) and should be chosen
depending on the specific application requirements: a long
cycle time implies less wake-ups, hence it usually reduces
resources usage but increases delay. In experiments C and D,
PA for downward delay minimization has been integrated
with RAWMAC wake-ups for upward delay minimization
(Section IV-C). RW (Section IV-B) is used in experiments A
and E. In experiment C, both RAWMAC and RW have been
used simultaneously: an extra upward wave is created by
RW, when the response arrival is predicted, in addition to
the upward waves already generated by RAWMAC at fixed
intervals.

B. Delay Evaluation

In Fig. 6, the average RR delay for each experi-
ment is shown, together with the associated range between

MONICA et al.: WAVE-BASED RR PROTOCOL FOR LATENCY MINIMIZATION IN WSNs 7977

Fig. 7. Average delay by node depth in the DODAG, for each experi-
ment (continuous lines) and predicted by the theoretical models including the
supplementary collision delay given by (7) (dashed lines).

minimum and maximum delays. As expected, the RW upward
optimization protocol lowers the average delay, with respect
to the same configuration without the use of RW. The delay
reduction is more evident for experiment E (about 53% lower
with respect to experiment F) than for A (about 24% lower
with respect to B). The delay also decreases by about 43%
when introducing RAWMAC wake-ups (D) in a network
where PA is used (F), but the delay is higher than the one
obtained with the RW protocol (E). In fact, with both PA and
RAWMAC, packets travel upward and downward as quickly as
with RW, but they wait for the next upward wave at the server
node. For requests from the DAG root to target nodes, the use
of RAWMAC and RW together (C) provides little improve-
ment with respect to the use of RW alone (E). As expected,
a shorter cycle time CT decreases the overall delay both with
RW (A with respect to E) and without RW (B with respect to
F). More precisely, a shorter cycle time reduces the term CT/2
in (12) (Section IV-B) and provides faster packet collision
recovery. In Fig. 6, we also show, for comparison purposes, the
theoretically produced delays as diamonds. The delays are gen-
erally consistent with the theoretical performance predicted by
(3) (for experiments B and F), (12) (for experiments A, C, and
E), and (19) (for experiment D) in Section IV. The theoretical
delay expressions are corrected to take into account collisions,
adding the supplementary delay in (7). The single collision
probability pc is estimated, based on our simulation results,
as 0.027—this corresponds to the fraction of collided packet
transmissions during the experiments. Nevertheless, theoreti-
cal predictions do not fit perfectly (although very accurate), as
they correspond to an approximation, despite supplementary
delays introduced in (7). Moreover, a few effects were not con-
sidered in the analysis, such as temporary network congestion
and different collision probabilities in different regions of the
network, depending on the local node spatial density.

Fig. 7 illustrates the average RR delays, computed sepa-
rately for each group of nodes at the same depth in the RPL
DODAG, and predicted by the theoretical equations recalled
in the previous paragraph (i.e., (3) for experiments B and F;
(12) for experiments A, C, and E; and (19) for experiment D)
and corrected by the additive collision delay given by (7). In
general, the delay is approximately a linearly increasing func-
tion of the node depth h. It is important to note that theoretical

Fig. 8. Average RR delay in the network, for various values of TRR. Error
bars’ high and low limits are set to the average delays of the two target nodes
with highest and lowest average delays, respectively.

predictions have the same trends of the experimental results,
thus approximating them with a relative error between 1%
and 14%. In experiment D, as predicted, the delay increases
slowly, mostly because of the higher collision probability, until
depth 4, where the packet misses the next upward wave and
the delay increases by CT . At depth 3, the delay of experi-
ment D is comparable with that in experiment C, where RW
was also active. At that depth, the time to travel from the DAG
root to that node and back (11) is almost a cycle time CT . The
response packet waits a very short time at the node, because
an upward wave generated by RAWMAC occurs right after
the request reception, and the on-demand wave by RW does
not provide any additional improvement.

In order to evaluate the behavior of the proposed RW pro-
tocol under heavier traffic loads, experiments E and F were
repeated considering shorter values of the request interval TRR.
As shown in Fig. 8, the RR delay is essentially unchanged
for TRR equal to 4 s and 2 s, as most responses can reach
the root before the next request is sent. For lower TRR, how-
ever, requests start interfering with each other and the average
RR delay rises up to about twice as much for TRR = 0.5 s.
Nonetheless, the proposed RW protocol (experiment E) is
effective at reducing RR delay with respect to standard PA
(experiment F) even in these conditions.

C. Delay and Power Consumption

We approximate the power consumption of a simulated
node as proportional to the percentage of time which the
radio is active for either listening, receiving or transmitting,
as recorded by the Cooja PowerTracker. Indeed, in most real
nodes, the radio transceiver is the most power-consuming com-
ponent. A significant part of the radio activity in an experiment
occurs during the formation of the RPL DODAG, when the
nodes exchange a large amount of DIO and DAO messages.
However, after the first 3 min, the DODAG is stable and the
RPL trickle mechanism significantly reduces the number of
DIO messages. To prevent bias, we computed the radio activ-
ity time separately for the first 3 min and for the remaining
approximate 3.5 h of simulation.

7978 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019

TABLE III
RADIO ACTIVITY TIME PERCENTAGE

Fig. 9. Average RR delay for the network (x-axis) and radio activity time
(y-axis). Horizontal error bars show minimum and maximum average delay
(see Fig. 6). Vertical error bars show minimum and maximum radio activity
percentage over the nodes in the network.

The observed results are shown in Table III. During the
first 3 min, the radio activity is around 2% for experiments
C, D, E, and F, while it is about 25% lower for experiments
A and B. The results can be attributed to the large amount of
broadcast DIO messages during network initialization, each
of which is repeated for an entire cycle time. Cycle time is
indeed shorter in experiments A and B than in C, D, E, and F.
For the remaining part of the simulation, however, lower radio
activity occurs for longer cycle time, i.e., in experiments E
and F, because a smaller number of wake-ups occur. The same
cycle time has been used in experiments C and D, but in these
cases two wake-ups occur for each cycle time. Therefore, radio
activity is comparable to that of a network with half cycle time,
i.e., to configurations A and B. Finally, we observed a slight
increase in radio activity due to the RR delay optimization
RW, up to 9% in C compared to D.

The tradeoff between delay and power consumption is inves-
tigated in Fig. 9. Given a network with large cycle time
(experiment F), the RR delay may be greatly reduced (exper-
iment E) by using the proposed RW protocol, with a small
relative increase in power consumption. A similar but slightly
worse delay performance is instead obtained by integrat-
ing the RAWMAC protocol (experiment D). Integration with
RAWMAC provides fast data harvesting from the nodes, as
per RAWMAC properties. However, radio activity in experi-
ment D increases by 40% and is similar to B, which has half
the cycle time. A RR delay similar to E can be obtained by
adding RW to D, resulting in a small increase in radio activity
(experiment C).

Fig. 10. Total number of transmitted packets at the physical layer, during
the first 3 min (left) and the remaining part of the experiments (right).

In Fig. 10, we show the number of packets transmitted at
the physical layer during the experiments. The small number
of packets for experiments A and B during the first 3 min
confirms that, if the cycle time is shorter, broadcast packets
are repeated for a shorter time. Moreover, a smaller number of
packets are sent in experiments C and D than in E and F during
the first 3 min. As two wake-ups are performed for each cycle
time in C and D, the ContikiMAC phase-lock mechanism can
estimate the phase of the neighboring nodes with less probes.
Even so, the numbers of transmitted packets beyond 3 min are
comparable.

VI. CONCLUSION

In this paper, we have presented a cross-layer approach for
the delay optimization of an RR protocol in RPL-based WSNs.
The protocol generates upward and downward wake-up waves
to minimize packet propagation delay. The performance of the
proposed protocol has been evaluated using the Cooja sim-
ulator on the Contiki OS. The proposed approach has been
compared with a PA approach and has been found to signif-
icantly reduce the RR delay, by about 53% with a 250-ms
cycle time and by about 24% with a 125-ms cycle time.
Moreover, it has been shown that the protocol can co-exist
with the RAWMAC low-latency harvesting protocol. During
the experiments, a tradeoff between network latency and power
consumption has been highlighted. In particular, our results
show that the proposed approach reduces the RR delay at
the only cost of a slight increase in power consumption
(about 9%). However, the use of RAWMAC alongside the
proposed protocol almost doubles power consumption. As a
future work, we plan to integrate the proposed approach with
a multicast protocol, which allows to simultaneously query
multiple nodes.

ACKNOWLEDGMENT

The work reflects only the authors’ views; the European
Commission is not liable for any use that may be made of the
information contained herein.

REFERENCES

[1] T. Winter et al., “RPL: IPv6 routing protocol for low-power and lossy
networks,” IETF, Fremont, CA, USA, RFC 6550, Mar. 2012. [Online].
Available: https://tools.ietf.org/html/rfc6550

[2] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with COOJA,” in Proc. 31st IEEE
Conf. Local Comput. Netw., Tampa, FL, USA, Nov. 2006, pp. 641–648.
doi: 10.1109/LCN.2006.322172.

http://dx.doi.org/10.1109/LCN.2006.322172

MONICA et al.: WAVE-BASED RR PROTOCOL FOR LATENCY MINIMIZATION IN WSNs 7979

[3] P. Gonizzi, P. Medagliani, G. Ferrari, and J. Leguay, “RAWMAC: A
routing aware wave-based MAC protocol for WSNs,” in Proc. 10th IEEE
Int. Conf. Wireless Mobile Comput. Netw. Commun., Larnaca, Cyprus,
Oct. 2014, pp. 205–212. doi: 10.1109/WiMOB.2014.6962172.

[4] A. Dunkels, “The ContikiMAC radio duty cycling protocol,” Swedish
Inst. Comput. Sci., Rep. T2011:13, Dec. 2011. [Online]. Available:
http://dunkels.com/adam/dunkels11contikimac.pdf

[5] T. van Dam and K. Langendoen, “An adaptive energy-efficient
MAC protocol for wireless sensor networks,” in Proc. ACM 1st Int.
Conf. Embedded Netw. Sensor Syst. (SenSys), 2003, pp. 171–180.
doi: 10.1145/958491.958512.

[6] J. Polastre, J. Hill, and D. Culler, “Versatile low power media
access for wireless sensor networks,” in Proc. ACM 2nd Int.
Conf. Embedded Netw. Sensor Syst. (SenSys), 2004, pp. 95–107.
doi: 10.1145/1031495.1031508.

[7] M. L. Wymore and D. Qiao, “BladeMAC: Radio duty-cycling in a
dynamic, cyclical channel,” in Proc. IEEE Int. Conf. Commun., Paris,
France, May 2017, pp. 1–7. doi: 10.1109/ICC.2017.7996981.

[8] A. El-Hoiydi and J. Decotignie, “WiseMAC: An ultra low power MAC
protocol for the downlink of infrastructure wireless sensor networks,”
in Proc. 9th Int. Symp. Comput. Commun., vol. 1. Alexandria, Egypt,
Jul. 2004, pp. 244–251. doi: 10.1109/ISCC.2004.1358412.

[9] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC:
A short preamble MAC protocol for duty-cycled wireless sen-
sor networks,” in Proc. ACM 4th Int. Conf. Embedded Netw.
Sensor Syst. (SenSys), Boulder, CO, USA, 2006, pp. 307–320.
doi: 10.1145/1182807.1182838.

[10] M.-P. Uwase, M. Bezunartea, J. Tiberghien, J.-M. Dricot, and
K. Steenhaut, “Experimental comparison of radio duty cycling proto-
cols for wireless sensor networks,” IEEE Sensors J., vol. 17, no. 19,
pp. 6474–6482, Oct. 2017. doi: 10.1109/JSEN.2017.2738700.

[11] C. G. Peces, J. Eriksson, and N. Tsiftes, “Sleepy devices vs. Radio duty
cycling: The case of lightweight M2M,” IEEE Internet Things J., to be
published. doi: 10.1109/JIOT.2018.2871721.

[12] Q. Chen, H. Gao, Z. Cai, L. Cheng, and J. Li, “Distributed low-
latency data aggregation for duty-cycle wireless sensor networks,”
IEEE/ACM Trans. Netw., vol. 26, no. 5, pp. 2347–2360, Oct. 2018.
doi: 10.1109/TNET.2018.2868943.

[13] S. Bhandari, S. K. Sharma, and X. Wang, “Latency minimization in
wireless IoT using prioritized channel access and data aggregation,” in
Proc. IEEE Glob. Commun. Conf. (GLOBECOM), Singapore, Dec. 2017,
pp. 1–6. doi: 10.1109/GLOCOM.2017.8255038.

[14] A. Castagnetti, A. Pegatoquet, T. N. Le, and M. Auguin, “A joint duty-
cycle and transmission power management for energy harvesting WSN,”
IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 928–936, May 2014.
doi: 10.1109/TII.2014.2306327.

[15] O. Landsiedel, E. Ghadimi, S. Duquennoy, and M. Johansson, “Low
power, low delay: Opportunistic routing meets duty cycling,” in Proc.
ACM/IEEE 11th Int. Conf. Inf. Process. Sensor Netw., Beijing, China,
Apr. 2012, pp. 185–196. doi: 10.1109/IPSN.2012.6920956.

[16] P. Gonizzi, R. Monica, and G. Ferrari, “Design and evaluation of a
delay-efficient RPL routing metric,” in Proc. 9th Int. Wireless Commun.
Mobile Comput. Conf., Sardinia, Italy, Jul. 2013, pp. 1573–1577.
doi: 10.1109/IWCMC.2013.6583790.

[17] J. Vasseur, M. Kim, K. Pister, N. Dejean, and D. Barthel, “Routing
metrics used for path calculation in low-power and lossy networks,”
IETF, Fremont, CA, USA, RFC 6551, Mar. 2012. [Online]. Available:
https://tools.ietf.org/html/rfc6551

[18] P. Thubert, “Objective function zero for the routing protocol for low-
power and lossy networks (RPL),” IETF, Fremont, CA, USA, RFC 6552,
Mar. 2012. [Online]. Available: https://tools.ietf.org/html/rfc6552

[19] O. Gnawali and P. Levis, “The minimum rank with hysteresis objective
function,” IETF, Fremont, CA, USA, RFC 6719, Sep. 2012. [Online].
Available: https://tools.ietf.org/html/rfc6719

[20] J. Song et al., “WirelessHART: Applying wireless technology in real-
time industrial process control,” in Proc. IEEE Real Time Embedded
Technol. Appl. Symp., St. Louis, MO, USA, Apr. 2008, pp. 377–386.
doi: 10.1109/RTAS.2008.15.

[21] T. Watteyne, M. Palattella, and L. Grieco, “Using IEEE 802.15.4e time-
slotted channel hopping (TSCH) in the Internet of Things (IoT): Problem
statement,” IETF, Fremont, CA, USA, RFC 7554, May 2015. [Online].
Available: https://tools.ietf.org/html/rfc7554

[22] M. Sha, G. Hackmann, and C. Lu, “Energy-efficient low power listen-
ing for wireless sensor networks in noisy environments,” in Proc. ACM
12th Int. Conf. Inf. Process. Sensor Netw. (IPSN), 2013, pp. 277–288.
[Online]. Available: http://doi.acm.org/10.1145/2461381.2461415

[23] J. Park and J. Ko, “Dynamic low-power listening with data-rate
proportional wakeup period management,” in Proc. IEEE 22nd Int.
Conf. Embedded Real Time Comput. Syst. Appl., Daegu, South Korea,
Aug. 2016, p. 97. doi: 10.1109/RTCSA.2016.35.

[24] S. Zhuo and Y.-Q. Song, “GoMacH: A traffic adaptive multi-channel
MAC protocol for IoT,” in Proc. IEEE 42nd Conf. Local Comput. Netw.,
Singapore, Oct. 2017, pp. 489–497. doi: 10.1109/LCN.2017.72.

[25] I. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, “Z-MAC: A
hybrid MAC for wireless sensor networks,” IEEE/ACM Trans. Netw.,
vol. 16, no. 3, pp. 511–524, Jun. 2008. doi: 10.1109/TNET.2007.900704.

[26] S. Zhuo, Z. Wang, Y.-Q. Song, Z. Wang, and L. Almeida, “iQueue-
MAC: A traffic adaptive duty-cycled MAC protocol with dynamic slot
allocation,” in Proc. IEEE Int. Conf. Sens. Commun. Netw., New Orleans,
LA, USA, Jun. 2013, pp. 95–103. doi: 10.1109/SAHCN.2013.6644967.

[27] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” Wireless Netw.,
vol. 11, no. 4, pp. 419–434, Jul. 2005. doi: 10.1007/s11276-005-1766-z.

[28] M. Michel and B. Quoitin, “ContikiMAC vs X-MAC performance
analysis,” CoRR, vol. abs/1404.3589, pp. 1–29, Apr. 2014. [Online].
Available: http://arxiv.org/abs/1404.3589

[29] K. Nichols, S. Blake, F. Baker, and D. L. Black, “Definition of the
differentiated services field (DS field) in the IPv4 and IPv6 headers,”
IETF, Fremont, CA, USA, RFC 2474, Dec. 1998. [Online]. Available:
https://tools.ietf.org/html/rfc2474

[30] IEEE Standard for Low-Rate Wireless Networks,
IEEE Standard 802.15.4-2015, pp. 1–709, Apr. 2016.
doi: 10.1109/IEEESTD.2016.7460875.

[31] RDC Phase Optimization. Accessed: Mar. 29, 2019. [Online]. Available:
https://github.com/contiki-os/contiki/wiki/RDC-Phase-optimization

Riccardo Monica (S’15–GS’15–M’17) received
the master’s degree in computer engineering and
the Ph.D. degree in information technologies from
the University of Parma, Parma, Italy, in 2014 and
2018, respectively.

He is currently a Post-Doctoral Researcher with
the Robotics and Intelligent Machines Laboratory,
Department of Engineering and Architecture,
University of Parma. His current research interests
include robot perception and 3-D reconstruction.

Luca Davoli (GS’15–M’17) received the master’s
degree in computer engineering and the Ph.D. degree
in information technologies from the Department
of Information Engineering, University of Parma,
Parma, Italy, in 2013 and 2017, respectively.

He is currently a Post-Doctoral Researcher with
the Internet of Things (IoT) Laboratory, Department
of Engineering and Architecture, University of
Parma. His current research interests include IoT,
pervasive computing, big stream, mobile computing,
and software-defined networking.

Gianluigi Ferrari (S’96–M’98–SM’12) received the
Laurea (summa cum laude) and Ph.D. degrees in
electrical engineering from the University of Parma,
Parma, Italy, in 1998 and 2002, respectively.

Since 2002, he has been with the University of
Parma, where he is currently an Associate Professor
of telecommunications (with National Scientific
Qualification for Full Professorship since 2013)
and also the Coordinator of the Internet of Things
(IoT) Laboratory, Department of Engineering and
Architecture. He is the co-founder and the President

of things2i s.r.l., a spin-off company of the University of Parma dedicated
to IoT and smart systems. He has authored or coauthored extensively. His
current research interests include signal processing, advanced communication
and networking, and IoT and smart systems.

http://dx.doi.org/10.1109/WiMOB.2014.6962172
http://dx.doi.org/10.1145/958491.958512
http://dx.doi.org/10.1145/1031495.1031508
http://dx.doi.org/10.1109/ICC.2017.7996981
http://dx.doi.org/10.1109/ISCC.2004.1358412
http://dx.doi.org/10.1145/1182807.1182838
http://dx.doi.org/10.1109/JSEN.2017.2738700
http://dx.doi.org/10.1109/JIOT.2018.2871721
http://dx.doi.org/10.1109/TNET.2018.2868943
http://dx.doi.org/10.1109/GLOCOM.2017.8255038
http://dx.doi.org/10.1109/TII.2014.2306327
http://dx.doi.org/10.1109/IPSN.2012.6920956
http://dx.doi.org/10.1109/IWCMC.2013.6583790
http://dx.doi.org/10.1109/RTAS.2008.15
http://dx.doi.org/10.1109/RTCSA.2016.35
http://dx.doi.org/10.1109/LCN.2017.72
http://dx.doi.org/10.1109/TNET.2007.900704
http://dx.doi.org/10.1109/SAHCN.2013.6644967
http://dx.doi.org/10.1007/s11276-005-1766-z
http://dx.doi.org/10.1109/IEEESTD.2016.7460875

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

