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A B S T R A C T

In this paper, we analyze throughput and delay performance of clustered Machine Type Communication (MTC)
devices which access an eNodeB utilizing a primary spectrum in underlay mode. We assume that the MTC
devices form two clusters and there is an optimal preamble allocation between the two clusters to maximize the
throughput. We further investigate the impact of the tolerable interference threshold on throughput, successful
preamble decoding probability, and delay. Then, the impact of the preamble partition factor and the access
barring factor on throughput and delay is analyzed. Finally, we evaluate the impact of the number of devices,
retransmission requests, and preamble partitions on the delay.
1. Introduction

Machine-to-Machine (M2M) communication is evolving as a promis-
ing paradigm in emerging 5G networks, which will support Internet of
Things (IoT). IoT has gained phenomenal momentum due to significant
commercial and research interest. Furthermore, Narrow-Band IoT (NB-
IoT) has been standardized under the Third Generation Partnership
Project (3GPP) to provide reliable connections among large numbers
of inexpensive low power IoT devices over large areas (Ha et al.,
2018). M2M communications represent an enabling technology for
IoT networking, as they differ from Human-to-Human (H2H) commu-
nications in several distinct features, such as: small amount of data
transmission; sporadic data transmission; delay; tolerance; and group-
based operations (3GPP, 2011). In this scenario, a substantial number
of IoT devices will face a shortage of available spectrum. Cognitive
Radio (CR) has emerged as a potential approach to solve the conflicting
problems of shortage and under-utilization of the available spectrum.
It allows unlicensed secondary users to access the spectrum allocated
to licensed users or Primary Users (PUs) either opportunistically (in
the absence of PUs) or without creating unacceptable interference to
existing PUs (if the presence of PUs) (Mitola and Maguire, 1999).

CR-enabled IoT devices will be able to optimize spectrum utiliza-
tion through spectrum sensing and dynamic spectrum access capabili-
ties (Aijaz and Aghvami, 2015). The throughput performance of M2M
communications is evaluated in Lee et al. (2011), where two different
approaches for dividing the available Random Access (RA) pream-
bles are considered using an Access Class Barring (ACB) mechanism
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(Di et al., 2019). A dynamic, delay-tolerant, and delay-sensitive scheme
for the allocation of Random Access CHannel (RACH) resources be-
tween two clusters of devices is proposed in Li et al. (2015). The
proposed scheme is shown to improve access probability and reduce
access delay. While Machine Learning (ML)-based RA schemes have
gathered considerable attention in recent years (Zhang et al., 2023,
2022), the optimization of access delay in these schemes continues to be
a challenge. In Jiang et al. (2018), repeated preamble retransmissions
in the presence of collisions are considered in the RACH procedure and
the RACH success probability is evaluated, in the end demonstrating
how the utilization of a repetition scheme has been shown to notably
enhance the RACH success probability. The authors in Guo et al.
(2022) propose a collision-aware ACB RA scheme that incorporates
dynamic adjustments to both the ACB factor and preamble resources.
In Chowdhury and De (2022), the authors have presented an approach
that involves dynamically assigning higher priority in ACB to Machine
Types Devices (MTDs) whose data queue sizes approach their buffer
limits. To mitigate contention during preamble access, in Swain and
Subudhi (2023) Deep Learning (DL)-based models have been adopted to
design a RACH procedure. This approach aims at predicting incoming
connection requests in advance, and allowing for proactive allocation
of uplink resources to UEs.

A transmission scheme for low volume data is proposed in Oh and
Shin (2017), in the context of 3GPP NB-IoT networks avoiding a Radio
Resource Control (RRC) set up (Debbabi et al., 2022): the access success
probability and uplink utilization are shown to improve significantly.
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However, no cognitive scenario is considered in Oh and Shin (2017). A
cognitive cellular system architecture for M2M communications, along
with possible transmission scenarios, is presented in Ejaz and Ibnkahla
(2015), where energy-efficient resource allocation is also considered.

An advanced power allocation policy in a CR-based M2M network,
where multiple unlicensed M2M devices share the same licensed spec-
trum of a PU, is investigated in Yao et al. (2014). Underlay CR enabling
Machine Type Communication (MTC) devices sharing the spectrum of
PUs, such as cellular UE, is studied in Alhussien and Gulliver (2022),
where power allocation problems are addressed for improving the
energy efficiency of MTC devices by minimizing their power consump-
tion or maximizing their energy efficiency. A cognitive clustered M2M
communication with a joint selection of cellular equipment and M2M
devices is analyzed in Abdullah et al. (2019) to reduce outage of M2M.
A hybrid duplex Base Station (BS) switching between half-duplex and
full-duplex modes to attain the best performance is considered.

In Li et al. (2018), the throughput of a RA narrowband CR IoT
network is maximized through selection of optimal sensing parameter
via collaborative sensing. In detail, the trade-off between RA NB-CR-
IoT network throughput and sensing accuracy is investigated, and a
set of optimal (throughput maximizing) sensing parameter is derived.
Throughput and delay performance of massive multi-group RA M2M
communication in industrial IoT (IIoT) is studied in Zhang et al. (2019).
MTDs are divided into multiple groups on the basis of their delay
requirement, and a double queue model is used to characterize the
access behavior of each MTD device. To this end, throughput of delay
tolerant MTDs is maximized under delay constraints of delay-sensitive
MTDs by an appropriately tuning back-off parameters of delay-sensitive
MTDs.

Given the scarcity in spectrum due to the exponential growth of
the number of MTC devices, the licensed spectrum of a PU needs to
be utilized in cognitive mode. In the process of accessing the primary
spectrum in underlay mode, the analysis of throughput and delay of
MTC devices, as a performance metrics, is important while satisfying
the Quality of Service (QoS) of the PU. MTC devices may occur in
cluster or groups and may be controlled by secondary BSs or eNBs of
that group. However, while the above-discussed literature on cognitive
M2M communications considers several aspects of M2M communica-
tions in cognitive mode, to the best of our knowledge, a comprehensive
analysis of throughput and delay of a cluster of MTC devices, with an
appropriate division of RA preambles while satisfying QoS of licensed
PU in terms of an outage constraint in underlay cognitive mode, is miss-
ing. Furthermore, the impact of tolerable interference in an underlay
mode on the performance of cluster-based MTC devices and appropriate
division of RA preambles need to be investigated.

Given the ‘‘gaps’’ highlighted in the above literature works and
compared, for the sake of completeness, in Table 1, in this paper the
performance of cellular-based IoT devices coexisting with a primary
network in an underlay mode is examined. In particular, two clusters of
IoT devices, which share the frequency band of a transmitter–receiver
pair of PUs in an underlay mode while communicating to their cor-
responding eNB, are considered. We evaluate the successful decoding
probability of a MTC device belonging to a cluster and satisfying a
cognitive constraint (i.e., the interference at the PU receiver is kept
below a tolerable threshold). Partitioning of RACH preambles between
two clusters is considered in order to maximize the throughput. An an-
alytical expression for the optimal number of preambles to be allocated
to each cluster to maximize the throughput is derived. To the best of our
knowledge, the investigation of a transmission scheme of two clusters
of IoT devices sharing a common spectrum of a transmitter–receiver
pair of PUs in an underlay mode and the analysis of throughput and
delay performance for such networks are novel.

Overall, the major contributions of our paper can be highlighted as
follows.

• We propose a novel network model with two clusters of MTC
2

devices accessing the licensed spectrum of a PU.
Fig. 1. System model composed by two clusters of MTC devices co-existing with a
transmitter–receiver pair of PUs.

• We evaluate the throughput and delay performance of two clus-
ters of MTC devices.

• We develop a novel analytical framework to evaluate the success-
ful decoding probability of MTC devices of two clusters (as shown
in Fig. 1) at their associated eNBs, with all the devices sharing the
frequency band of a transmitter–receiver pair of PUs in underlay
mode.

• We derive a novel analytical expression for optimal RA preamble
partition (Yang et al., 2023) between the two clusters, in order to
maximize the throughput.

• We derive the impact of the tolerable interference threshold at
the PU receiver and the portion of tolerable interference allowed
by each cluster on the decoding probability and throughput.
Furthermore, we evaluate the impacts of the primary outage
constraint, the ACB mechanism, and the number of preambles on
the throughput and delay.

• We develop a MATLAB-based simulation framework in order to
validate the results predicted by our novel analytical framework.

The remainder of this paper is organized as follows. The proposed
communication system model is introduced in Section 2. The perfor-
mance evaluation is carried out in Section 3. In Section 4, simulation
results are presented and discussed. Finally, in Section 5 we draw our
conclusions.

2. System model

We consider two eNBs with two clusters of IoT devices that co-exist
with a transmitter–receiver pair of PUs. In cluster #1, MTC devices
access eNodeB1 whereas in cluster #2 MTC devices access eNodeB2,
as depicted in Fig. 1. In the proposed system model, we explore a
CR scenario in which MTC devices can access the spectrum of the
PU as long as the interference generated for the PU, resulting from
the MTC device cluster, remains below the PU’s tolerable interference
limit. In cluster #1, MTC devices generate a fraction 𝜂 ∈ (0, 1) of the
tolerable interference level, while a fraction (1 − 𝜂) of the tolerable
interference is generated by the MTC devices in cluster #2. Therefore,
the transmission power of the MTC devices is constrained so that it does
not exceed the interference threshold at the PU (Zhang et al., 2013).
MTC devices attempt to access the network following a contention-
based RA procedure between the MTC devices and the eNB, which
consists (as shown in Fig. 2) of the following four steps: (i) preamble
transmission; (ii) RA response; (iii) connection request; (iv) connection
completion.
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Table 1
Comparison between the proposed work and literature references.

Ref. Device Underlay Overlay Metric Clustering Optimization Preamble partition

Li et al. (2018) NB-IoT ✗ ✓ Throughput ✗ Throughput ✗

Zhang et al. (2019) MTC ✗ ✗ Throughput, delay ✓ Throughput via choice
of back-off parameter

✗

Partition of back-off
parameter

Abdullah et al.
(2019)

MTC ✗ ✓

Sharing cellular BS
in TDMA mode

Outage ✓ Outage probability ✗

Our work MTC ✓ ✗ Throughput, delay ✓

Two clusters
Throughput via optimal
preamble partition

✓

Fig. 2. Contention-based RA procedure of MTC devices accessing the eNB.

Our goal is to investigate the probability of successful access request
to an eNB. Whenever an MTC device attempts to access an eNB, it
first transmits an access request. In particular, an MTC device selects
a preamble of the RACH to transmit an access request according to a
slotted Aloha protocol. In contention-based RA, a slotted Aloha protocol
can be used with the number of available preambles equal to the
number of slots (Li et al., 2015). If two or more devices select the same
preamble during the same slot, thus making the eNB unable to decode
any preamble, a collision occurs. After the Random Access Response
(RAR) for each successfully decoded preamble, the eNB generates an
identifier and, then, transmits a RAR to the MTC devices. Next, the MTC
device transmits a connection request message with a User Equipment
(UE) identifier to the eNB. Eventually, the eNB transmits a connection
completion message to the MTC device. If an MTC device does not
receive a connection completion message from the eNB, a failure in
the contention completion occurs and the MTC device attempts a new
access.

3. Performance analysis

In the following, the probability of successful access of an MTC
device to the eNB, as a function of its transmit power, is derived. We
consider that the allowed PU outage probability at PU is denoted as
𝛿 ∈ (0, 1). We assume that all the channels are Rayleigh-faded so that
the channel power gains are exponentially distributed. The probability
of an outage can be expressed as follows:

pu−out1 = Pr
{

𝑃TX(pu)
𝑖,1

(pu)𝑖,1 > 𝜂𝐼th

}

= 1 − Pr

⎧

⎪

⎨

⎪

⎩

(pu)𝑖,1 ≤
𝜂𝐼th

𝑃TX(pu)
𝑖,1

⎫

⎪

⎬

⎪

⎭

(1)

where: 𝑃TX(pu)
𝑖,1

is the transmit power (dimension: [mW]) of the 𝑖th MTC

device from cluster #1 to PU; (pu)𝑖,1 is the channel gain (adimensional),
exponentially distributed with mean 𝜇1, from the 𝑖th device of clus-
ter #1 to PU; 𝜂 is the reserved fraction (adimensional) of 𝐼 , where 𝐼
3

th th
is the tolerable interference threshold power (dimension: [mW]). The
probability of outage is bounded as follows:

pu−out1 ≤ 𝛿 . (2)

Taking into account the exponential distribution of (pu)𝑖,1 , it follows that:

1 − pu−out1 = Pr

⎧

⎪

⎨

⎪

⎩

(pu)𝑖,1 ≤
𝜂𝐼th

𝑃TX(pu)
𝑖,1

⎫

⎪

⎬

⎪

⎭

= 1 − 𝑒
−𝜂𝐼th∕𝜇1𝑃TX(pu)𝑖,1 . (3)

Using (2) in (3), one obtains

𝑒
−𝜂𝐼th∕𝜇1𝑃TX(pu)𝑖,1 ≤ 𝛿 (4)

and, then,
𝜂𝐼th

𝜇1𝑃TX(pu)
𝑖,1

≥ − log (𝛿) ,

𝜂𝐼th
𝜇1𝑃TX(pu)

𝑖,1

≥ log
( 1
𝛿

)

,

𝑃TX(pu)
𝑖,1

≤
𝜂𝐼th

𝜇1 log
(

1
𝛿

) ,

𝑃TX(pu)
𝑖,1

≤
−𝜂𝐼th

𝜇1 log(𝛿)
. (5)

Similarly, the outage probability in cluster #2 can be expressed as

pu−out2 = Pr
{

𝑃TX(pu)
𝑖,2

(pu)𝑖,2 > (1 − 𝜂)𝐼th

}

(6)

where (pu)𝑖,2 is the channel gain (exponentially distributed with mean
equal to 𝜇2) from the 𝑖th device in cluster #2 to the PU. Imposing that
pu−out2 ≤ 𝛿 and carrying out the same analytical steps above, it follows
that:

𝑃TX(pu)
𝑖,2

≤
(𝜂 − 1)𝐼th
𝜇2 log(𝛿)

. (7)

Therefore, the maximum transmit powers of any MTC devices in the
two clusters are the ones specified at the right-hand sides of (5) and (7).

The decoding probability of the 𝑖th MTC device (𝑖 ∈ {1, 2,… , 𝑁1})
in cluster #1 at eNodeB1 can be expressed as follows (Oh and Shin,
2017):

dec(e1)𝑖,1
= Pr

⎧

⎪

⎨

⎪

⎩

𝑃TX(e1)
𝑖,1

(e1)𝑖,1

𝑃TX(pu)
(e1)(pu) + 𝑃TX(e1)

𝑖,2
(e1)𝑖,2 + 𝑛0

> 𝛾1

⎫

⎪

⎬

⎪

⎭

(8)

where: (e1)𝑖,1 is the channel gain (adimensional and exponentially dis-

tributed with mean of 1/𝜆𝑣) from the 𝑖th MTC device of cluster #1
to eNodeB1; 𝑃TX(pu)

is the PU transmit power (dimension: [mW]); (e1)𝑖,2

is the channel gain (adimensional and exponentially distributed with
mean of 1∕𝜆 ) from the 𝑖th device of cluster #2 to eNodeB1; (e1) is the
𝑥 (pu)
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𝑈
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𝑓

𝐹

𝐹

F





n
M
a

𝛽

𝑀





channel gain (adimensional and exponentially distributed with mean of
1∕𝜆𝑦) from PU to eNodeB1; 𝑃TX(e1)

𝑖,1
is the transmit power (dimension:

[mW]) from the 𝑖th device in cluster #1 to eNodeB1; 𝑃TX(e1)
𝑖,2

is the

transmit power (dimension: [mW]) from the 𝑖th device in cluster #2
to eNodeB1; 𝛾1 is the threshold (adimensional) above which an MTC
device in cluster #1 is decodable at eNodeB1; and 𝑛0 is the thermal
noise power (dimension: [mW]), which can be neglected in the scenario
of interest.

Let 𝑉 = 𝑎𝑋 + 𝑏𝑌 , where 𝑎 ≜ 𝑃TX(e1)
𝑖,2

, 𝑏 ≜ 𝑃TX(pu)
, 𝑋 ≜ (e1)𝑖,2 , 𝑌 ≜ (e1)(pu),

≜ (e1)𝑖,1 . From (8), one can write:

dec(e1)𝑖,1
= Pr

⎧

⎪

⎨

⎪

⎩

𝑈
𝑉

>
𝛾1

𝑃TX(pu)
𝑖,1

⎫

⎪

⎬

⎪

⎭

= Pr
{

𝑊 > 𝛼1
}

= 1 − 𝐹𝑊 (𝛼1) (9)

where 𝑊 = 𝑈∕𝑉 and 𝛼1 = 𝛾1∕𝑃TX(pu)
𝑖,1

.
In order to evaluate dec(e1)𝑖,1

, the Probability Density Function (PDF)
f 𝑉 = 𝑎𝑋 + 𝑏𝑌 can be expressed as

𝑉 (𝑣) =
𝜆𝑥𝜆𝑦

𝜆𝑦𝑎 − 𝜆𝑥𝑏

(

𝑒−𝜆𝑥
𝑣
𝑎 − 𝑒−𝜆𝑦

𝑣
𝑏
)

. (10)

The corresponding Cumulative Distribution Function (CDF) of
𝑊 (𝛼1) in (9) can then be written as

𝑊 (𝛼1) = Pr
{𝑈
𝑉

< 𝛼1
}

= ∫

∞

0
𝐹𝑈

(

𝛼1𝑣
)

𝑓𝑉 (𝑣)𝑑𝑣

= 1 −
𝜆𝑥𝜆𝑦

𝑎𝑏
(

𝜆𝑥
𝑎 + 𝛼1𝜆𝑣

)( 𝜆𝑦
𝑏 + 𝛼1𝜆𝑣

) . (11)

inally, one obtains (see Appendix for details)

dec(e1)𝑖,1
= 1 − 𝐹𝑊 (𝛼1)

=
𝜆𝑥𝜆𝑦

𝑎𝑏
(

𝜆𝑥
𝑎 + 𝛼1𝜆𝑣

)( 𝜆𝑦
𝑏 + 𝛼1𝜆𝑣

) .
(12)

Similarly, the decoding probability of the 𝑖th MTC device
(𝑖 ∈ {1, 2,… , 𝑁2}) in cluster #2 at eNodeB2 can be expressed as:

dec(e2)𝑖,2
= Pr

⎧

⎪

⎨

⎪

⎩

𝑃TX(e2)
𝑖,2

(e2)𝑖,2

𝑃TX(pu)
(e2)(pu) + 𝑃TX(e2)

𝑖,1
(e2)𝑖,1 + 𝑛0

> 𝛾2

⎫

⎪

⎬

⎪

⎭

=
𝜆′𝑥𝜆

′
𝑦

𝑎1𝑏1
(

𝜆′𝑥
𝑎1

+ 𝛼2𝜆′𝑣
)

(

𝜆′𝑦
𝑏1

+ 𝛼2𝜆′𝑣

) (13)

where: 𝛼2 ≜ 𝛾2∕𝑃TX(e2)
𝑖,2

; 𝑎1 ≜ 𝑃TX(e2)
𝑖,1

; 𝑏1 ≜ 𝑃TX(pu)
; (e2)𝑖,2 is the chan-

nel gain from the 𝑖th MTC device in cluster #2 to eNodeB2, which
is exponentially distributed with mean of 1∕𝜆′𝑣; (e2)𝑖,1 is the channel

gain from the 𝑖th MTC device of cluster #1 to eNodeB2, which is
exponentially distributed with mean 1∕𝜆′𝑥; (e2)(pu) is channel gain from

PU to eNodeB2, which is exponentially distributed with mean 1∕𝜆′𝑦;
𝑃TX(e2)

𝑖,1
is the transmit power from the 𝑖th MTC device in cluster #1 to

eNodeB2; 𝛾2 is the threshold above which an MTC device in cluster #2
is decodable at eNodeB2.

3.1. Dynamic adjustment of preamble partition

After clustering the attempting devices into two groups, the eNB
dynamically determines the RA preamble partition between the clusters
4

before letting the MTC devices access the network. In a certain RA slot,
we denote: 𝑁1 as the number of MTC devices in cluster #1; 𝑁2 as the
umber of MTC devices in cluster #2; 𝑁tot as the total number of the
TC devices, i.e., 𝑁tot = 𝑁1 +𝑁2. We define the preamble partition 𝛽

s follows (Li et al., 2015):

≜
𝑀1
𝑀2

(14)

𝑀1 +𝑀2 = 𝑀tot (15)

where: 𝑀1 represents the number of preambles allocated for cluster #1;
𝑀2 represents the number of preambles allocated for cluster #2; and
𝑀tot is the total number of preambles (Li et al., 2015). From (14) and
(15), it follows that:

𝑀1 =
𝑀tot𝛽
1 + 𝛽

(16)

2 =
𝑀tot
1 + 𝛽

. (17)

Since every MTC device selects the preamble randomly from the
available pool, collisions may occur if more than one MTC device
selects the same preamble (Laya et al., 2013). Moreover, according
to the contention-based RA procedure, slotted Aloha is the adopted
multiple access protocol, with the number of available preambles equal
to the number of slots (Li et al., 2015). In this way, the access success
probability can be expressed as (Li et al., 2015)

𝑃𝑠 = 𝑒−
𝑁
𝑀 (18)

where 𝑁 is the number of devices and 𝑀 is the number of preambles
available within a RA slot. The average number of devices successfully
completing the access attempts from the two clusters can be expressed
as follows (Li et al., 2015):

𝑁ssa,1 = 𝑁1𝑓1𝑒
−𝑁1𝑓1

𝑀1 (19)

𝑁ssa,2 = 𝑁2𝑓2𝑒
−𝑁2𝑓2

𝑀2 (20)

where: 𝑓1 is the ACB factor of cluster #1; and 𝑓2 is the ACB factor of
cluster #2.

At this point, we can express the throughput of a device from
cluster #1, the throughput of a device from cluster #2, and the total
throughput as follows, respectively (Lee et al., 2011; Li et al., 2015):

1 = 𝑁ssa,1dec(e1)𝑖,1
(21)

2 = 𝑁ssa,2dec(e2)𝑖,2
(22)

tot = 1 + 2 . (23)

Finally using (12), (13), (19)–(23), we can write:

tot = dec(e1)𝑖,1
𝑁1𝑓1 exp

{

−𝑁1𝑓1(1 + 𝛽)
𝑀tot𝛽

}

+ dec(e2)𝑖,2
𝑁2𝑓2 exp

{

−𝑁2𝑓2(1 + 𝛽)
𝑀tot

}

. (24)

At this point, our goal is to find the optimal value of 𝛽 which
maximizes tot . Imposing 𝜕tot∕𝜕𝛽 = 0, where
𝜕tot
𝜕𝛽

= dec(e1)𝑖,1
𝑁1𝑓1 exp

{

−𝑁1𝑓1
𝑀tot

}

exp
{

−𝑁1𝑓1
𝑀tot𝛽

}(

𝑁1𝑓1
𝑀tot𝛽2

)

+ dec(e2)𝑖,2
𝑁2𝑓2

exp
{

−𝑁2𝑓2
𝑀tot

}

exp
{

−𝑁2𝑓2𝛽
𝑀tot

}(

−𝑁2𝑓2
𝑀tot

)

(25)

it follows:

dec(e1)𝑖,1
𝑁2

1𝑓
2
1 exp

{

−𝑁1𝑓1
𝑀tot𝛽

(1 + 𝛽)
}(

1
𝛽2

)

=  (e2)𝑁2𝑓 2 exp
{

−𝑁2𝑓2 (1 + 𝛽)
}

. (26)
dec𝑖,2 2 2 𝑀tot
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a

d

E

Considering the logarithm of both sides of (26), one obtains:

log
(

dec(e1)𝑖,1

)

+ 2 log(𝑁1) + 2 log(𝑓1) −
{

𝑁1𝑓1
𝑀tot𝛽

(1 + 𝛽)
}

+ log
(

1
𝛽2

)

= log
(

dec(e2)𝑖,2

)

+ 2 log(𝑁2) + 2 log(𝑓2) −
{

𝑁2𝑓2
𝑀tot

(1 + 𝛽)
}

(27)

nd, finally,

log
⎛

⎜

⎜

⎝

dec(e1)𝑖,1

dec(e2)𝑖,2

⎞

⎟

⎟

⎠

+ 2 log
(

𝑁1
𝑁2

)

+ 2 log
(

𝑓1
𝑓2

)

=
{

𝑁1𝑓1
𝑀tot𝛽

(1 + 𝛽)
}

−
{

𝑁2𝑓2
𝑀tot

(1 + 𝛽)
}

− log
(

1
𝛽2

)

. (28)

The optimal value of 𝛽 which maximizes the throughput is obtained
by solving (28). Since a closed-form expression of the optimal value of
𝛽 is not available, we obtain such a value by solving the transcendental
equation (28) numerically. The highest throughput1 is obtained by
inserting the obtained value of 𝛽 in (24).

3.2. Delay analysis of M2M communications

We now investigate the system performance in terms of delay. MTC
devices transmit RA requests to the eNB with a period of duration 𝑇𝑠.
If more than one MTC device sends requests to the eNB using the same
preamble at the same time, then RA requests collide and the eNB cannot
decode any RA attempt. Whenever a collision occurs, contention is not
considered to be resolved. MTC devices can identify the contention
resolution results at the last step of the RA. If contention is resolved,
then MTC devices will get into RRC connected mode to transmit the
data to the eNB. MTC devices repeat the process of transmitting the
preambles when contention is not resolved. In this case, devices wait for
a specific period of time, denoted as back-off interval (ranging from 0 ms
to 960 ms Tyagi et al., 2012; Althumali et al., 2020), before retransmit-
ting to the eNB. For simplicity, we consider a back-off interval equal to
0 ms, i.e., no back-off (Tyagi et al., 2012). If more than one MTC device
selects the same preamble at the same time, then they re-transmit in
the next time. In our system model, we assume that (i) MTC devices
re-transmitting the preambles randomly choose a preamble from the
available 𝑀tot preambles and (ii) choosing the same preamble again is
allowed. Denoting the preamble transmission success probability as 𝑓 ,
the probability of 𝑐 collisions before a success can be written as (Tyagi
et al., 2012)

Pr {𝑐 consecutive collisions} = (1 − 𝑓 )𝑐𝑓
(

1 − dec(e1)𝑖,1

)

(29)

under the assumption of 𝑐 independent unsuccessful consecutive trans-
missions, each with probability (1 − 𝑓 ), followed by a successful trans-
mission, with probability 𝑓 , at the (𝑐 + 1)th attempt.

The probability of an MTC device to experience 𝑐 ∈ {0, 1,… ,𝑊 −1}
collisions can be expressed as follows:

Pr {MTC device to experience 𝑐 consecutive collisions} =

=
Pr {𝑐 consecutive collisions}

∑𝑊 −1
𝑘=0 Pr {𝑘 consecutive collisions}

=
(1 − 𝑓 )𝑐𝑓

∑𝑊 −1
𝑘=0 (1 − 𝑓 )𝑘𝑓

(

1 − dec(e1)𝑖,1

)

(30)

where 𝑊 is the maximum number of allowed retransmissions. The
expected number of collisions E(𝐶) is (Tyagi et al., 2012)

E(𝐶) =
𝑊 −1
∑

𝑗=0
𝑗

(1 − 𝑓 )𝑗𝑓
∑𝑊 −1

𝑘=0 (1 − 𝑓 )𝑘𝑓

(

1 − dec(e1)𝑖,1

)

. (31)

1 Considering the throughput expression in (24) it can be verified that tot
is monotonically increasing for 𝛽 between 0 and the value which solves (28),
whereas it is monotonically decreasing for larger values. Hence, the value of 𝛽
which solves (28) is indeed the maximizer of the throughput.
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Indicating as 𝑇𝑠 the duration of a transmission act, the expected
elay E(𝐷1) can be written as follows:

(𝐷1) = 𝑇𝑠
𝑊 −1
∑

𝑗=0
𝑗

(1 − 𝑓 )𝑗𝑓
∑𝑊 −1

𝑘=0 (1 − 𝑓 )𝑘𝑓

(

1 − dec(e1)𝑖,1

)

. (32)

In order to account for the delay in the absence of collisions,
according to 3GPP (2011) we add 𝑇𝑠∕2, which is the expected value
for a uniform delay in [0, 𝑇𝑠] (Tyagi et al., 2012). Thus, the expected
delay in (32) can be expressed as follows:

E(𝐷1) =
𝑇𝑠
2

+ 𝑇𝑠
𝑊 −1
∑

𝑗=0
𝑗

(1 − 𝑓 )𝑗𝑓
∑𝑊 −1

𝑘=0 (1 − 𝑓 )𝑘𝑓

(

1 − dec(e1)𝑖,1

)

(33)

=
𝑇𝑠
2

+
𝑇𝑠

∑𝑊 −1
𝑘=0 (1 − 𝑓 )𝑘

𝑊 −1
∑

𝑗=0
𝑗(1 − 𝑓 )𝑗

(

1 − dec(e1)𝑖,1

)

. (34)

Assuming 𝓁 < 1, it holds that
𝑊 −1
∑

𝑘=0
𝓁𝑘 = 1 − 𝓁𝑊

1 − 𝓁
(35)

and
𝑊 −1
∑

𝑘=0
𝑘𝓁𝑘 = 𝓁

1 + (𝑊 − 1)𝓁𝑊 −𝑊 𝓁𝑊 −1

(1 − 𝓁)2
. (36)

Using (34) and denoting 𝛾 ≜ 1 − 𝑓 , the average delay for an MTC
device in cluster #1 can be expressed as follows:

E(𝐷1) =
𝑇𝑠
2

+
𝑇𝑠𝛾(1 + (𝑊 − 1)𝛾𝑊 −𝑊 𝛾𝑊 −1)

(1 − 𝛾)(1 − 𝛾𝑊 )

(

1 − dec(e1)𝑖,1

)

. (37)

Similarly, the average delay for an MTC device in cluster #2 be-
comes

E(𝐷2) =
𝑇𝑠
2

+
𝑇𝑠𝛾(1 + (𝑊 − 1)𝛾𝑊 −𝑊 𝛾𝑊 −1)

(1 − 𝛾)(1 − 𝛾𝑊 )

(

1 − dec(e2)𝑖,2

)

. (38)

Using expressions (12) and (13) for dec(e1)𝑖,1
and dec(e2)𝑖,2

in (37) and
(38), respectively, one obtains the following final expressions of the
average delays:

E(𝐷1) =
𝑇𝑠
2

+
𝑇𝑠𝛾(1 + (𝑊 − 1)𝛾𝑊 −𝑊 𝛾𝑊 −1)

(1 − 𝛾)(1 − 𝛾𝑊 )

⋅

⎛

⎜

⎜

⎜

⎝

1 −
𝜆𝑥𝜆𝑦

𝑎𝑏
(

𝜆𝑥
𝑎 + 𝛼1𝜆𝑣

)( 𝜆𝑦
𝑏 + 𝛼1𝜆𝑣

)

⎞

⎟

⎟

⎟

⎠

(39)

E(𝐷2) =
𝑇𝑠
2

+
𝑇𝑠𝛾(1 + (𝑊 − 1)𝛾𝑊 −𝑊 𝛾𝑊 −1)

(1 − 𝛾)(1 − 𝛾𝑊 )

⋅

⎛

⎜

⎜

⎜

⎜

⎝

1 −
𝜆′𝑥𝜆

′
𝑦

𝑎1𝑏1
(

𝜆′𝑥
𝑎1

+ 𝛼2𝜆′𝑣
)

(

𝜆′𝑦
𝑏1

+ 𝛼2𝜆′𝑣

)

⎞

⎟

⎟

⎟

⎟

⎠

. (40)

4. Results

For the sake of completeness, Table 2 summarizes the notation
adopted in the analytical formulation at a glance, as well as the
specific values chosen for the involved parameters in the experimental
evaluation. In Fig. 3, the throughput is shown as a function of the
interference threshold 𝐼th. The number of preambles allocated for clus-
ter #1 (namely, 𝑀1) is larger than the number of preambles allocated
for cluster #2 (namely, 𝑀2). The throughput performance at eNodeB1
(denoted as 1) is better than that at eNodeB2 (denoted as 2). As the
interference threshold increases, the throughput of both eNBs increases.
A higher value of the interference threshold leads to an increase of the
transmit power of the devices, which, in turn, increases the decoding
probability and the throughput.

In Fig. 4, the decoding probability is shown as a function of the
interference threshold 𝐼 . As the value of 𝜂 is higher in cluster #1 than
th
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Table 2
Notation adopted in the analytical formulation at a glance, and consequent values chosen for those parameters for the experimental
evaluation.

Parameters Value Description

𝜇1, 𝜇2, 𝜆𝑣, 𝜆𝑥, 𝜆𝑦, 𝜆′𝑣, 𝜆′𝑦, 𝜆′𝑥 1 Mean of (pu)
𝑖,1 , (pu)

𝑖,2 , (e2)
𝑖,2 , (e1)

𝑖,2 , (e1)
(pu), 

(e2)
𝑖,2 , (e2)

(pu), 
(e2)
𝑖,1 , respectively (Zhang et al., 2013)

𝑃TX(pu)
5 W PU’s transmit power

𝑁1 60 Number of devices in cluster #1
𝑁2 50 Number of devices in cluster #2
𝑀1 30 Number of preambles allocated for cluster #1 (Vardakas et al., 2015)
𝑀2 24 Number of preambles allocated for cluster #2 (Vardakas et al., 2015)
𝑓1 0.7 ACB factor of cluster #1 (Tello-Oquendo et al., 2017)
𝑓2 0.5 ACB factor of cluster #2 (Tello-Oquendo et al., 2017)
𝛾1 1 dB SINR threshold for cluster #1
𝛾2 2 dB SINR threshold for cluster #2
𝜂 0.6 Fraction of 𝐼th
𝛿 0.01 PU outage constraint
Fig. 3. Throughput as a function of the interference threshold 𝐼th.
Fig. 4. Decoding probability dec as a function of the interference threshold 𝐼th.
in cluster #2, the decoding probability of an MTC device in cluster #1
is higher than that of an MTC device in cluster #2. If we increases the
tolerable interference threshold level at PU, the decoding probability
increases at the eNB (in both cluster #1 and cluster #2).

In Fig. 5, the throughput at the eNB (for both cluster #1 and
cluster #2) is shown as a function of the interference threshold for
various values of the ACB factor. It can be observed that the throughput
is higher at both eNBs when the ACB factor is 0.5. For higher values of
the ACB factor, the throughput reduces. As the ACB factor increases, the
traffic intensity increases because of a larger number of access attempts.
6

Because of this, there is a higher chance that two or more devices select
the same preamble during the same slot so that the eNB is unable to
decode any preamble: therefore, a larger number of collisions occurs
and the throughput at the eNB reduces.

In Fig. 6, the throughput is shown as a function of the interference
threshold, for various values of the outage constraint. The throughput
is higher for higher outage constraint, as higher values of the outage
constraint allow the transmit power of the devices to increase. The
results in Table 3 highlight that the throughput is maximized in cor-
respondence to the optimal value of the preamble partition 𝛽 (which

solves (28)) that depends on the values of 𝑁1 and 𝑁2.
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Fig. 5. Throughput as a function of the interference threshold 𝐼th for various values of the ACB factor 𝑓 .
Fig. 6. Throughput as a function of the interference threshold 𝐼th for various values of the outage constraint 𝛿.
Table 3
Optimal value of the preamble partition 𝛽 for various values of 𝑁1, 𝑁2, 𝑀1, and 𝑀2.
𝑁1 𝑁2 𝑀1 𝑀2 𝛽

10 50 18 36 0.48
20 40 30 24 1.21
30 60 32 22 1.45
50 50 40 14 2.85

In Fig. 7, the throughput is shown as a function of the preamble
artition 𝛽. As the number of preambles allocated for cluster #1 in-
reases, the throughput at eNodeB1 increases. Since the total number
f preambles is fixed, the number of preambles allocated for cluster #2
educes, so that the throughput at eNodeB2 decreases. Even in this
ase, it can be observed that the total throughput is maximized in
orrespondence to a specific value of 𝛽.

In Fig. 8, the average delay is shown as a function of the number
f devices, for various values of preambles, while keeping the interfer-
nce threshold identical for both clusters of devices. Therefore, as the
umber of devices increases, the average delay increases because the
ollision rate increases. However, if we compare the average delay of
lusters with different preambles, then the cluster which has the larger
umber of preambles has a lower average delay, if compared to the
ther cluster which has a smaller number of preambles. Intuitively,
ncreasing the number of preambles reduces the probability of collision
nd, then, the average delay.

In Fig. 9, the average delay is shown as a function of the number
f devices for various values of the interference threshold. The cluster
7

with higher interference threshold leads to an increase of the transmit
power of the devices, which increases the decoding probability. There-
fore, increasing the interference threshold reduces the average delay.

In Fig. 10, the average delay is shown as a function of the number of
devices for various values of maximum number of times (𝑊 ) a request
is made to the eNB. The average delay is higher for the cluster with
higher value of 𝑊 . When the number of request attempts increases,
then the collision rate increases as well. If the RA mechanism fails after
a collision, then the device must wait for some time before starting
a new RA: this introduces a latency in accessing the channel, thus
increasing the average delay.

In Fig. 11, the optimal value of the preamble partition 𝛽 is shown
as a function of the tolerable interference threshold (𝐼th). The decoding
probability is an increasing function of 𝐼th, as the transmit powers of
MTC devices increase (as shown in Fig. 4). The optimal value of 𝛽,
which maximizes the throughput, reduces for increasing value of 𝐼th.
Due to the choice of a higher value of 𝜂 in cluster #1, the decoding
probability is higher in cluster #1, which allows more preambles to be
assigned to cluster #1.

5. Conclusions

In this paper, we have investigated the design of CR MTC networks.
The throughput and delay performance of two clusters of MTC devices
has been investigated in an underlay CR network. A higher value of
tolerable interference threshold of a primary network increases the
preambles’ decoding probability and the throughput, while it reduces

the delay. An optimal value of the preamble partition 𝛽 allows to
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Fig. 7. Throughput as a function of the preamble partition 𝛽.

Fig. 8. Average delay E(𝐷) as a function of the number of MTC devices 𝑁tot , for various values of the number of preambles 𝑀tot .

Fig. 9. Average delay E(𝐷) as a function of the number of MTC devices 𝑁tot with different interference thresholds 𝐼th.
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Fig. 10. Average delay E(𝐷) as a function of the number of MTC devices 𝑁tot with different number of requests 𝑊 made to an eNB.
Fig. 11. Optimal value of the preamble partition 𝛽 as a function of the interference threshold 𝐼th.
𝐹

aximize the throughput, which also depends on the ACB factor, the
umber of MTC devices in each cluster, as well as the interference
hreshold via decoding probability. A higher value of the ACB factor
educes the throughput. The average delay is an increasing function of
he number of preambles and re-transmission attempts.
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Appendix. Derivation of (11)

The CDF 𝐹𝑊 (𝛼1) can be expressed as follows:

𝑊 (𝛼1) = Pr
{𝑈
𝑉

< 𝛼1
}

= Pr
{

𝑈 < 𝛼1𝑉
}

= ∫

∞

0
Pr

{

𝑈 < 𝛼1𝑣 ∣ 𝑉 = 𝑣
}

𝑓𝑉 (𝑣) 𝑑𝑣

= ∫

∞

0
𝐹𝑈

(

𝛼1𝑣
)

𝑓𝑉 (𝑣) 𝑑𝑣

= ∫

∞

0

(

1 − 𝑒−𝜆𝑣𝛼1𝑣
) 𝜆𝑥𝜆𝑥
𝜆𝑥𝑎 − 𝜆𝑥𝑏

(

𝑒−𝜆𝑥
𝑣
𝑎 − 𝑒−𝜆𝑥

𝑣
𝑏
)

𝑑𝑣

= 1 − ∫

∞

0

𝜆𝑥𝜆𝑥
𝜆𝑥𝑎 − 𝜆𝑥𝑏

(

𝑒−𝜆𝑥
𝑣
𝑎 − 𝑒−𝜆𝑥

𝑣
𝑏
)

𝑒−𝜆𝑣𝛼1𝑣𝑑𝑣

= 1 −
𝜆𝑥𝜆𝑥

𝜆𝑥𝑎 − 𝜆𝑥𝑏 ∫

∞

0
𝑒−

(

𝜆𝑥
𝑎 +𝛼1𝜆𝑣

)

𝑣𝑑𝑣

+
𝜆𝑥𝜆𝑥 ∞

𝑒−
(

𝜆𝑥
𝑏 +𝛼1𝜆𝑣

)

𝑣𝑑𝑣

𝜆𝑥𝑎 − 𝜆𝑥𝑏 ∫0
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= 1 −
𝜆𝑥𝜆𝑥

𝜆𝑥𝑎 − 𝜆𝑥𝑏
1

𝜆𝑥
𝑎 + 𝛼1𝜆𝑣

+
𝜆𝑥𝜆𝑥

𝜆𝑥𝑎 − 𝜆𝑥𝑏
1

𝜆𝑥
𝑏 + 𝛼1𝜆𝑣

= 1 −
𝜆𝑥𝜆𝑥

𝜆𝑥𝑎 − 𝜆𝑥𝑏

⎡

⎢

⎢

⎣

1
𝜆𝑥
𝑎 + 𝛼1𝜆𝑣

− 1
𝜆𝑥
𝑏 + 𝛼1𝜆𝑣

⎤

⎥

⎥

⎦

= 1 −
𝜆𝑥𝜆𝑥

𝑎𝑏
(

𝜆𝑥
𝑎 + 𝛼1𝜆𝑣

)(

𝜆𝑥
𝑏 + 𝛼1𝜆𝑣

) .
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