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On Sensor Data Clustering for Machine
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to Predictive Maintenance
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Abstract—Predictive maintenance is one of the main
approaches on which Industry 4.0 is based since it aims
at reducing unplanned downtime and maintenance costs of
industrial machines. In this work, a time-aware clustering-
based approach to the analysis of sensor data is presented
for the purpose of monitoring the time evolution of the health
status of an industrial machine. A possible application of
the proposed framework to predictive maintenance is then
proposed. As a relevant representative application scenario,
the focus is on one of the key machines in a pharmaceutical
plant: a freeze dryer. The illustrated procedure allows for
carrying out a time segmentation of the properly sensed
data. More precisely, the corresponding operational points
(associated with features of the sensed data) are clustered using various algorithms, among which density-based spatial
clustering of applications with noise (DBSCAN) turns out to be the best. The benefits of the proposed approach are:
1) its general nature and 2) the limited amount of needed features that have to be extracted from a single sensor signal.
The proposed procedure is attractive when the collected data (e.g., from a single sensor) are not sufficient to build an
accurate physical model of the monitored component.

Index Terms— Clustering, density-based spatial clustering of applications with noise (DBSCAN), predictive mainte-
nance, sensor data processing.

I. INTRODUCTION

IN INDUSTRIAL pharmaceutical plants, the use of het-
erogeneous sensors to monitor the production processes is

nowadays common. The sensed data are usually recorded for
years [1]. The historical process data of an industrial plant can
be specifically used to analyze the behavior of the components
of the plant itself [2], [3], [4]. The most typical strategies
involve training anomaly classifiers and building predictive
maintenance algorithms based on collected data [5], [6].
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The efficiency of the developed models is heavily affected
by the collected data and the type of components to be
monitored [7].

Predictive maintenance is a methodology that aims at
predicting the deterioration of the health conditions of an
industrial machine, typically associated with anomalies in its
components. Predicting accurately impending failures can be
very difficult: it is essential to have a deep knowledge of the
specific system to derive a precise prediction model [8]. Nev-
ertheless, it may happen that the collected data provide inad-
equate information to accurately determine the degradation
status of a particular component. In fact, the recorded sensor
data are often representative of the status of a combination of
components. Accurate knowledge of system physics may be
necessary to detect the origin of a variation in an inspected
sensor signal [9]. Therefore, a variation of the operational
condition of the machine can easily be detected, but the
difficulty lies in the identification of the specific responsible
machine component.

This work represents a significant extension of [10], where
a semiautomatic approach to evaluate a health indicator (HI)
of an industrial freeze dryer is derived. The focus of [10]
is on the freeze-dryer cleaning process—namely, cleaning in
place (CIP)—and the used dataset is obtained from the water
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flow rate signal of a spray tube used in the CIP process.
The density-based spatial clustering of applications with noise
(DBSCAN) clustering algorithm [11] is used to build a
robust HI. In this article, we extend the analysis of the CIP
process by considering other artificial intelligence (AI)-based
data analysis strategies based on various clustering methods,
namely, k-Means and Gaussian mixture models (GMMs).
In addition to these two clustering methods, the principal
component analysis (PCA) is applied for visualization pur-
poses. We also investigate the applicability of other outlier
detection algorithms, namely, the one-class support vector
machine (SVM) and the local outlier factor (LOF). Moreover,
a second process run in the freeze dryer—namely, the leak
test (LT)—is considered for the derivation of an HI of other
components of the freeze dryer. In this case, the relevant
dataset for the LT is obtained from the pressure signal recorded
during the LT process. In both CIP and LT cases, we show
that DBSCAN outperforms other AI data analysis algorithms.
All the considered algorithms are adopted for two operational
approaches: a posteriori analysis and real-time monitoring of
the evolution of the considered system health status. In the
latter case, a possible approach to predictive maintenance is
proposed.

This article is organized as follows. In Section II, the
system background, in terms of the two freeze-drying ana-
lyzed processes, is presented. In Section III, a semiautomatic
approach to inspect the water flow rate (in the CIP process)
and the pressure (in the LT process) signals with the aim of
computing an HI is illustrated, considering a posteriori analysis
and real-time monitoring as possible operational approaches.
In Sections IV and V, the obtained results for CIP and LT
are presented, respectively. In Section VI, a discussion on the
obtained results, failure modes, and possible extensions of our
approach is presented. In Section VII, conclusions are drawn.

II. SYSTEM BACKGROUND

Freeze-drying, or lyophilization, is a process that involves
three phases: 1) freezing the product; 2) lowering the pressure;
and 3) removing the ice by sublimation based on temperature
increase (primary drying and secondary drying). This process
aims at drying the product by removing the water in it without
damaging its qualities. In order for this to happen, the product
is frozen to a temperature below its so-called eutectic point
(i.e., the lowest freezing point of a mixture) [12], which must
be carefully determined together with the freezing rate. As a
matter of fact, a slow freezing rate will produce a more porous
structure, characterized by a shorter sublimation rate but more
difficult to reconstitute, whereas a fast freezing rate will result
in a more granulated structure, easier to reconstitute but with
a longer sublimation rate. Freeze-drying is largely used in the
pharmaceutical field since its operational conditions guarantee
that the final product, despite shape transformation, keeps all
its initial qualities and preserves them over time. As a matter
of fact, the preservation of the physicochemical properties
is fundamental when dealing, for instance, with vaccines or
genetic material.

Industrial freeze-drying takes place in machines denoted
as freeze dryers or lyophilizers, which are designed to reach

Fig. 1. Piping and instrumentation diagram (P&ID) of the water supply
for the condenser spray tube.

and maintain specific temperature and pressure conditions
needed for the process to be successful. A lyophilizer is a
steel machine consisting of two main chambers: the largest
one contains the plates on which the product is positioned
during the freeze-drying process; the smallest one contains
a condenser, inside which liquid nitrogen flows at extremely
low temperatures. In addition to the lyophilization cycle, other
automated processes are run in the freeze dryer with the aim
of cleaning, sterilizing, or testing its integrity. Among these
additional processes, CIP and LT are of interest in this work.

A. CIP
CIP consists of cleaning the freeze dryer with purified water.

In the reference machine in this work, five spray tubes are
used to spray the chamber walls, the shelves, the condenser
walls, and the condenser plates. Each spray tube has multiple
nozzles that pour water into the machine. Four spray tubes
are located in the main chamber, whereas there is only one in
the condenser. The condenser spray tube is prone to strong
mechanical and thermal stresses since it is used to spray
hot water—as a matter of fact, the temperature gap between
the steel of the condenser and the sprayed water can be as
high as 150 ◦K. As a consequence, leaks in the spray tube
can occur frequently, and the machine runs the risk of being
washed incorrectly. As the freeze dryer must always be in
sterile conditions, extreme attention has to be paid to cleaning.
Therefore, one needs to regularly monitor the status of the
spray tube in order to keep correct operational conditions.
In Fig. 1, the components of the freeze-dryer watering system
are shown only for the condenser, as it will be the subsystem
of reference for CIP considered in the rest of this work.

During the CIP process, valve 1 stays open, while valve 2
opens and closes three times over a 50-s time interval. During
this period, the water pushed by the pump flows through the
nozzles and enters the condenser. This procedure is the same
for the four spray tubes of the main chamber. A water flow
rate sensor (WFRS), used to monitor the process, measures
the water flow rate (dimension: [m3/h]) through each spray
tube. The WFRS signal, thus, allows for calculating the total
amount of water that has been sprayed in the machine. The
sampling rate of the WFRS is 1 sample/s.

A spray tube’s conditions can only be monitored by the
WFRS signal associated with the water flowing into the freeze
dryer. During the CIP process, since the five spray tubes are
turned on in disjoint time intervals, at each time instant, the
WFRS signal is representative of the unique spray tube that is
pouring water into the machine.

The water flow streamed from a spray tube is characterized
by a rate that depends on two factors:
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Fig. 2. P&ID of the components involved in the LT process, namely,
a vacuum pump and four vacuum valves. The pressure sensor used to
record the pressure signals is also highlighted.

1) the spray tube’s structural (health) conditions, associated
with the deterioration of its steel components;

2) the performance of the pump that pushes water to the
nozzles, which can vary its thrust force depending on its
health status.

For this work, an industrial freeze dryer located in the
production plant of GlaxoSmithKline (GSK) in San Polo di
Torrile (Parma, Italy) is considered. The used historical data
are collected from all the CIP processes from November 2014
to November 2019.

B. Leak Test
LT is necessary to measure the sealing of the freeze dryer.

In fact, because of strong thermal variations, microscopical
cracks can appear, mostly in tubes and support structures.
These cracks may create a leak, namely, an influx of gas into
the drying chamber. As a consequence, the sterile product
environment inside the chamber is contaminated, no matter
the leak size, and the final products’ quality is compromised
(possibly leading to significant economic losses). The system
components that are involved in the LT process are shown in
Fig. 2. Essentially, during LT, all the border valves (valve 2,
valve 3, and valve 4) of the freeze dryer are, first, closed.
Then, the vacuum pump is activated, and valve 1 is opened.
When the freeze dryer reaches the internal pressure of 10 µbar,
valve 1 is closed, and the pressure increase is measured over
a fixed time interval (generally 1.5 h). If the pressure increase
is evaluated as anomalous, e.g., it becomes too high, LT is
declared failed, and maintenance activity on the lyophilizer
sealing is required.

The process signal that can be used to monitor the status of
the freeze-dryer sealing is the pressure signal, which is shown
in Fig. 3 (over 235 consecutive cycles from January 2016 to
January 2020). This signal is extracted by the pressure sensor
shown in Fig. 2. We underline that, in this case, the pressure
increase measured during the LT process cannot be associated
with a single component, but it depends on the health status
of the multiple components that all contribute to lyophilizer
sealing.

The analyzed historical data refer to the LT processes from
January 2016 to January 2020 carried out at the freeze dryer
mentioned for CIP at the end of Section II-A.

III. PROPOSED DATA ANALYSIS APPROACH

In this work, we propose an approach based on the analysis
of data recorded by sensors installed on industrial machines
and expedient to describe the operational conditions of the

Fig. 3. LT pressure signal extracted by the pressure sensor shown in
Fig. 2 over 235 consecutive cycles from January 2016 to January 2020.

machine component of interest. Our goal is to estimate the
health status of the considered component and, then, to predict
its time evolution. To this purpose, the illustrated approach
involves, first, the extraction of features and, then, the appli-
cation of clustering in order to highlight, through proper time
segmentation, the system status evolution over time. For this
reason, we refer to our clustering-based approach as “time-
aware.” In Sections IV and V, it will be shown that DBSCAN,
making use of the analyzed process cycle number as a funda-
mental feature, is the best clustering method to be adopted for
data analysis. As a final step, an HI will be derived from the
clustered data. As anticipated, two operational approaches will
be considered: a posteriori analysis and real-time monitoring.
In the second case, a predictive model is proposed in order
to identify anomalous variations of the considered system
health status, thus enabling predictive maintenance. In the
remainder of this section, we sketch the main “ingredients”
of our approach.

The extraction of statistical features from time-domain
sensor signals and the computation of the monotonicity as a
features’ selection method have been proposed in the litera-
ture for health status monitoring [13], [14]. The main novel
contributions of this article are given as follows:

1) the median-based aggregation method in the signal pro-
cessing approach and the HI evaluation to obtain more
robust results;

2) the use of a “time-aware” clustering to study the
time evolution of the health status of the considered
component;

3) the computation method for the HI after the
DBSCAN-based outlier removal;

4) the predictive approach based on a linear interpolation
of the real-time computed HI.

A. Single Sensor Signal Processing
The HI is a time-dependent indicator that describes the

evolution (namely, the degradation) of the industrial machine
under analysis, more precisely of one of its components [15].
A key role in HI computation is played by the features chosen
to describe the signals recorded by the component’s sensors.
This choice can heavily affect HI evaluation and accuracy.
However, features’ selection cannot abide by any a priori rules
since the specific scenario of interest and the knowledge of the
considered process must be taken into account. As a matter
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of fact, given that the signals are possibly heterogeneous, the
associated descriptive information needs to be extrapolated
accordingly. Being the sensor signals usually affected by noise,
“smoothing” can be applied to better highlight the underlying
trend of the extracted features, as suggested in [16]. In order
to do this, a causal moving median filter with a window of
six taps1 is used, resulting in the following smoothed signal
(associated with the most recent time epoch of the window):

fsmooth(i) =


median[ f (i − 5), . . . , f (i − 1), f (i)]

6 ≤ i ≤ N
median[ f (1), . . . , f (i)], 1 ≤ i < 6

(1)

where f (i) is the value of feature f in the i th cycle (i =

1, . . . , N ) and N represents the number of all available cycles.

B. Monotonicity of Sensor Signal Features
Once the features are extracted and smoothed, their “poten-

tial” to predict the deterioration of the machine component
must be evaluated. This potential can be quantified in terms
of monotonicity, defined as follows:

monotonicity( f, N ) ≜

∣∣∣∣∣
N−1∑
i=1

sgn
[

fsmooth(i + 1)− fsmooth(i)
]

N − 1

∣∣∣∣∣
(2)

where fsmooth(i) is the value of smoothed feature f in the i th
cycle [defined in (1)] and sgn[n] = ±1 if n ≷ 0, respec-
tively [16]. The monotonicity value always belongs to the
interval [0, 1] and assesses how well a feature is representative
of the system evolution: the closer the monotonicity value to 1,
the more representative the feature.

In [16], other features’ selection methods used for predictive
maintenance are proposed, such as prognosability and trend-
ability. Prognosability measures the variance in the critical
failure value of a population of systems: namely, it mea-
sures the variability of the indicators at failure. Trendability
indicates the similarity between the trajectories, measured in
several run-to-failure experiments, of a feature. Trendability
is useful to determine which indicator best tracks the degra-
dation process since the most “trendable” feature tends to
always have the same behavior when the analyzed system
gets progressively closer to failure. Even though prognosability
and trendability are meaningful criteria, the chosen features’
selection criterion is monotonicity because, by means of a
monotonous feature, a failure in the described process can
be instantly identified. As a matter of fact, if there is an
abrupt change in the underlying trend of the feature, it is
intuitive to conclude that something anomalous has occurred
to the considered machine component since degradation is
typically an irreversible process. Moreover, in order to adopt
the prognosability and trendability selection methods, a much
larger quantity of data describing a failure of the considered
machine component would be required.

In this work, the monotonicity is computed on the features
extracted from a training dataset, which includes 40% of the

1Our results show that using six taps provides a good compromise between
complexity and performance.

Fig. 4. Signal processing steps: from feature extraction to the mono-
tonicity computation (nmedian = 5).

whole available dataset. In fact, in this way, the monotonicity
results can be used also for real-time monitoring. In order to
obtain more robust monotonicity measurements, before apply-
ing (sliding window-based) smoothing, the extracted features’
values are aggregated in consecutive and disjoint groups of
nmedian elements, and the median of each group is computed.
For instance, other results (not shown here for lack of space)
obtained by computing the arithmetic average instead of the
median show that the median is the most effective aggregation
method. The overall signal processing strategy is shown in
Fig. 4, with nmedian set illustratively to 5.

C. DBSCAN-Based Clustering
As anticipated, the classification of the machine operational

conditions revolves around clustering, based on the use of
DBSCAN, of a properly extracted feature of the sensed signal.
The clustered data lead naturally to a time series segmentation.
The proposed approach could make use, in the place of
DBSCAN, of other clustering and outlier removal algorithms
applicable to our problem. In Sections IV-C and IV-D, V-C,
and, more generally, VI-A, relevant comparisons among
DBSCAN and other algorithms are carried out.

DBSCAN is a clustering algorithm relying on a
density-based notion of clusters. In [11], it is stated that “the
key idea is that, for each point of a cluster, the neighborhood
of a given radius has to contain at least a minimum number
of points, i.e., the density in the neighborhood has to exceed
some threshold.” As a matter of fact, two parameters are
required: 1) the minimum number of items per cluster, denoted
as “minPts” and 2) the distance ϵ corresponding to the radius
of a neighborhood of a given point in the cluster. The value of
ϵ is estimated through different steps: 1) for each point in the
input database, the distance to the minPtsth nearest point is
evaluated; 2) a graph is generated after sorting, in ascending
order, the points according to the computed distance values;
and 3) an “elbow” in this graph can be identified, and its
corresponding distance is chosen as ϵ. The criterion for the
choice of the minPts value is that it must be a number larger
than or equal to one plus the number of dimensions of the input
data in the features’ space. This criterion has been derived
from [11], where it is shown that, for a 2-D input database,
the minPts-distance graph with minPts = 4 is not significantly
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Fig. 5. minPts-distance graph (minPts = 5) used for CIP process (see
Section IV-B for more details). The corresponding value of ϵ is indicated.

different from the ones obtained with larger values of minPts,
while being computationally more efficient.

In Fig. 5, we show the minPts-distance graph obtained in the
case of the CIP process (see Section IV-B1 for more details).
On the x-axis, the points of the input database, sorted in
ascending order of their computed minPtsth nearest distance,
are indicated. With minPts = 5, it can be observed that ϵ ≃ 17.
As a matter of fact, for ϵ > 17, the points start becoming noisy.

Given ϵ and minPts, DBSCAN allows to identify three kinds
of point [17].

1) Core Point: A point in a cluster that has at least minPts
points in its ϵ-neighborhood.

2) Border Point: A point in a cluster that has a number
of points in its ϵ-neighborhood smaller than minPts but
larger than one.

3) Noise Point: A point that in its ϵ-neighborhood has only
one point, i.e., itself.

Three concepts turn out to be fundamental for DBSCAN:
1) direct density reachability; 2) density reachability; and
3) density connectivity. A point p is directly density-reachable
from a point q, with respect to ϵ and minPts, if p belongs
to the ϵ-neighborhood of q, and the cardinality of the
ϵ-neighborhood of q is larger than or equal to minPts. A point
p is density-reachable from a point q , with respect to ϵ and
minPts, if there is a chain of points p1, . . . , pm , with p1 = q
and pm = p, such that pi+1 is directly density-reachable from
pi , i = 1, . . . , m − 1. A point q is density-connected to a
point p, with respect to ϵ and minPts, if there is a point r such
that both q and p are density-reachable from r with respect
to ϵ and minPts [11].

At this point, the steps involved in DBSCAN-based cluster-
ing can be summarized as follows [17].

1) A point p is randomly chosen, and all points
density-reachable from p, with respect to ϵ and minPts,
are retrieved. At this point, there are two possibilities.

a) If p is a core point, a cluster with respect to ϵ and
minPts is formed.

b) If p is not a core point and no points are
density-reachable from p, then the algorithm
passes to the next data point by identifying p as a
noise point.

2) If a cluster is fully expanded (all points within reach are
visited), then DBSCAN proceeds to iterate through the
remaining unvisited points in the dataset.

As will be shown in Sections IV-A and V-A, only one
of the features extracted from the recorded signals for each
process (either CIP or LT) will be sufficiently monotonous to
be considered for the HI derivation. This feature’s values will
then be used as input to DBSCAN together with the number
of the analyzed process cycle in order to obtain a “time-
aware” data clustering. For the purpose of making these two
features comparable, as an initial step, we z-score normalize
(by subtracting the mean, over all available observations, from
the value at each epoch and dividing this difference by the
standard deviation [18]) the resulting most monotonous fea-
ture. Subsequently, we multiply it by a constant (heuristically
selected) equal to 100 to obtain approximately the same order
of magnitude as the cycle numbers.

The main benefits of the DBSCAN-based clustering algo-
rithm, with respect to other methods illustrated in the literature
and discussed later, are given in the following.

1) The amount of clusters is not to be set before the
algorithm application.

2) The outliers are automatically identified.

D. Health Indicator
In general, there is no fixed rule for the computation of

the HI. We now propose a novel method, developed through
successive refinements, while analyzing the available data and
the obtained results.

As mentioned in Section III-C and as will be shown in
Section IV-A, only one feature, after monotonicity evaluation,
will be selected for the HI computation, during the CIP pro-
cess, given the high correlation among the resulting three most
monotonous features (the same will happen in Section V-A for
the LT process). After removing the outliers found by means
of DBSCAN, as described in Section III-C, and according
to the aggregation approach proposed in Section III-B, these
feature values are divided in consecutive and disjoint groups2

of nmedian = 3 elements (associated with three consecutive
cycles). Then, the median of each group is calculated (in
order to obtain the aggregated most monotonous feature value
representative of that group). At this point, smoothing is
applied according to (1). Finally, the HI is evaluated by relying
on the aggregated and smoothed feature values. According
to this approach, the HI will be represented as a function
of the aggregated cycle number, which is derived from the
considered process cycles according to the aggregation factor
nmedian and the considered available cycle set. In Section III-E,
two operational approaches will be considered, namely,
a posteriori analysis and real-time monitoring: in both cases,
nmedian = 3. However, for a posteriori analysis, the available
cycle set to which nmedian is applied will be equal to each
manually identified cluster, whereas, for real-time monitoring,
it will be equal to the interval of ten process cycles. More
details will be provided later.

Should at least two uncorrelated (or weakly correlated)
features be the most monotonous ones, a multidimensional

2In this case, we select consecutive and disjoint groups of three elements,
instead of five, as for the monotonicity calculation mentioned in Section III-B
and represented in Fig. 4, since the cardinality of the available process cycles
set is much smaller than the cardinality of an entire dataset.
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extension of our approach would be required. This will be
discussed in Section VI-D.

E. Operational Approaches
The four operational steps discussed above—namely,

the single sensor signal processing (see Section III-A),
the computation of the monotonicity of the extracted
features (see Section III-B), the DBSCAN-based clustering
(see Section III-C), and the HI evaluation (see
Section III-D)—can be used for both a posteriori analysis
of the system health status evolution over time (as off-line
data analysis) and real-time health status monitoring (for the
purpose of predictive maintenance).

1) A Posteriori Analysis: In order to obtain a posteriori
overview of the machine health status and HI evolution,
one can consider all the available sensor data. Although the
results are not useful for practical (maintenance) purposes,
they allow one to obtain a posteriori evaluation in terms of
both data clustering and HI. For DBSCAN-based clustering,
we use as input the considered process (either CIP or LT)
cycle number and the resulting most monotonous feature’s
values collected over all the available cycles of the considered
process, properly processed as described in Section III-C.
As for the HI computation, we introduce a preparatory step
to obtain more robust results. This step involves the iden-
tification of the pauses between two consecutive processes
(either CIP or LT) cycles. We consider the time difference
between two consecutive cycles, and we choose a threshold
(namely, 300 h for CIP and 1500 h for LT, as will be
discussed in Sections IV-B1 and V-B1, respectively), to select
the most significant interruptions. These interruptions identify
the separations between clusters to be identified. We call
this process “manual clustering” to distinguish it from the
automatic clustering provided by DBSCAN. At this point, the
procedure for the HI derivation described in Section III-D is
applied with aggregation and smoothing of the resulting most
monotonous feature performed within each manually identified
cluster.

The use of all the available (historical) sensor data is impor-
tant also to analyze the extracted single sensor features. As a
matter of fact, as mentioned in Section III-B, the monotonicity
is computed on a dataset, including 40% of the whole available
data. From a practical point of view, this can be considered a
training step that returns the features to be used for real-time
monitoring, making the presented real-time monitoring results
meaningful.

2) Real-Time Monitoring and Application to Predictive Main-
tenance: For real-time monitoring, we choose to check the
considered machine component health status every ten process
cycles (either CIP or LT). In particular, up to every ten
process cycles: 1) the DBSCAN-based clustering is applied,
as mentioned in Section III-C; 2) the outliers are identified
and removed; and 3) the HI is computed, as described in
Section III-D [with the most monotonous feature’s values
being aggregated by nmedian = 3 elements and then smoothed
according to (1)].

At this point, various methods, based on the analysis of the
real-time monitoring results, can be used for the purpose of

predictive maintenance. In this article, we present an approach
based on endpoint linear interpolation of the real-time HI to
identify potentially anomalous system behaviors. The end-
points are the HI value in correspondence to the starting
cycle (or reset cycle) and the HI value of the last considered
aggregated cycle, namely, (tin, HIin) and (tfin, HIfin). The
straight line ĤI(t) = at + b passing though the considered
endpoints can be derived from the following expression:

t − tin
tfin − tin

=
HI − HIin

HIfin − HIin
(3)

from which

a =
HIfin − HIin

tfin − tin

b = HIin −
tin(HIfin − HIin)

tfin − tin
. (4)

The interpolating line ĤI(t) intuitively needs to be compared
with the effective value HI(t) for t = tfin + 1 (in general,
t > tfin): if the value of HI(t) is sufficiently close to ĤI(t),
then one can conclude that there is no anomaly. In order
to automatize the detection of anomalies, we consider the
following two alarm threshold lines HI(±1):

HI(+1)(t) ≜ at + b + 1

HI(−1)(t) ≜ at + b − 1 (5)

where the value of 1 is specific for each monitored process.
By trial and error, our results show that effective values
are 0.25 m3/h for CIP and 0.005 mbar for LT. If the HI
computed in the next ten cycles is included between the lines
HI(±1), then the analyzed component operational conditions
are considered correct. The interpolation slope a and intercept
b values can then be updated taking into account the new
cycles. On the contrary, if the next computed HI is outside the
range between the lines HI(±1), then an alarm can be emitted.
This can be summarized as follows:{

HI(−1)(t) < HI(t) < HI(+1)(t), correct
HI(t) < HI(−1)(t) or HI(t) > HI(+1)(t), anomalous.

(6)

Once an anomaly has been detected and the corresponding
problem (if any) solved (through a predictive maintenance
approach), the linear interpolation-based procedure can start
again from the new cycle (after the problem solution) in order
to detect the next future anomaly.

Together with HI interpolation and prediction, real-time
data clustering can also highlight that something occurred to
the considered system. As a matter of fact, if at a check
point (namely, every ten process cycles) only one cluster is
identified, this means that no variation appeared in the oper-
ational conditions of the considered component—the HI can
start drifting but still remain within the alarm threshold range.
On the opposite, when, at the check point, at least two clusters
appear, this likely means that an anomalous event has taken
place in the system (possibly a failure). In correspondence to
the appearance of at least two clusters, the HI shows an abrupt
deviation and exits out of the alarm threshold range.

Authorized licensed use limited to: Universita degli Studi di Parma. Downloaded on May 02,2023 at 16:08:28 UTC from IEEE Xplore.  Restrictions apply. 



9626 IEEE SENSORS JOURNAL, VOL. 23, NO. 9, 1 MAY 2023

Fig. 6. WFRS signal and the three extracted intuitive (temporal)
features.

In this work, we perform real-time monitoring with the same
sensor data of the a posteriori analysis. In practical use cases,
real-time monitoring would be based on new data (after a
training phase carried out on the available data).

IV. CLEANING IN PLACE

In this section, the proposed data analysis approach is
applied to the sensor signals recorded during the CIP pro-
cess. In Section IV-A, the single sensor signal processing
and the features’ monotonicity computation are described.
In Section IV-B, DBSCAN-based a posteriori analysis and
real-time monitoring are illustrated. In Section IV-C, other two
clustering algorithms (namely, k-Means and GMM) and PCA
are applied to our problem, as alternatives to DBSCAN, and
their performances are investigated. In Section IV-D, other
outlier removal algorithms (namely, one-class SVM and LOF)
are considered as alternatives to DBSCAN, and a comparison
among the obtained results is provided.

A. Single Sensor Signal Processing and Features’
Monotonicity

In order to analyze the CIP process and, in particular,
the time evolution of the health status of the components
of the condenser water distribution system, the considered
sensor is the WFRS, as mentioned in Section II-A. We fol-
low the procedures for WFRS signal processing and fea-
tures’ monotonicity computation presented in Sections III-A
and III-B, respectively.

With the purpose of computing the HI and detecting the
considered system anomalies, three intuitive (temporal) fea-
tures are extracted from the WFRS signal. Such features are
illustrated in Fig. 6 and can be described as follows.

1) Feature 1 is the time interval between the instant at
which the water flow rate goes above the threshold of
0.3 m3/h and the instant at which it returns below this
threshold.

2) Feature 2 quantifies the time taken by the spray tube
to reach the maximum water flow rate: it coincides
with the time interval between the instant at which
the water flow rate becomes higher than 0.3 m3/h and
the instant at which it reaches the “steady-state” value
(above 12 m3/h).

3) Feature 3 corresponds to the WFRS signal average
value during “steady-state” conditions (namely, the time

TABLE I
MONOTONICITY OF THE THREE FEATURES OF THE WFRS SIGNAL

interval during which the water flow rate is approxi-
mately maximum). For the purpose of computing this
feature, the identification of a midpoint (MP) between
the instant at which the water flow rate overcomes
12 m3/h and the instant corresponding to its return
below this threshold is required. Subsequently, the aver-
age value of the WFRS signal in an interval equal to 40 s
centered at the MP is evaluated.3

The monotonicity of the three (temporal) features described
above can be evaluated following the procedure outlined in
Fig. 4 and according to (1) and (2). In particular, the total
number of cycles is 355, and the number of aggregated cycles
is N = 355/nmedian = 355/5 = 71. Table I reports the
obtained results: Feature 3 turns out to be the only feature
with a sufficiently high monotonicity value (equal to 0.56).

In order to extend the approach outlined above, we extract
other (common) statistical features from the WFRS signal:
they are listed in Table II. In this table, {v(t)}n

t=1 coincides
with the WFRS signal in the (n-sample) time interval (per
cycle) during which Feature 3 is evaluated. More precisely,
the n samples are extracted from the 40-s time interval
introduced above in the description of Feature 3. Since the
WFRS sampling rate is 1 sample/s, it follows that n = 41.4

The statistical features listed in Table II are computed for
each CIP cycle. Their monotonicity is computed by following
the steps outlined in Fig. 4. The monotonicity values of the
computed features (namely, all statistical features in Table II;
Feature 1 and Feature 2) are shown in Fig. 7. One can observe
that almost all monotonicities are below 0.2 but for “Mean”
(corresponding to Feature 3 in Table I), “rms,” and “squared
factor.” Since these three features turn out to be correlated
by 99%, one of them can be selected as representative of
the remaining two. As a consequence, we select “mean” (i.e.,
Feature 3) as the only relevant feature of the WFRS signal.
In the rest of this article, it will be referred to as “FlowMean.”

B. DBSCAN-Based Analysis and Monitoring
As mentioned in Section III-C, DBSCAN is applied to two

features:
1) FlowMean;
2) the CIP process cycle number (denoted as

CycleNumber).
The “heuristic” transformation described in Section III-C

makes the value of FlowMean numerically comparable to that
of CycleNumber.

1) A Posteriori Analysis: For the a posteriori analysis,
we follow the approach discussed in Section III-E1.

3The time interval during which the water flow rate is maximum is larger
than 40 s.

4The total number of samples is 41 because the first considered sample is
at 0 s and the last considered sample is at 40 s.
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TABLE II
TIME-DOMAIN STATISTICAL FEATURES OF A TIME-DISCRETE SIGNAL

{v(t)}nt=1 . IN THIS WORK, {v(t)}nt=1 COINCIDES WITH THE WFRS
SIGNAL IN THE (n-SAMPLE) TIME INTERVAL DURING WHICH THE

WATER FLOW RATE IS MAXIMUM. THE MEAN

CORRESPONDS TO FEATURE 3

Fig. 7. Monotonicity of the extracted features (all statistical features of
WFRS: Feature 1 and Feature 2).

The chosen (minPts, ϵ) configuration for DBSCAN is
(5,17), as can be derived from the minPts-distance graph in
Fig. 5. We set minPts to 5 because it is a reasonable value

Fig. 8. CIP process: DBSCAN-based computed clusters (minPts = 5
and ϵ = 17) [10].

according to the general rule discussed in Section III-C, and
it turns out to be the most suitable value for our application
in terms of data clusters’ identification (minPts = 4 worsens
the performance). The outcome of the DBSCAN-based data
clustering is shown in Fig. 8. It is important to remark that the
borders between adjacent clusters correspond to modifications
carried out in the system (e.g., maintenance acts). However,
it can be noticed that cluster 3 behaves in an unexpected
way since it is identified in the same time interval as clus-
ter 2, despite being represented by different FlowMean values.
Although the motivation behind this anomalous behavior is
likely associated with physical conditions, it is noteworthy that
it can be detected by an automatic data clustering method—
this will be investigated in Section IV-B2. As one can observe
in Fig. 8, DBSCAN can also discriminate, together with the
anomalous cluster, all the isolated points, identifying them
as outliers. We remark that no ground truth is available for
outlier detection since the only available auxiliary information
is about the four maintenance acts on the considered system.
Based on this information, the data clustering in Fig. 8 is as
accurate as possible, and consequently, we rely on the same
data for outlier identification.

At this point, we derive an HI following the procedure
described in Section III-D after a “manual clustering” prepara-
tory step. The “manual clustering” results are shown in
Fig. 9, where the outliers and the anomalous clusters found
by DBSCAN have been removed from the data. The time
threshold is set to 300 h. It can be noticed that: 1) not all the
interruptions coincide with maintenance acts that modify the
water flow rate values and 2) the chosen time threshold does
not allow to identify the event that determines the transition
from cluster 6 to cluster 7 in Fig. 8 (this maintenance lasts
much less than 300 h). The resulting HI of the components
contributing to the water distribution in the condenser is shown
in Fig. 10.

The maintenance acts carried out on the pump are high-
lighted as vertical green lines. More precisely, the first two
maintenance acts are the occurrences determining the cluster 4
boundaries in Fig. 8—the exact same cluster can also be
observed in Fig. 9. The first maintenance act (March 27,
2017) alters the status of the system, and then, the second
one (June 15, 2017) makes it return to its initial condition.
Only one maintenance act was performed on the spray tube
(identification and subsequent weld of a leak) in the considered
time interval: this is represented by the red vertical line at
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Fig. 9. CIP process: “manual” clustering (time threshold = 300 h).

Fig. 10. HI of the condenser water distribution system.

cycle 88 in Fig. 10. It can be observed that the HI grows
linearly from the initial data instant to the welding date, except
for the interval between the first two pump maintenance acts,
in correspondence to which it deviates. This observation is
the basis for our predictive model, discussed in Section III-E2
and applied to this problem in Section IV-B2. The green
line at cycle 104 refers to a process modification of the
water distribution system (third pump maintenance act), which
intentionally leads to an increase in water flow rate from that
cycle onward.

2) Real-Time Monitoring and Application to Predictive
Maintenance: In order to monitor, in real time, the health
status of the condenser water distribution system, the approach
discussed in Section III-E2 is followed. For illustrative pur-
poses, we will show only the results up to the following CIP
cycle numbers: 190, 300, and 340. This choice is motivated
by the fact that these cycles belong to the cycle intervals
(the results are updated every ten process cycles) immediately
after maintenance acts on the considered system. As for the
DBSCAN-based clustering, the same (minPts, ϵ) configuration
used for the a posteriori analysis (i.e., minPts = 5 and ϵ = 17)
is adopted, and the obtained results are shown in
Figs. 11(a), 12(a), and 13(a), respectively. It can be observed
that, in all these cases, the cluster identified after the main-
tenance act is different from the cluster identified before it.
Therefore, DBSCAN is able to track the variations of the
component health status in real time. Moreover, in Fig. 11(a),
it can be noticed that all the anomalous cycles at the beginning
of the year 2016 are identified as outliers (as further con-
firmation, see Fig. 14). Only at a later stage, when multiple
years of data are processed, these cycles are recomputed
as two clusters (namely, part of cluster 2 and cluster 3) in
Figs. 12(a) and 13(a). Nevertheless, from an operational point

of view, this phenomenon does not affect the performance of
the proposed approach since the focus of real-time monitoring
is on the current health status variation.

The HI evolution, associated with clustering, up to cycles
190, 300, and 340 is shown in Figs. 11(b), 12(b), and 13(b),
respectively. The alarm thresholds are set considering 1 =

0.25 m3/h in (5). It can be observed that the HI computed
in real time represents all the condenser water distribution
system health status variations over time, which occur up to
the check points, namely, the pump maintenance acts (March
2017 and June 2019) in Figs. 11(b) and 13(b), and the weld
of the spray tube leak (October 2018) in Fig. 12(b). It can be
noticed that our predictive approach, based on interpolation
of the endpoints of the real-time HI, is effective for anomaly
detection. As a matter of fact, under all the reported real-time
monitoring circumstances, the HI overcomes the predicted
alarm thresholds only in correspondence to the repairs activi-
ties that, in fact, modify the system’s health status.

In Fig. 11(b), we compare our method results with
the ones obtained with a least-squares linear regression.
It can be observed that, even if interpolation- and linear
regression-based results are slightly different, the outcome,
in terms of prediction of the real-time system status variation,
is the same since, in both cases, the HI overcomes the alarm
thresholds when the activity on the pump is carried out.
Therefore, in the remainder of this work, we will consider
the interpolation-based approach proposed in (3)–(5), being
computationally simpler.

As noticed with the DBSCAN-based clustering, the anoma-
lous cycles at the beginning of the year 2016 are considered
as outliers when monitoring, in real time, this time period [see
Figs. 11(a) and 14] but are then recomputed as clusters when
many more data are processed [see Figs. 12(a) and 13(a)]. This
phenomenon can also be observed in the HI evaluation. As a
matter of fact, by comparing Fig. 11(b), obtained up to cycle
190 in 2017, and Fig. 13(b), obtained up to cycle 340 in 2019,
many more oscillations can be observed in the latter real-time
HI in the interval between the aggregated cycles 20 and 40:
this is due to the fact that the anomalous cycles are now taken
into account in the calculations. This phenomenon does not
affect, from an operational point of view, the performance of
the proposed method also in this case since the focus is now
on the predicted HI behavior and not on the past events.

C. DBSCAN Versus k-Means, GMMs, and PCA
In order to motivate the selection of DBSCAN, we compare

its performance with those of other two relevant clustering
algorithms, namely, k-Means and GMMs. PCA is also per-
formed in order to better visualize the data clustered structure.

k-Means partitions a set of nobv observations into k clusters
so that the intercluster similarity is minimized and the intra-
cluster similarity is maximized. The similarity is expressed in
terms of the mean value of the observations in a cluster [19].
As a matter of fact, each data item is assigned to its most
similar cluster, namely, the cluster where the distance between
the item itself and the mean value of all the currently present
cluster items (denoted as cluster centroid) is minimum. Unlike
DBSCAN, the number of clusters k must be set a priori. This is
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Fig. 11. Real-time monitoring up to CIP cycle 190: (a) DBSCAN-based clustering (minPts = 5 and ϵ = 17) and (b) HI.

Fig. 12. Real-time monitoring up to CIP cycle 300: (a) DBSCAN-based clustering (minPts = 5 and ϵ = 17) and (b) HI.

Fig. 13. Real-time monitoring up to CIP cycle 340: (a) DBSCAN-based clustering (minPts = 5 and ϵ = 17) and (b) HI.

Fig. 14. DBSCAN-based clustering (minPts = 5 and ϵ = 17) until
mid-2016.

critical for the application at hand, especially when the amount
of data to be clustered keeps on increasing with real-time data

acquisition, and the number of clusters is expected to increase
over time.

GMMs are a family of distribution-based clustering algo-
rithms. A GMM assumes that the data points have a Gaussian
distribution. The shape of the clusters, the so-called “com-
ponents,” is determined by two parameters, namely, the mean
and the standard deviation of the distribution [20]. As k-Means
and unlike DBSCAN, the number of components must be set
a priori by the user. This represents a disadvantage for the
application of a GMM to our scenario because the number of
machine statuses is not known in advance.

Therefore, since both k-Means and GMM require the num-
ber of clusters to be set a priori, for the purpose of a fair
comparison, in Section IV-C1, as for the a posteriori analysis
considered in Section IV-B1, the same number of clusters
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Fig. 15. CIP process: k-Means-based computed clusters (k = 7).

identified by DBSCAN in Section IV-B1 is used in k-Means
and GMM. On the other hand, in Section IV-C2, as for
real-time monitoring in Section IV-B2, an approach based
on the identification of two consecutive clusters is proposed
in order to verify the validity of these clustering algorithms
for predictive maintenance (i.e., to detect a single change of
status).

1) A Posteriori Analysis: In Fig. 15, the clusters identified
by k-Means are shown. It can be observed that, for k = 7,
i.e., for a value of k equal to the number of clusters found by
DBSCAN in Fig. 8, the detected clusters differ from the ones
predicted by DBSCAN. In particular, it can be noticed that
cluster 4 in Fig. 8 is not correctly detected by k-Means; rather,
it is included in cluster 7 of Fig. 8 with many other cycles
belonging to the two adjacent statuses. This highlights a major
problem of k-Means: if the clusters representing the machine
statuses have very different sizes (in terms of the number
of cycles), k-Means cannot separate data correctly. Moreover,
unlike DBSCAN, k-Means cannot automatically identify the
outliers. Cluster- or distance-based methods, which allow
removing the outliers and can be used together with k-Means,
have been proposed [21]. Nevertheless, using these methods
requires setting additional parameters, such as the cardinality
of the k-nearest neighbors set.

As for GMM, for a fair comparison with DBSCAN and
k-Means, the number of components to be found is set to 7,
as anticipated above. From the results shown in Fig. 16, it can
be observed that GMM has worse performance, in terms of
status identification, than DBSCAN. For instance, the cluster
included between the first two pump maintenance acts—
cluster 4 in Fig. 8—is not correctly identified. Moreover,
clusters 6 and 7 in Fig. 8 are now merged together into a single
cluster in Fig. 16, despite representing two different machine
statuses (specifically, before and after a modification of the
water distribution system, as remarked in Section IV-B1). This
is due to the fact that the GMM mostly computes “oval”
clusters. Its goal, indeed, is to describe the data by means of
2-D Gaussian distributions, which are actually characterized
by oval contour lines.

As k-Means, GMM is not able to automatically identify the
outliers in a dataset. In the literature, one can find methods
that require post-processing clustering results. In [22], the
“three times standard deviation principle” is applied to each
computed Gaussian component with the aim of identifying
each cluster’s outliers. Outlier detection algorithms can also

Fig. 16. CIP process: GMM-based computed clusters (set a priori to 7).

Fig. 17. CIP process: PCA-based computed clusters.

be used in combination with the GMM to obtain improved
results, as will be discussed in Section VI-A.

In addition to k-Means and GMM, we also consider PCA,
which is fundamental for multivariate methods, such as multi-
variate statistical process control (MSPC) [23]. PCA is mainly
adopted for dimensionality reduction and high-dimensional
data visualization. For this reason, it can be applied to support
clustering. In order to be able to apply PCA to our problem,
we use as input data all the statistical features introduced
in Table II computed for each CIP cycle and represented
as functions of time. These features are properly smoothed,
according to (1), and the z-score normalized. In Fig. 17, the
PCA-based computed clusters are shown. Only the first two
principal components (PCs) are taken into account because
they explain more than 90% of the total variability in the
dataset. It can be observed that PCA detects five clusters that
are mostly formed by consecutive cycles, as represented by
their colors. However, the time evolution of the health status of
a machine component cannot be correctly identified since there
is no intuitive pattern followed by the clusters; along time,
that can be inferred from Fig. 17. Therefore, a PCA-based
approach turns out not to be appropriate for our problem: this
is due to the fact that the features lose their physical meanings
because of their transformations in PCs.

2) Real-Time Monitoring and Application to Predictive Main-
tenance: As mentioned above, in order to use k-Means and
GMM for real-time monitoring, we set the number of clusters
to be identified to two. As a matter of fact, two clusters are suf-
ficient to detect an anomalous variation of the health status—
should there be no anomalous variations, all the available data
would be clustered together.

In order to verify the validity of this approach, in
Figs. 18–20, the data clustering results with real-time
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Fig. 18. Real-time monitoring up to CIP cycle 190: (a) k-Means-based clustering (k = 2), (b) GMM-based clustering (number of clusters set a priori
to 2), and (c) HI (for both k-Means-based and GMM-based).

Fig. 19. Real-time monitoring up to CIP cycle 300: (a) k-Means-based clustering (k = 2), (b) GMM-based clustering (number of clusters set a priori
to 2), and (c) HI (for both k-Means-based and GMM-based).

Fig. 20. Real-time monitoring up to CIP cycle 340: (a) k-Means-based clustering (k = 2), (b) GMM-based clustering (number of clusters set a priori
to 2), and (c) HI (for both k-Means-based and GMM-based).

monitoring using (a) k-Means and (b) GMM are shown up
to CIP cycles 190, 300, and 340, respectively. In the same
figures, (c) corresponding HI is also shown. It can be observed
that, in Figs. 18 and 20, neither of the two algorithms can
identify the status variations related to the pump mainte-
nance acts (highlighted by vertical lines), unlike DBSCAN in
Figs. 11(a) and 13(a). However, both k-Means and GMM
succeed in identifying the second cluster after the spray tube
leak weld [in Fig. 19(a) and (b)], but it is likely that this is
simply due to the large distance of these new cycles from the
previous clustered cycles and not to a detected variation of the
status.

In terms of real-time HI derivation, k-Means and GMM
return the same results since no outlier is identified and then
removed. The HIs up to cycles 190, 300, and 340 are shown
in Figs. 18(c), 19(c), and 20(c), respectively. Abrupt oscilla-
tions can be observed in correspondence to the anomalous
behaviors of the water flow rate signals at the beginning
of the year 2016. Moreover, although the variations related
to the pump maintenance acts are not identified by cluster-
ing, it can be noticed that the HI starts deviating at these
points.

Overall, it can be concluded that, unlike DBSCAN, k-Means
and GMM do not allow tracking the system health status

variation by means of both a (time) clustering of sensed data
and evaluation of the HI.

D. DBSCAN Versus One-Class SVM and LOF
In order to further validate the use of DBSCAN for outlier

identification, we compare its performance with those of two
outlier detection algorithms available in the literature, namely,
one-class SVM and LOF.

One-class SVM is an unsupervised machine learning tech-
nique frequently used to identify the outliers in a dataset.
As a matter of fact, it separates the considered faulty sam-
ples from the remaining ones by computing a “boundary”
around the correct operational data and, consequently, isolating
the outliers [24]. The so-called contamination fraction (CF)
parameter, corresponding to the outliers’ percentage to be
identified, must be set a priori.

LOF is a density-based outlier detection algorithm, as intro-
duced in [25]. It computes the density of each data point and
compares it with the density of the neighbors. It identifies
the isolated points as outliers. As for one-class SVM, the
percentage of the outliers to be detected must be set a priori
by the user.

Therefore, since these algorithms are intended only for
outlier detection, it is not possible to automatically segment
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Fig. 21. CIP process: “manual” clustering (time threshold = 300 h) after
one-class SVM (CF = 0.2) application.

Fig. 22. HI of the condenser water distribution system obtained with
one-class SVM (CF = 0.2).

the sensed data (namely, cluster them) and carry out real-time
monitoring of the evolution of the considered component
health status.

1) A Posteriori Analysis: As anticipated above, since the
one-class SVM and LOF provide only outlier detection,
no cluster is automatically identified. Therefore, we resort to
a “manual clustering,” carried out after removing the detected
outliers.

The clusters obtained with one-class SVM are shown in
Fig. 21. The CF is set to 0.2, i.e., 20% of the data are con-
sidered outliers. It can be observed that, unlike Fig. 9, many
points belonging to the anomalous clusters (between Decem-
ber 21, 2015, and June 1, 2016) are still present; the cluster
included between the two first pump maintenance acts—
namely, cluster 4 in Fig. 8—has completely disappeared. The
obtained HI, as shown in Fig. 22, is different from the one
in Fig. 10. In Fig. 22, two vertical blue lines are inserted to
highlight the change in the plot referring to the anomalous
clusters considered in the HI computation. Overall, it can
be concluded that one-class SVM does not work properly in
our case since it removes data points, which would actually
help describe the health status of the analyzed machinery, and
does not allow identifying all the anomalies, despite the high
outliers’ percentage indicated by CF.

In Fig. 23, we show the results obtained with LOF, after
“manual clustering,” with CF set to 0.2, as for the one-
class SVM. It can be observed that the anomalous clusters are
mostly removed, and the cluster included between the first two
pump maintenance acts is still present. As a matter of fact, the
corresponding HI, as shown in Fig. 24, is more similar to the
one computed with DBSCAN in Fig. 10 than to the HI derived

Fig. 23. CIP process: “manual” clustering (time threshold = 300 h) after
LOF (CF = 0.2) application.

Fig. 24. HI of the condenser water distribution system obtained with
LOF (CF = 0.2).

after the one-class SVM outliers’ removal shown in Fig. 22.
It can be noticed that the change in the plot, highlighted by
the two vertical blue lines, is minimum with respect to the
one in Fig. 22. Moreover, one can detect the HI deviations
due to the first two pump maintenance acts and identify them
by two vertical green lines, which are highlighted in Fig. 10,
but not in Fig. 22. However, despite the improvements with
respect to one-class SVM, it can be concluded that LOF is
still not suitable for our purposes because the percentage of
outliers to be identified has to be set a priori by the user, and
no clustering is carried out automatically.

2) Real-Time Monitoring and Application to Predictive Main-
tenance: As mentioned above, no real-time monitoring of
the health status of the components of the condenser water
distribution system is possible with both one-class SVM
and LOF since these algorithms are not intended for data
clustering. However, the HI can still be evaluated in real
time. The obtained results are shown in Figs. 25–27 with
both (a) one-class SVM and (b) LOF up to CIP cycles
190, 300, and 340, respectively. As in the case of the a
posteriori analysis in Section IV-D1, it can be observed
that one-class SVM detects as outliers the cycles included
between the first two pump maintenance acts: in fact, the
HI is quite smooth in this region, as can be seen in
Figs. 25(a) and 26(a). On the opposite, the HI obtained with
LOF describes the first two maintenance acts on the pump,
as can be seen in Figs. 25(b) and 26(b). In Fig. 26(b), it can
also be noticed that the HI drops in correspondence to the
spray tube maintenance act. On the other hand, in Fig. 27(a),
it can be noticed that the HI obtained with one-class
SVM correctly captures the variation due to the third pump
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Fig. 25. Real-time HI up to CIP cycle 190: (a) one-class SVM (CF = 0.2) and (b) LOF (CF = 0.2).

Fig. 26. Real-time HI up to CIP cycle 300: (a) one-class SVM (CF = 0.2) and (b) LOF (CF = 0.2).

Fig. 27. Real-time HI up to CIP cycle 340: (a) one-class SVM (CF = 0.2) and (b) LOF (CF = 0.2).

maintenance act (modification of the water distribution
system), unlike the HI obtained with LOF in Fig. 27(b).

Overall, it can be concluded that neither one-class SVM nor
LOF allows accurate real-time monitoring.

V. LEAK TEST

In this section, the proposed data analysis approach
is applied to the sensor signals recorded during the LT
process. In Section V-A, the single sensor signal pro-
cessing and the features’ monotonicity computation are
described. In Section V-B, the procedure for DBSCAN-based
a posteriori analysis and real-time monitoring is illustrated.
In Section V-C, k-Means is applied as an alternative to

DBSCAN, and its performance is compared with that
of DBSCAN.

A. Single Sensor Signal Processing and Features’
Monotonicity

In order to analyze the LT process and, in particular, the time
evolution of the health status of the components contributing to
the sealing of the freeze dryer, we consider the signal extracted
by the pressure sensor, as mentioned in Section II-B. The pro-
cedures considered for pressure signal processing and features’
monotonicity computation are illustrated in Sections III-A
and III-B, respectively. Eventually, the only feature taken into
account is the mean value of the pressure signal. In fact,
in Section IV-A, it has been observed that the mean value
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Fig. 28. LT process: DBSCAN-based computed clusters (minPts = 5
and ϵ = 17).

(of the WFRS signal during “steady-state” conditions) is a
feature sufficient to describe the considered process, and the
same conclusion applies to LT (based on a similar correlation
analysis). We will refer to this feature as “PressureMean.”
Its monotonicity value, computed following the procedure
outlined in Fig. 4 and according to (1) and (2), turns out to be
0.5 (the results are not shown here for the sake of conciseness).
This monotonicity value justifies the use of the PressureMean
feature for health status monitoring.

B. DBSCAN-Based Analysis and Monitoring
At this point, as discussed in Section III-C, DBSCAN is

applied to the two following relevant features:
1) PressureMean;
2) the LT process cycle number (CycleNumber).

The “heuristic” transformation described in Section III-C
makes the value of PressureMean numerically comparable to
that of CycleNumber.

1) A Posteriori Analysis: For an a posteriori analysis
of the sensed data, we follow the approach discussed in
Section III-E1.

In the LT case, a good machine status identification is
obtained setting minPts = 5 and ϵ = 17: the corresponding
clustered data are shown in Fig. 28. The chosen (minPts, ϵ)
configuration is the same that allows obtaining, for the CIP
process, the data clusters shown in Fig. 8. From the results in
Fig. 28, it can be noticed that clusters’ separations correspond
to repair activities carried out on the analyzed freeze dryer
and, consequently, to changes in the machine’s operational
conditions.

At this point, we follow the HI derivation procedure
described in Section III-D, after a “manual clustering” prepara-
tory step. The time threshold is now set to 1500 h. The
obtained “manual” clusters are shown in Fig. 29. Unlike what
was observed in Section IV-B1, all the identified interruptions
are maintenance acts carried out on the freeze-dryer system
under analysis. The resulting HI is shown in Fig. 30. Three
time intervals, associated with the evolution of the status of
the machine, can be clearly identified: during each of these
intervals, the HI remains relatively constant. In correspondence
to the separation instants between adjacent intervals, the
machine was subject to changes, which led to degradation
(higher HI). The causes of this counterintuitive phenomenon
will be discussed in Section VI-B.

Fig. 29. LT process: “manual” clustering (time threshold = 1500 h).

Fig. 30. HI that describes the deterioration of the multiple components
that contribute to the sealing of the machine.

2) Real-Time Monitoring and Application to Predictive Main-
tenance: For the purpose of monitoring in real-time the health
status of the multiple components contributing to the sealing
of the freeze dryer, the approach discussed in Section III-E2 is
followed, as in the CIP case. For illustrative purposes, we will
show only the results up to cycles 110 and 180 (the results
are updated every ten process cycles), immediately after the
two repair activities carried out on the freeze dryer.

As for DBSCAN-based clustering, the same (minPts, ϵ)
configuration used for the CIP process and the LT a posteriori
analysis is adopted, namely, minPts = 5 and ϵ = 17. The
results obtained up to cycles 110 and 180 are shown in
Figs. 31(a) and 32(a), respectively. It can be observed that
the changes in health status are accurately identified also in
real time.

As for the real-time derivation of the HI, the results obtained
up to cycles 110 and 180 are shown in Figs. 31(b) and 32(b),
respectively. The alarm thresholds are set considering 1 =

0.005 mbar in (5). It can be observed that the HI abruptly
increases and, consequently, overcomes the predicted threshold
in correspondence to both the status variations (June 2017 and
June 2018). Therefore, our predictive approach is efficient also
in the LT case.

From the results in Figs. 31(b) and 32(b), it may seem
counterintuitive that the HI increases after the maintenance
activities. However, this phenomenon will be discussed in
Section VI-B.

C. DBSCAN Versus k-Means
As considered in Sections IV-C and IV-D, the performance

of DBSCAN has been compared with those of other clustering
and outlier detection algorithms. For the sake of conciseness,
we show only the results obtained with k-Means.
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Fig. 31. Real-time monitoring up to LT cycle 110: (a) DBSCAN-based clustering (minPts = 5 and ϵ = 17) and (b) HI with linear interpolation and
alarm thresholds.

Fig. 32. Real-time monitoring up to LT cycle 180: (a) DBSCAN-based clustering (minPts = 5 and ϵ = 17) and (b) HI with linear interpolation and
alarm thresholds.

Fig. 33. LT process: k-Means-based computed clusters (k = 3).

1) A Posteriori Analysis: For a fair comparison with
DBSCAN, in the k-Means case, k is set to 3. In Fig. 33,
it can be observed that the three clusters do not comply with
the maintenance acts. Therefore, as in the CIP case, k-Means
does not perform effectively in the LT case either.

2) Real-Time Monitoring and Application to Predictive Main-
tenance: As discussed in Section IV-C2, k-Means requires that
the user sets a priori the number of clusters to be identified.
As previously considered, we set a priori the number of
clusters to 2 in order to highlight an anomalous variation
of the health status of the multiple components involved in
the LT process. The obtained results up to cycles 110 and
180 are shown in Figs. 34(a) and 35(a), respectively. In the
former case, it can be observed that k-Means cannot detect the
changes in the status since some cycles before the considered
repair activity belong to the newly formed cluster after it.

In the latter case, the cycles after the repair activity are
included in the same cluster as the cycles before it.

The corresponding HIs, up to cycles 110 and 180, are
shown in Figs. 34(b) and 35(b), respectively. By comparing
these results with those in Figs. 31(b) and 32(b), it can be
observed that the overall behaviors are the same but for some
oscillations due to the outliers that, using k-Means instead of
DBSCAN, cannot be detected and removed.

VI. DISCUSSION

It is remarkable that the same DBSCAN-based semiauto-
matic method can be used to describe the evolution of two
different processes (namely, CIP and LT), starting from two
signals of different natures (namely, water flow rate and pres-
sure). However. for the different natures of the used sensors,
the proposed clustering methodology (including its parametric
values) is the same. Although similar results, in terms of
clustering and outlier detection accuracy, could have been
achieved by a trained operator, it is important to emphasize that
we succeeded in making our real-time monitoring approach
automatic and, therefore, not vulnerable to human errors and
not requiring any manual handling.

A. Comparison With Other Algorithms
In Section IV-C, we have compared DBSCAN with two

different clustering algorithms, namely, k-Means and GMM.
In Section IV-D, the comparison was between DBSCAN and
two different outlier detection algorithms, namely, one-class
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Fig. 34. Real-time monitoring up to LT cycle 110: (a) k-Means-based clustering (k = 2) and (b) HI.

Fig. 35. Real-time monitoring up to LT cycle 180: (a) k-Means-based clustering (k = 2) and (b) HI.

SVM and LOF. In Section V-C, DBSCAN has been compared
with k-Means. In all cases, both a posteriori analysis and
real-time monitoring (with application to predictive mainte-
nance) have been considered.

Monitoring of time evolution of the considered component
health status is possible using all the considered algorithms,
namely, k-Means, GMM, one-class SVM, and LOF. This
monitoring can be performed by means of the real-time
HI evaluation (provided that the unremoved outliers do not
impair the evaluation). However, our goal is also to track the
variations in the health status that led to the changes detected
through the HI by means of clustering. Therefore, it can
be concluded that, for both considered processes (CIP and
LT), the most efficient algorithm is DBSCAN because it can
simultaneously cluster the machine statuses and the outliers.

Comparisons with other algorithms, such as AutoEncoder-
based approaches, are not feasible since the available sensor
data describing both correct operational conditions and anoma-
lous behaviors of the analyzed freeze dryer are not sufficient to
train the neural network to accurately detect the system faults.

In order to further validate our approach based on
DBSCAN, we combine a clustering algorithm with an outlier
detection algorithm. For simplicity, we consider only the
CIP process. We choose LOF to remove the outliers, and
then, we apply GMM to cluster the remaining data points.
The number of components of GMM (set to 7) and CF
(set to 0.2) is the same used in Sections IV-C and Section IV-D,
respectively. The results are shown in Fig. 36. It can
be observed that the correct clusters are not identified.

Fig. 36. CIP process: clusters identified with GMM (with seven compo-
nents) and LOF-based outlier removal (with CF = 0.2).

For instance, cluster 1 turns out not to be coherent with the
maintenance acts in its corresponding time interval: as a matter
of fact, it includes all the CIP cycles between the first two
pump maintenance acts (i.e., March 27, 2017, and June 15,
2017) and other cycles belonging to the two adjacent statuses.
Therefore, even in this case, the performance of DBSCAN,
with reference to the a posteriori analysis, is not reached.

B. Failure Modes
Although DBSCAN has been shown to be the most efficient

clustering algorithm for the problem at hand, it still has some
disadvantages. For instance, the clustering results are sensitive
to the choice of the two parameters ϵ and minPts. In particular,
the chosen value of ϵ is critical because, as mentioned in
Section III-C, one has to correctly identify the distance corre-
sponding to the “elbow” formed in the graph representing the
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minPtsth nearest point distances. Moreover, DBSCAN does
not perform well in the presence of high-dimensional data.
This might be the case when using more sensor data or when
more than one feature turns out to be sufficiently monotonous.

Another limitation of our approach is associated with the
computation of the HI. For instance, from the results in
Fig. 30, it can be observed that the HI continues to increase
even after the two maintenance acts (highlighted in green)—an
identical behavior can be observed in Figs. 31(b) and 32(b).
This is likely due to phenomena associated with the physics
of the considered processes. Therefore, our algorithm could be
improved by taking into account the physical characteristics
of the freeze dryer and its processes [26].

C. Time Segmentation
As observed in Sections IV-B1 and IV-B2 for CIP and

Sections V-B1 and V-B2 for LT, it turns out that, for our
purposes, it is sufficient to extract only one feature for both
the analyzed processes, namely, the mean of the water flow
rate signal at steady-state conditions (for CIP) and the mean
of the pressure signal (for LT)—denoted as FlowMean (see
Section IV-A) and PressureMean (see Section V-A), respec-
tively. Clustering is then applied to these extracted features
together with the process cycle number in order to carry
out a time-aware analysis. However, since both the extracted
features mentioned above for CIP (FlowMean) and LT (Pres-
sureMean) are expressed as functions of time, other time series
segmentation approaches (not based on clustering) could be
considered.

A segmentation algorithm revolves around a linear approx-
imation of the available time series data [27]. The approxima-
tion can be carried out by means of either linear interpolation
or linear regression. One way to evaluate the segmentation
accuracy is by computing the mean square error (mse) between
the actual time series data points and their approximated
values. Another way to evaluate the approximation error is
by calculating the L∞ norm between the approximating line
and the time series data points. Regardless of the chosen
error metric (mse or L∞ norm), the following two types of
approximation error can be considered: segment error and
segmentation error. The segment error measures the difference
between the actual data points and the approximated ones (in
the approximating line) for each identified segment. The seg-
mentation error provides an estimate of the overall difference
between the actual time series and the approximation (given by
a concatenation of segments). Therefore, in order to carry out
an accurate time series segmentation, both segment error and
segmentation error must be below two different user-defined
thresholds, denoted as “max error” and “total max error,”
respectively. In the following, we summarize a few relevant
segmentation approaches.

In general, three approaches for time series segmentation
can be considered [27]: 1) top-down; 2) bottom-up; and 3)
sliding window. A top-down approach consists of recursively
partitioning the time series until a stopping criterion is met
(namely, all the segments have approximation errors below
“max error” or the desired number of segments is reached).
A bottom-up approach foresees, first, the subdivision of the

considered time series into a large number of segments,
which are progressively merged, until a stopping criterion
(namely, the segmentation error becomes greater than “total
max error” or the desired number of segments is reached) is
satisfied.

Top-down and bottom-up are “off-line” approaches since
they require analyzing the entire dataset at once. This makes
these two approaches relevant for a posteriori analysis but not
for real-time monitoring and predictive maintenance. On the
opposite, a sliding window approach is an online approach.
This approach starts from the first point of the analyzed
time series and creates a segment of increasing length until
the associated segment error becomes greater than the “max
error.” At this point, another segment of increasing length
starts being created from the data point next to the end of the
last identified segment. As mentioned above, the time series
to be segmented are FlowMean (for CIP) and PressureMean
(for LT). The same linear interpolation used for the HI
predictive model can be applied to approximate the time series.
A change in the machine health status can be identified when
the approximation error between FlowMean/PressureMean and
their interpolating line becomes greater than the “max error”;
this leads to the identification of a new segment. The selection
of the “max error” value is, thus, critical. As a matter of fact,
this threshold value should depend on the data itself, and there-
fore, it would be complicated to set it a priori, especially for
real-time monitoring when the entire dataset is not available
at once. Selecting an appropriate value for the approximation
error threshold is crucial because it affects the accuracy of the
identification of the system health status: if the threshold is
too small, many health statuses may be erroneously detected.
On the opposite, if the threshold is too large, it can happen
that critical health status changes (representative of significant
variations of the machine’s operational conditions) are not
correctly identified.

Another approach for time series segmentation relies on
the use of a hidden Markov model (HMM). An HMM is
associated with a pair of stochastic processes, namely, a
“hidden” process and an observable process [28]. The hidden
process is Markovian (i.e., the probability that the process
is in a given state at a given epoch depends only on the
state visited at the previous epoch) and can assume a finite
number of values. At every epoch, this process can visit
another state or remain in the same state. The observable
process, at every time epoch, generates a sample from a normal
distribution with a mean value depending on the current state.
An analyzed time series can be seen as a realization of
the observable process. A segment is defined as the time
interval over which the hidden process remains in the same
state. Therefore, segmenting the time series is equivalent to
estimating the underlying state sequence of the hidden process.
In our case, the observable process, as a function of the cycle
number, would be either FlowMean (for CIP) or PressureMean
(forLT). On the other hand, the underlying state sequence to
be estimated would correspond to the evolution of the health
status of the considered machine. The difficulties arise when
the parameters characterizing the HMM (e.g., the number
of states to be identified, the transition probability matrix
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of the hidden process, the mean and the standard deviation
of the conditionally independent random variables forming
the observable process) need to be estimated in a so-called
“parameter estimation step,” which requires extra processing.

In general, the applicability of time series segmentation
approaches to our problem, in a comparative way with respect
to the proposed DBSCAN-based method, is an interesting
research direction.

D. Multidimensional Extension
As mentioned in Section III-D, should more than one

feature turn out to be sufficiently monotonous for the HI
derivation, an extension to a multidimensional approach would
be required. In this case, one should “fuse” multiple features
in order to obtain a unique indicator for the health status of
the considered machine component. This could be achieved
by means of PCA or using neural networks, as proposed in
prognostic literature [29], and is the subject of current research
activity.

Further multidimensional extensions rely on the use of
multivariate time series. However, this goes beyond the scope
of this work since our focus is on the performances that can
be achieved by using the data extracted from a single sensor.
Multivariate time series will be of significantly higher interest
in the presence of multiple sensors.

VII. CONCLUSION

In this work, a time-aware clustering approach for the
computation of an HI of system components of an indus-
trial pharmaceutical machine (namely, a freeze dryer) has
been proposed. It has been tested with two different signals
(water flow rate and pressure) acquired during two different
processes, namely, CIP and LT. Our results show that an
accurate identification of the evolution of the different health
conditions of the considered system can be obtained by
means of a time-aware DBSCAN-based clustering for both
a posteriori analysis and real-time monitoring. In the context
of real-time monitoring, a predictive maintenance approach
(based on linear interpolation) has been proposed, verifying
its efficiency in both the CIP and LT cases. A comparison
with other clustering algorithms (namely, k-Means and GMM)
and outlier detection algorithms (namely, one-class SVM and
LOF) has been carried out, highlighting the superiority of
DBSCAN. A qualitative comparison with other (nonclustering-
based) time series segmentation approaches (in particular,
online methods such as sliding windows and HMM) has also
been provided. Future research activities will focus on the
application of the proposed predictive maintenance approach
to other industrial machines, possibly using multiple sensors
and multiple features.
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