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Abstract: Even though technology-aided personal navigation is an extensively studied research topic, approaches based on
inertial sensors remain challenging. In this study, the authors present a comparison between different inertial systems,
investigating the impacts of on-body placement of Inertial Measurement Units (IMUs) and, consequently, of different algorithms
for the estimation of the travelled path on the navigation accuracy. In particular, the system performance is investigated
considering two IMU placements: (i) on the feet and (ii) on the lower back. Sensor fusion is then considered in order to take
advantage of the strengths of each placement. The results are validated through an extensive data collection in indoor and
outdoor environments.

1 Introduction
Personal navigation is a well-studied research field, in which
different hardware and software solutions have been adopted.
Many approaches based on Inertial Measurement Units (IMUs)
have been proposed in recent years but the intrinsic limitations of
inertial sensing technologies, such as the measurement drift, make
their performance still non-comparable with navigation systems
that rely on external infrastructures. The use of technologies based
on radio signals, such as ultra-wide band (UWB), WiFi, or
Bluetooth, has been widely investigated for both the design of
stand-alone localisation systems [1, 2] and the reduction of errors
in the inertial estimates [3, 4]. These kinds of solutions, usually
achieve good performance but their infrastructure dependency,
high maintenance costs, and low flexibility make them inadequate
for many practical applications. On the other hand, approaches
based on Global Navigation Satellite Systems (GNSSs), such as
GPS or Galileo [5, 6], are very effective in outdoor scenarios but
perform very poorly in indoor environments or in applications
where high rate positioning estimation is needed. Finally, methods
relying on cameras and computer vision enable highly accurate
reconstruction of body movements in three-dimensional (3D) space
[7], but they have many drawbacks, such as high costs, occlusion
problems, and limited acquisition volume.

Solutions based on inertial sensing can provide several
advantages because of their infrastructure independence, flexibility,
cost effectiveness, portability, and the possibility to attach sensors
directly to the subject's body. Unlike radio technologies, the inertial
sensing technologies are subject to different errors (e.g. drift,
incorrect sensors’ positioning, per-subject calibration), which need
to be reduced using specific correction techniques in order to make
the measurements reliable. Most of these error reduction strategies
depend on the sensors’ positioning on the subject's body.

In our previous works [8, 9], we investigated the impact of two
specific IMUs’ placements (namely on the subject's feet and lower
back) on the performance of purely inertial navigation systems. In
this paper, we focus on the analysis of the strengths and
weaknesses of the previously developed solutions and propose
novel hybrid methods, which combine data from IMUs placed on
different body segments to improve the accuracy and reliability of
the overall pedestrian navigation system.

This paper is organised as follows. In Section 2, an overview of
navigation systems proposed in the literature is given, highlighting
the innovation introduced by our work. In Section 3, an overview
of the two navigation systems, based on the use of a single sensor's
is presented. In Section 4, the novel method based on sensor fusion

is analysed, emphasising strengths and weakness. In Section 5,
experimental results are presented, considering both indoor/outdoor
scenarios and estimating the computational costs of the proposed
solutions. Finally, in Section 6 conclusions are drawn.

2 Related works
The advances in Micro Electro-Mechanical System (MEMS)-based
inertial sensors have enabled the development of new motion
analysis methods to accurately reconstruct a subject's movement in
2D or 3D spaces, without the use of external infrastructures and
with reasonable costs. The personal navigation research field has
widely benefitted from this evolution.

The first attempts to develop navigation systems based on
MEMS-based inertial systems exploited foot's movement
characteristics during the gait in order to limit the drift. In recent
years, several solutions based on foot-mounted sensors have been
proposed [10–12]. By using this particular sensor placement, it is
possible to achieve an accurate gait segmentation and to apply the
Zero velocity UPdaTe technique (ZUPT), which consists in
resetting the estimated velocity when the foot is still on the ground:
this allows reducing the drift. By using this method, it is also
possible to increase the step length estimation accuracy, since the
travelled distance between a stance phase and the next one can be
estimated through direct integration of the de-drifted foot velocity.
The main drawbacks of this algorithm are the fast orientation
changes involved in the foot movement, which may introduce
errors in the IMU's measurements. Moreover, sudden fluctuations
may degrade the performance of orientation filters, which usually
fuse data from different sensors (namely, accelerometer, gyroscope,
and magnetometer) in order to compute reliable 3D orientations:
this leads to error accumulation in the estimation of a pedestrian's
travelled path. In [13], Jimenez et al. analyse different pedestrian
navigation systems, highlighting the advantages of sampling the
heading angle, measured with a foot-mounted sensor during the
stance phase of gait, with respect to double integrating the
acceleration to derive both step length and walking direction.
Nevertheless, we remark that foot orientation is not always aligned
with the subject's movement direction.

The placement of a single IMU on the lower back, close to the
centre of mass (CoM) of the body, is a widely adopted approach to
the design of pedestrian navigation systems. In fact, in this position
the sensor's movements are highly dependent on the trunk's
biomechanical characteristics and, therefore, are limited with
respect to those acquired by the foot-mounted sensor. During gait,
the heading angle measured through trunk positioned sensors (i.e.
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on the lower back, on the chest, on the pelvis etc.) is smoother and
more representative of the actual movement direction [14]. The
estimation of the travelled path in navigation systems based on
trunk-mounted sensors is achieved by sampling the heading angle
and updating the position propagating the steps’ lengths along the
estimated walking direction [14, 15]. The main limitation of this
class of algorithms is the accuracy in the step length estimation.
Several approaches have been investigated in order to correlate the
signals measured from a trunk-mounted IMU with the frontal
displacement [16–18]. The absence of a zero velocity phase and the
poor results obtained by direct integration techniques have led to
the development of empirical formulae, which usually correlate the
vertical acceleration/displacement of the trunk with the frontal
movement. Even though these methods have shown an adequate
accuracy in many applications, they are not ideal for pedestrian
navigation because of (i) the typically long duration of the task,
which may lead to error accumulation, and (ii) the need of a per-
subject calibration procedure.

The novelty of our work consists in combining the strengths of
foot-mounted and trunk-mounted IMU-based navigation
techniques in order to achieve a better estimate of the subject
travelled path.

3 Inertial navigation algorithms
The placements of IMUs on the feet (as shown in Fig. 1a) or on the
lower back, close to the CoM, (as shown in Fig. 1b) are commonly
adopted strategies in order to exploit the biomechanical
characteristics of the human body to facilitate purely inertial
navigation for pedestrians. 

In order to improve position estimations accuracy, to reduce
drift, and to limit the number of used sensors, we adopt a
Pedestrian Dead Reckoning (PDR) approach to the design of novel
navigation algorithms. A PDR algorithm includes the following

three main phases: (i) orientation estimation, (ii) step detection, and
(iii) step length calculation. Our previous works focused on
analysing separately pedestrian navigation systems relying on
different sensor placements [8, 9]. In this section, we recall the last
two phases of the PDR approach for the two navigation algorithms
proposed in [8, 9], considering the placement of the sensors on the
foot and on the lower back.

3.1 Experimental setup

In [8, 9], the proposed navigation algorithms rely on the use of
Shimmer IMUs [Shimmer IMUs: https://
www.shimmersensing.com.]. In this work, we utilise MTw Awinda
IMUs by Xsens [Xsens IMUs: https://www.xsens.com/.]: in this
case, the orientation estimation is directly computed on-board by
the Xsens IMU. The high accuracy of the Xsens orientation
estimation (with the proprietary algorithm) allows focusing on the
(subsequent) design of inertial navigation algorithms.

The data stream generated by every IMU is transmitted to the
Xsens Dongle, which is connected to a hand-held laptop. The
online system performance is monitored through a Matlab® an
application that collects and analyses the data in real time.

3.2 Foot-mounted sensor

By using the data collected by the sensor placed on the foot, as
shown in Fig. 1a, it is possible to directly correlate the foot
movement to the acceleration measured by the IMU. The standard
approach to estimate the foot displacement consists in double
integrating the linear acceleration – namely, the acceleration
transformed from the body frame to the global frame by rotating
the reference system and removing the gravity component.
Mathematical details of this approach are presented in [8]. In
particular, the first step of this procedure consists in segmenting the
gait on the basis of the detection of the stationary phase of a stride
using the following equations:

|ω(i)| = ωx(i)2 + ωy(i)2 + ωz(i)2

aΣ(i) ≜ |ax, lin(i) + ay, lin(i) + az, lin(i)|
(1)

where |ω(i)| is the Euclidean module of the angular velocity and
aΣ(i) is the absolute value of the sum of the tri-axial acceleration
components.

The block diagram of the used Enhanced-PDR (EPDR)
algorithm is shown in [8, Fig. 4] and includes all the three
fundamental phases recalled at the beginning of this section. This
algorithm refers to one sensor but can be applied separately to the
case with sensors on both feet (with one IMU per foot), as shown
in the block diagram in Fig. 2. While in [8] the orientation is
estimated through the Madgwick algorithm [19], in the current
system the Xsens IMU can directly and accurately estimate the
linear acceleration. As shown in Fig. 2, this allows to directly use
the ZUPT algorithm and segment the gait in its constituent phases
– in fact, the signals computed through (1) are approximately equal
to zero when the foot is stationary. 

Define the following indicator sequence [8]:

γ(i) =
1 if a∑(i) < tha, |ω(i) | < thω

0 otherwise
(2)

where i = 1, 2, … represents the sampling epoch. In other words,
γ(i) = 1 when a∑ and |ω| are below two heuristically chosen
thresholds, denoted as tha and thω, respectively. Additionally, we
perform a check on the duration of each central stance phase,
identifying the first and the last samples, in order to avoid the
identification of false positive swing phases. According to this
approach, for the jth central stance phase ( j = 1, 2, …), the starting
and the ending samples are denoted, respectively, as istart

( j)  and iend
( j) :

the corresponding central stance duration can be expressed as
T ( j) = t(iend

( j) ) − t(istart
( j) ). In order to avoid considering spurious peaks,

we discard the central stance phases with durations shorter than a

Fig. 1  Sensor positions: (a) the IMUs are mounted under the shoe-laces,
one per foot; (b) the IMU is attached to a velcro band in the middle of the
back, over the spine

 

Fig. 2  Block diagram of the EPDR algorithm for foot mounted IMU
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proper threshold Tmin. If T ( j) < Tmin, than the indicator sequence
{γ(i)} is updated setting to zeros the corresponding samples (from
i = istart

( j)  to i = iend
( j)  of the discarded jth central stance phase). On the

basis of the experimental analysis carried out in [8], proper values
of the considered thresholds are thω = 50 rad/s; tha = 9 m/s2; and
Tmin = 0.3 s, respectively. The result of this stationary detection
procedure is shown in the upper plot of Fig. 3. Considering only
the swing phases, one can integrate the linear acceleration {alin

(W)(i)}
and obtain the linear velocity {v(W)(i)} by applying ZUPT. 

At this point, the length of the kth stride is calculated by
integrating the velocity {v(W)(i)} between the end of a still phase (at
epoch iend

( j) ) and the beginning of the following one (at epoch istart
( j + 1)).

The linear acceleration double integration is performed by using
the method presented in [9], namely by integrating the entire foot
trajectory, in order to properly estimate the direction changes
during the strides. The integration is performed only over the x and
y coordinates, as our focus is on 2D navigation.

3.3 Lower back mounted sensor

When the sensor is placed in the trunk (lower back) of the test
subject, it is very challenging to reconstruct the displacement in the
frontal plane directly integrating the signal. For this reason, several
approaches have been developed to correlate the dynamics of the
CoM with the displacement of the entire body. We previously
adopted the algorithm described by the block diagram in [8,
Fig. 2]. This algorithm, denoted as De-Drifted Propagation (DDP),
estimates the step length through the Weinberg model [16] and
computes the travelled path by sampling the heading in the instant
corresponding to the trunk vertical acceleration peaks. Other well-
known algorithms for step length estimation, such as those
developed by Zijlstra and Hof [17] and Gonzalez et al. [18], rely
only on a single trunk-mounted sensor and usually achieve good
accuracy. However, given the empirical nature of these models and
the subject-dependent calibration required to tune the associated
navigation algorithms, they often introduce errors in the final
estimated path. To avoid these problems and obtain a more
accurate step length estimation, in Section 4, we propose a hybrid
approach which combines the accurate step length computed from

the foot-mounted sensors with the robust heading angle measured
through the trunk-mounted sensor.

4 Sensor fusion
In the previous section, it has been shown that the two chosen
sensors’ positionings (namely, foot and CoM) allow us to design
different algorithms which exploit the peculiar motion dynamics of
foot and trunk, respectively. In this section, the details of a novel
hybrid method, which exploits the advantages of both sensors’
positions, are presented. In particular, we focus on the analysis of
different approaches to sample the heading angle and on the
reconstruction of the travelled path using the step lengths computed
with the algorithms described in Section 3. Moreover, the body
displacement computed by the sensor on the back, due to the used
empirical formulae, is not so accurate because of the dependency
on the test subject characteristics, as shown in [8].

4.1 Heading sampling

The first phase of sensor fusion involves the synchronisation of
data streams and the selection of sampling instants. In particular,
the latter operation is necessary because of the body, during a
normal walk, moves by following the patterns illustrated in Fig. 4.
This typical oscillatory behaviour is captured by the heading angle
measured by the sensor on the lower back, as shown in Fig. 5,
which is directly compared to the one computed from the foot
mounted sensor. It is possible to notice that the foot orientation
varies consistently (with fluctuations approximately four times
wider) with respect to the ‘specular estimate’ computed from the
sensor on the lower back. By using, as a reference, the gait
segmentation provided by the algorithm relying on the foot
mounted sensors, the instants at which the body is aligned with the
walking direction can be identified by analysing the heading angle
of the trunk mounted sensor, as shown in Fig. 6. In particular, we
choose to select the middle swing instant (namely, the instant
between a stance phase and the corresponding contra-lateral one) to
sample the heading angle because, as evidenced by Figs. 4 and 6, it
corresponds to the instant at which the body very likely heads
towards the walking direction. Using the gait segmentation
information obtained through the EPDR algorithm, the middle
swing instant and the corresponding heading sample (in
quaternions notation) are computed as follows:

t(imid
(k) ) = t(iend

(k) ) + t(istart
(z) )

2 + t(iend
(k) )

q^(k) = median q t(imid
(k) ) − Win

2Fs
, t(imid

(k) ) + Win
2Fs

(3)

where t(imid
(k) ) is the middle swing instant; t(iend

(k) ) is the end stance
time of the kth right step; t(istart

(z) ) is the start stance time of the zth
left step; median is the median function, defined as the middle
value in a sorted dataset (if the samples’ number is even, the mean
of the two central values in the dataset is used); q are the
quaternions collected by the back sensor; q^(k) are the quaternions
sampled with the proposed method for the kth step; Win is the
number of samples over which the median heading is calculated,
and Fs is the sampling frequency (dimension: Hz). In our
experiment setup, we set Win to ten samples. 

However, if the gait segmentation provided by the foot sensor is
not available, an alternative method for sampling the heading angle
is proposed. It consists of intersecting the heavily low-pass filtered
version of the heading signal with its original (unfiltered) version.
By using this technique, one can find the same middle swing point
as the central instant of the heading excursion, as shown in Fig. 7.
The filter used to obtain the heavily filtered heading has to be a
finite impulse response (FIR) filter, in order to perform a near real-
time analysis. This type of filtering introduces a fixed delay equal
to M/2 samples, where M is the number of taps used by the filter. In
our case, we use an FIR filter designed by using the least squares
approach, namely by minimising the discrepancy between a
specified arbitrary piecewise-linear function and the filter's

Fig. 3  In the first plot, the signals a∑ and |ω| and the corresponding
thresholds tha and thω are shown. Data are normalised for the sake of
visualisation. Furthermore, the indicator signal γ, with values equal to 1
during central stance phases and to 0 during non-stationary phases, is
visualised. In the second plot, the heading signal is shown, highlighting the
steps detected through the stationary routine. In grey, a central stance
phase is highlighted

 

Fig. 4  Walking human dynamic: heading angle
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magnitude response. The other parameters of the filter are (i) the
passband frequency, set to 0.5 Hz, and (ii) the stopband frequency,
set to 0.6 Hz. 

The two proposed segmentation methods are developed in order
to identify very precisely the middle swing instant and,
consequently, their accuracy has to be comparable. In spite of that,
these methods are not completely equivalent. In particular, there
are the following two main weaknesses that affect the second
method (i.e. the method which exploits the filtered heading to
identify the correct sampling instants) with respect to the gait
segmentation based on the data collected from the feet mounted
sensors.

• Changes in the walking pattern (i.e. turnings, velocity changes,
obstacle avoidance etc.) cause irregular heading variations: this
leads to a misalignment between the intersection of the two
signals (filtered and unfiltered heading) and the middle swing
instant.

• The filter introduces a delay with respect to the sampling instant
detection. In fact, in order to obtain the signal shown in Fig. 7,
we set M = 150 samples which, for a sampling rate Fs = 100 Hz,
corresponds to a delay equal to M /2 ⋅ 1/Fs = 750 ms. In order to
perform a near real-time orientation sampling, the system needs
to initially store 750 ms of data and, then, by taking into account
the delay, to use the filter to obtain the correct sampling instant.

For comparison purposes, this technique has been tested with an
infinite impulse response (IIR) filter, namely, a sixth-order low-
pass Butterworth filter with a cut-off frequency equal to 0.5 Hz,
applied offline to the entire unfiltered heading signal. The resulting
signal (red dashed line in Fig. 7) is then compared with the one
obtained by the FIR filter, shifted backwards by M/2 samples
(corresponding to the filter delay). As can be seen in Fig. 7, the IIR
filter and the FIR filter lead to a comparable performance with
respect to the middle swing instant identification: the average error,
between the two heading angles estimated by using the two filters,
is equal to only 0.03 rad.

In conclusion, when the gait segmentation provided by the feet
mounted sensors is available, its adoption has to be preferred. If the
feet sensors’ segmentation information is not available but the step
length estimation is provided (e.g. an external step length
estimation system with no gait segmentation information is
available), the second method represents a good option. In general,
the two methods show a substantial correspondence between the
two sampling instant estimates.

4.2 Step propagation

Once the orientation has been sampled, it is possible to reconstruct
the travelled path by propagating the measured frontal
displacement (corresponding, in this case, to the step length
estimates provided by the foot mounted sensors) in the direction
indicated by the sampled heading angle. In particular, the estimated
path can be computed using the following equations:

h(k) = arctan 2(2(q^0(k)q^3(k) + q^1(k)q^2(k))
, …, 1 − 2(q^2

2(k) + q^3
2(k)))

p(x)(k) = cos(h(k)) × SLk + p(x)(k − 1)
p(y)(k) = sin(h(k)) × SLk + p(y)(k − 1)

(4)

where q^(k) is the lower back orientation sampled by applying one
of the methods described in Section 4.1; h(k) is the corresponding
heading angle in Euler notation; (p(x)(k), p(y)(k)) is the estimated
position at the kth step; and SLk is the length of the kth step
estimated through the feet sensors. The arctan 2(x, y) function
allows converting the orientation from quaternion notation to Euler
notation, in order to obtain the heading in the [ − π, π] range. Once
the heading angle is computed, though the trigonometric formula in
(4), is it possible to estimate the displacement along the x and the y
axes.

5 Results
In order to estimate the system performance, outdoor and indoor
scenarios are considered. In each case, a reference path is selected.
By introducing checkpoints along the chosen paths, one can
evaluate the position estimation error of the proposed navigation
algorithm as a function of the travelled distance. More precisely,
we evaluate the position error, in terms of both absolute error ϵa

(dimension: m) and relative error ϵr (dimension: %) with respect to
the actual travelled path. In the following, the mean (absolute and
relative) errors between the estimates obtained by applying the
EPDR algorithm to the right and the left foot are shown. The
obtained results are presented by distinguishing between outdoor
and indoor scenarios.

Fig. 5  Comparison between the heading angles measured through the foot
sensor (red line) and the lower back sensor (blue line)

 

Fig. 6  Heading estimated from the trunk-mounted (lower back) sensor
compared with the stance phases identified through the feet mounted
sensors

 

Fig. 7  Heading provided by the lower back sensor is sampled according to
the second method. The intersections between the heading signal filtered
through the FIR filter and the original signal are shown as red triangles.
For comparison, the same procedure is carried out with an offline IIR filter
and the intersections are shown as black dots
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5.1 Outdoor scenario

The outdoor experimental evaluation has been carried out on the
athletic track of the campus of the University of Parma, Italy. As
shown in Fig. 8, the path is composed of two large and smooth
curves and two straight lines. The reconstructed paths obtained by
applying the EPDR algorithm on feet, the DDP method, and the
hybrid approach (using the two proposed methods for sampling the
heading angle) are shown. The absolute and relative estimation
errors for each method are presented in Table 1. 

The orientation computed from the lower back sensor is more
stable and allows to obtain a better performance than that obtained
with the feet mounted sensors. This is due to the fact that feet are
subject to rapid orientation changes, even in a smooth track, and
this leads to errors in the heading estimation. This performance is
intuitively expected from the heading behaviour as shown in Fig. 5.
The following results can be carried out:

• By looking at the performance in Table 1, it is possible to notice
that the results obtained with the EPDR are less accurate (i.e.
with higher error) than those estimated by the hybrid system
(both methods, 1 and 2 have the same performance), although
the same step length is used. As a consequence, during the first
part of the track, the two systems present comparable values of
the error ϵ. However, over a longer path, the estimate obtained
using the lower back sensor orientation outperforms the one
based on the EPDR system.

• The DDP system achieves very good performance in terms of
orientation estimation (the final point is very close to the actual
one and the general ‘estimated shape’ is correct) but, due to the
empirical formulae used for the step length calculation, it
underestimates the actually travelled path and is outperformed
by the hybrid system, which relies on the more accurate step
length estimates given by the EPDR algorithm.

• Finally, from Fig. 8 one can observe the correspondence
between the two proposed heading sampling methods for the
hybrid algorithm. Without loss of generality, in the following,
we will present only performance results obtained through the
EPDR method and the hybrid algorithm with the first heading
sample technique.

5.2 Indoor scenario

In indoor environments, the step propagation technique generally
used for path estimation with trunk mounted IMUs is less accurate
than for outdoor path estimation, as we have already shown in [9].
In particular, as can be seen from Fig. 9, the sharp curves typical of
indoor paths lead to the introduction of trajectory errors. These
problems are caused by straight line propagation (i.e. step
propagation) over multiple curves (long paths), and can lead to a
relevant error accumulation. These problems also emerge from
Table 2, in which the performance of the EPDR systems is slightly
better than the one achieved by the hybrid system first method.
This error affects not only our hybrid approach but, more generally,
all the techniques in which, first, the orientation is computed and,
then, the step displacement is propagated. 

5.3 Relative error comparison

In Fig. 10, the relative error ϵr between the estimated path length
and the true path length is shown as a function of the distance,
considering the EPDR and the hybrid systems in both indoor and
outdoor scenarios. From the results in this figure, it appears clear

Fig. 8  Comparison between the paths estimated by: (i) the EPDR
algorithm applied on the right (yellow line with circles) and the left (purple
line with triangles) feet; (ii) the DDP method based on a single lower back
sensor (green line with crosses); (iii) the first hybrid algorithm, which
samples the lower back heading through the mid swing method (blue line
with stars) and the second hybrid algorithm, which samples the lower back
heading by using the intersection between filtered and unfiltered heading
signal (red line with squares)

 

Table 1 Performance, in terms of absolute and relative errors, of the considered algorithms in the outdoor scenarios
Distance, m Foot IMU PDR (EPDR) Hybrid system (first and second methods) Lower back sensor (DDP)

ϵa, m ϵr, % ϵa, m ϵr, % ϵa, m ϵr, %
84.4 1.5 1.8 0.4 0.47 1.2 1.42
200 5.2 2.6 3.3 1.65 6.9 3.45
284.4 7.3 2.6 4.7 1.65 8.4 2.95
400 12.9 3.23 7.6 1.9 2.7 0.67
 

Fig. 9  Comparison, in the indoor environment, between the path estimated
by the EPDR (red dashed line for the left foot and green solid line for the
right foot) and the hybrid (blue dashed-dotted line) systems. In the bottom
of the figure, we zoom a detail of the reconstructed path, which shows the
impact of the step propagation on the measured error
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that in the indoor scenario the relative error increases more rapidly
for both navigation systems, due to the error introduced by the
sharp curves. Moreover, it is possible to notice that the EPDR
system's estimated trajectory is more accurate than that of the
hybrid system, in which the step propagation introduces smaller
errors at every orientation change. The relative error in the outdoor
scenario, instead, increases less rapidly and, due to the smooth
changes in the heading angle, the hybrid system is more effective.
In particular, the hybrid system reaches a very accurate estimation
with a final error ϵr equal to 1.9% of the length of the total
travelled path. 

5.4 Computational costs

The proposed algorithms have been tested with a laptop equipped
with an Intel i7-6700HQ processor working at 2.6 GHz, 8 GB
RAM (DDR3, 1600 MHz) running Matlab® 2017a. In order to
clarify the algorithm steps, a block diagram of the Matlab code is
shown in Fig. 11. In particular, the algorithm is composed of the
following main steps: 

• Controlled delay: This block calculates the time spent in the
previous cycle, in order to keep the delay between a data
acquisition and the next one almost constant and equal to ∼300 
ms. By default, the time delay introduced by this block is equal
to 270 ms (as, on average, the previous cycle lasts around 30 
ms). If the previous cycle has lasted more time than usual (i.e. a
step is detected), the time delay is consequently reduced.

• Data acquisition (A): Given that the Xsens system adopts an
event-based approach to transmit every single data and taking
into account that the navigation algorithm cannot perform a
cycle every data packet, a custom library able to collect the data
in a buffer has been implemented. Every sensor transmits the
inertial data to a specified buffer. This part of the algorithm
reads the data from these buffers and resets them.

• Single sensor gait segmentation (B): In this step, the foot phase
(i.e. swing or stride) is analysed. If a stance phase is detected,
the ZUPT algorithm is performed; otherwise, the foot is still in a
swing phase and the algorithm returns at the acquisition step.

• ZUPT (C): In this block, the ZUPT algorithm is applied. The
drift is removed from the measurements and the stride length is

estimated. At this level, the data from every sensor are
processed separately.

• Bi-lateral gait segmentation (D): In this block, the complete (bi-
lateral) gait is analysed and segmented. The step length is
computed by exploiting the two gait segmentation (i.e. the gait
segmentations performed separately from the two feet sensors)
and stride length estimations.

• Sampling instant detection (E): In this phase, one of the two
methods presented in Section 4.1 is implemented. We refer as
E1 to the sampling method based on the information provided
by the foot sensors (method 1) and we use the notation E2 for
the method based on the intersection between the filtered and
unfiltered versions of the heading angle (method 2).

• Step propagation (F): In this final phase, the step lengths
estimated through the feet mounted sensors and the heading
signal from the lower back sensor sampled in the previous phase
are fused in order to perform the navigation.

The time necessary to perform every phase of the algorithm on
the used laptop is presented in Table 3. It is important to highlight
that because of the Controlled delay function, the number of
acquired samples per sub-cycle is about 30: therefore, the
procedures (A) and (B) are computed with this number of samples
per sub-cycle. The subsequent tasks, instead, are computed every
time a stride is detected. By using several acquisitions with a

Table 2 Performance, in terms of absolute and relative errors, of the considered algorithms in the indoor scenarios
Distance, m Foot IMU PDR (EPDR) Hybrid system (first and second methods)

ϵa, m ϵr, % ϵa, m ϵr, %
36 0.6 1.7 1.1 3.1
54 1.2 2.2 1.7 3.1
81 1.7 2.1 2.5 3.2
93 1.9 2.0 3.3 3.5
105 2.7 2.5 3.9 3.7
 

Fig. 10  Relative error ϵr, as a function of the travelled distance, for the
considered algorithms in both indoor and outdoor scenarios

 

Fig. 11  Flow diagram of the hybrid system operational steps
 

6 IET Wirel. Sens. Syst.
© The Institution of Engineering and Technology 2017



normal walking pace, we have measured a stride event, on average,
every 1.2 s: this corresponds, for a sampling rate equal to 100 Hz,
to a number of samples per stride equal to 121 ± 13 (i.e. the
average value ± standard deviation). In Table 3, we show the
computational time necessary to update the position, namely the
time needed to process a double stride (i.e. a stride per foot), in
order to perform the bi-lateral gait segmentation. More precisely:
task (A) is executed four times per sensor every position update;
task (B) is executed four times only for the feet mounted sensors;
whereas tasks (C)–(F) are performed once per position update.
Given that the average stride duration is 1.2 s, a position update is
performed every step, i.e. on average, every 600 ms. 

In conclusion, the total time necessary to perform a position
update every 600 ms by the hybrid system (with the first heading
segmentation method) is 28.91 ms: this definitely allows a real-
time implementation of our approach.

6 Conclusions
In this paper, we have compared two different inertial navigation
systems with the aim of investigating the strengths and weaknesses
of various IMU placements in terms of ‘quality’ of inertial
navigation. The obtained results show that the orientation collected
from a sensor placed near the CoM, on the lower back, guarantees
a more stable behaviour with respect to the orientation obtained
from a sensor placed on the foot. On the other hand, step length
estimation is more effective when the sensor is placed on the foot,
due to direct double integration and ZUPT: at the opposite,
navigation systems relying exclusively on a single sensor mounted
on the trunk use empirical formulae to estimate the frontal body
displacement. We have also developed a novel hybrid method,
which exploits the advantages of the two sensor placements and
achieves better or comparable performance in both outdoor and
indoor environments. The main limitation of the latter method
consists of the error introduced by the step propagation technique
in the presence of sharp curves. The obtained results should be
taken into account during the development of inertial navigation
algorithms, in particular in the development of navigation
algorithms with trunk-mounted and/or hand-held sensors.

In our future work, we aim at reducing the number of sensors
necessary to perform sensor fusion, step length estimation, and gait
segmentation. This will be achieved by removing a foot mounted
sensor, thus trying to apply gait segmentation by assuming a gait
symmetric model.

7 References
[1] Segura, M., Mut, V., Sisterna, C.: ‘Ultra wideband indoor navigation system’,

IET Radar Sonar Navig., 2012, 6, (5), pp. 402–411
[2] Pagano, S., Peirani, S., Valle, M.: ‘Indoor ranging and localisation algorithm

based on received signal strength indicator using statistic parameters for
wireless sensor networks’, IET Wirel. Sens. Syst., 2015, 5, (5), pp. 243–249

[3] Fan, Q., Sun, B., Sun, Y., et al.: ‘Performance enhancement of MEMS-based
INS/UWB integration for indoor navigation applications’, IEEE Sens. J.,
2017, 17, (10), pp. 3116–3130

[4] Hu, W.Y., Lu, J.L., Jiang, S., et al.: ‘WiBEST: a hybrid personal indoor
positioning system’. Wireless Communications and Networking Conf.
(WCNC 2013), Shanghai, China, 2013, pp. 2149–2154

[5] Misra, P., Enge, P.: ‘Global positioning system: signals, measurements and
performance’ (Ganga-Jamuna Press, Lincoln, 2010, 2nd edn.)

[6] Benedicto, J., Dinwiddy, S.E., Gatti, G., et al.: ‘Galileo: satellite system
design and technology developments’ (European Space Agency (ESA),
Noordwijk, NL, 2000)

[7] Camplani, M., Paiement, A., Mirmehdi, M., et al.: ‘Multiple human tracking
in RGB-depth data: a survey’, IET Comput. Vis., 2017, 11, (4), pp. 265–285

[8] Strozzi, N., Parisi, F., Ferrari, G.: ‘On single sensor-based inertial navigation’.
IEEE EMBS 13th Annual Int. Body Sensor Networks Conf. (BSN 2016), San
Francisco, CA, 2016

[9] Strozzi, N., Parisi, F., Ferrari, G.: ‘A multifloor hybrid inertial/barometric
navigation system’. IEEE Int. Conf. Indoor Positioning and Indoor Navigation
(IPIN 2016), Alcala de Henares, ES, 2016

[10] Beauregard, S., Haas, H.: ‘Pedestrian dead reckoning:a basis for personal
positioning’. Workshop on Positioning, Navigation and Communication
(WPNC 2006), Hannover, Germany, 2006

[11] Fourati, H.: ‘Heterogeneous data fusion algorithm for pedestrian navigation
via foot-mounted inertial measurement unit and complementary filter’, IEEE
Trans. Instrum. Meas., 2015, 64, (1), pp. 221–229

[12] Hsu, Y.L., Wang, J.S., Chang, C.W.: ‘A wearable inertial pedestrian
navigation system with quaternion-based extended Kalman filter for
pedestrian localization’, IEEE Sens. J., 2017, 17, (10), pp. 3193–3206

[13] Jimenez, A.R., Seco, F., Prieto, C., et al.: ‘A comparison of pedestrian dead-
reckoning algorithms using a low-cost MEMS IMU’. Intelligent Signal
Processing (WISP 2009), Budapest, Hungary, 2009, pp. 37–42

[14] Alvarez, J.C., Alvarez, D., Lopez, A.M., et al.: ‘Pedestrian navigation based
on a waist-worn inertial sensor’, Sensors, December 2012, 12, pp. 10536–
10549

[15] Basso, M., Galanti, M., Innocenti, G., et al.: ‘Pedestrian dead reckoning based
on frequency self-synchronization and body kinematics’, IEEE Sens. J., 2017,
17, (2), pp. 534–545

[16] Weinberg, H.: ‘Using the adxl202 in pedometer and personal navigation
applications’. Analog Devices, 2002, Application Note AN-602

[17] Zijlstra, W., Hof, A.L.: ‘Assessment of spatio-temporal gait parameters from
trunk accelerations during human walking’, Gait Posture, 2003, 18, pp. 1–10

[18] Gonzalez, R.C., Alvarez, D., Lopez, A.M., et al.: ‘Modified pendulum model
for mean step length estimation’. 2007 29th Annual Int. Conf. IEEE
Engineering in Medicine and Biology Society, 2007, pp. 1371–1374

[19] Madgwick, S.O.H., Harrison, A.J.L., Vaidyanathan, R.: ‘Estimation of IMU
and MARG orientation using a gradient descent algorithm’. IEEE Int. Conf.
Rehabilitation Robotics Rehab Week (ICORR 2011), ETH Zurich Science
City, Switzerland, 2011, pp. 1–7

Table 3 Computational cost organised per task (dimension: ms). These times refer to the processing load associated with a
new step, which, on average, is detected every 600 ms
(A) three IMUs four sub-cycles (B) two IMUs four sub-cycles (C) (D) (E1) (E2) (F)
4.4 7.4 16.2 0.4 0.46 1.3 0.05

 

IET Wirel. Sens. Syst.
© The Institution of Engineering and Technology 2017

7


