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Many applications for ad hoc networks are based on a point-to-multipoint (multicast)
communication paradigm, where a single source sends common data to many receivers,
or, inversely, on a multipoint-to-point communication paradigm, where multiple sources
send data to a single receiver. In such scenarios, communication can be secured by adopt-
ing a common secret key, denoted as ‘‘group key’’, shared by multiple communication end-
points. In this work, we propose a novel centralized approach to efficiently distribute and
manage a group key in generic ad hoc networks and Internet of Things, while reducing the
computational overhead and network traffic due to group membership changes caused by
users’ joins and leaves. In particular, the proposed protocol takes advantage of two possible
leave strategies: (i) at a pre-determined time selected when the user joins the group or (ii)
at an unpredictable time, as in the case of membership revocation. The proposed protocol
is applied to two following relevant scenarios: (i) secure data aggregation in Internet of
Things (IoT) and (ii) Vehicle-to-Vehicle (V2V) communications in Vehicular Ad hoc Net-
works (VANETs).

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

According to a group communication paradigm, a single
member can originate and deliver a message to the whole
group of nodes, through multicast (or broadcast) commu-
nication services [1], and thus in a more efficient manner
than an equivalent unicast-based solution. The first appli-
cations taking benefit of the group communications model,
such as online gaming and audio/video streaming [2], have
historically operated on the Internet. In recent years, the
ever increasing diffusion of ad hoc (mostly wireless) net-
works has offered a new fertile ground for the develop-
ment of new types of group-based applications. In
scenarios such as wireless sensor networks [3], mobile ad
hoc networks [4], and Internet of Things (IoT), a large
number of applications (e.g., data dissemination, data
gathering, peer-to-peer communications) need an underly-
ing multicast data delivery service.

Securing group communications consists in providing
confidentiality, authenticity, and integrity of messages ex-
changed within the group, through suitable cryptography
services [5], and without interfering with the data path
of the multicast data flow,1 [7]. The achievement of this goal
in an efficient and scalable manner is a challenging task
since it requires that a large and dynamically varying num-
ber of users share cryptographic materials, even in the pres-
ence of unpredictable group membership changes due to
new users entering (joining) the network and to old users
leaving the network. In fact, after any membership change,
the shared cryptographic materials should be refreshed
normal
rypt and
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through a suitable rekeying operation, so that a former group
member has no access to current communications (forward
secrecy) and a new member has no access to previous com-
munications (backward secrecy) [8,9].

While authenticity and integrity protection in group
communications can be easily achieved through asymmet-
ric cryptography, like in traditional point-to-point commu-
nications (e.g., through digital signatures), the simplest and
most scalable way to provide data confidentiality within a
multicast group is to encrypt the data through symmetric
cryptography, with a secret key shared (only) by all users
belonging to the group. Such symmetric key is normally re-
ferred to as group key.

Under the assumption of using security primitives
unbreakable for an attacker with limited computational
power, the main issue in group communications consists
in distributing such secret group key to all the legitimated
users and updating it at any group membership change.
This problem is known as Group Key Distribution (GKD)
and it can be tackled by following two different models
[10]: (i) Broadcast Encryption (BE) [11,12], which assumes
that current data be decipherable independently of past
transmissions (the receivers are stateless) and (ii) Multicast
Key Distribution (MKD), which allows the users to main-
tain state of the past cryptography material [13] (stateful).
There are two main categories of MKD protocols: central-
ized [14] or distributed [15]. According to the former, the
keys’ distribution task is assigned to a single entity, de-
noted as Key Distribution Center (KDC). In the case of the
distributed approach instead, the group key is established
and maintained by the users themselves, in a distributed
fashion. The centralized MKD approach has several advan-
tages: (i) simplicity; (ii) a small number of exchanged mes-
sages compared to other methods; and (iii) the possibility
of operating on intrinsically broadcast channels, where the
source (which also acts as MKD server) sends data to all the
possible destinations. Distributed methods typically offer
greater reliability, since they do not require any centralized
entity to trust, but they have higher communication and
computational costs and are not applicable to asymmetric
communication scenarios where data cannot be exchanged
between any pair of nodes. For these reasons, in the rest of
this paper we will focus on centralized approaches.

In a centralized MKD protocol, among the different
methods to achieve secure communications in a group of
n members, one of the simplest consists in having: (i) a
group key, shared by group members only and changed
every time a user joins or leave the group [16] and (ii) n
individual long-term keys shared (pairwise) between the
KDC and every group member. A message sent by a mem-
ber to the whole group is encrypted with the group key, so
that only the remaining members can decrypt it. Instead,
the individual keys are used for securing unicast communi-
cations and for reeking. The management of the group keys
has a cost, in terms of number message exchanges, that
varies according to the protocol used to update the group
key to all members (rekeying). In the simplest case, the
KDC separately sends the new group key, encrypted with
the member’s long-term key, to all the group number, thus
determining a number of exchanged messages propor-
tional to n. The overall number of communications also
depends on the average number of rekeying. In some pro-
tocols, the group key is refreshed suddenly after any join or
leave events, in these cases the number of rekeying is di-
rectly proportional to the number of change of member-
ship events. In other cases, the group key is refreshed
programmatically according to a slotted schedule. These
protocols have a constant number of rekeying operations,
but they reduce the freedom of the nodes, and make
impossible to perform instant evictions of malicious or
dangerous users. Besides this classification, it is possible
to define hybrid protocols, where join and leaves are per-
formed programmatically, while evictions are performed
immediately.

The technique described in this work is based on a key
derivation scheme properly extended in order to deal with
both unpredictable leave events and collusive attacks. In
particular, we present a MKD protocol tailored for very dy-
namic ad hoc networks, either wired or wireless. Time is
partitioned in fixed-length intervals, each of them associ-
ated with a different group key. Even if a user can join any-
time (asynchronously), it shall wait until the beginning of
the next slot before becoming a group member. This intro-
duces a delay, on average equal to half of the slot interval,
but allows to reduce the number of rekeying acts. Simi-
larly, the planned leave of a legitimate member shall also
happen at the beginning of a slot period. In other words,
the protocol is slotted and adopts a synchronous batch
rekeying mechanism [16] that improves efficiency without
posing security threats. The protocol also provides proper
mechanisms to deal with unpredictable leave events and
to resist against collusive attacks.

The aim of the protocol is to minimize the computa-
tional burden of group members and the overhead, ex-
pressed in terms of number of exchanged messages,
while achieving a sufficiently high security level. The pro-
posed protocol can operate on very dynamic scenarios
with a large number (thousands) of nodes and offers excel-
lent performance under the assumption of low rate of
evictions.

The structure of this paper is as follows. Section 2 re-
views related works. In Section 3, a new technique for solv-
ing the problem of distributing group-shared secret keys
for ad hoc communications is proposed. In Section 4, the
performance and the robustness of the proposed technique
are assessed and compared with state-of-the-art protocols.
In Section 5, the new technique is applied to a realistic
application scenario for the Internet of Things and a partic-
ular application for Vehicular Ad hoc NETworks (VANETs).
Finally, concluding remarks are given in Section 6.

2. Related works

In multicast group communications, a proper MKD pro-
tocol is required for generating and distributing a secret
group key that can be used to secure (encrypt) data sent
from one source to all destinations that are member of
the same group. Since multicast groups are often very
dynamic, due to the join of new members and the leave
of old members, the MKD has to handle such group
membership changes by re-generating and re-distributing
new group keys.
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More precisely, the group key should be changed after
every join and leave through a suitable rekeying operation,
so that a former group member has no access to current
communications and a new member has no access to pre-
vious communications [8]. These requirements can be ex-
pressed by introducing the concepts of forward secrecy
and backward secrecy [9]. According to the former, non-
members should not be able to obtain the group key at
any instant based only on the information obtained at or
before that instant. A more strict requirement, is the con-
cept of backward secrecy, according with the group key at
any instant should not be computable by non-members
even after that instant (in other words, the new comers
cannot compute past group keys). Moreover, group com-
munication should be resistant to collusion attacks, in
which (past or current) member of the group exchange
information ‘‘out-of-band’’ in order to illicitly have access
to information.

Join and leave operations can happen anytime (in an
asynchronous and dynamic fashion), or alternatively, they
can be synchronized at specific instants (in a slotted man-
ner). In the second case, a number of join/leave operations
should be jointly managed in the same temporal slot and
for this reason these mechanisms are also referred as
‘‘batch’’ methods. In this work, we focus on this kind of
mechanisms, since they significantly reduce the complex-
ity (quantified in terms of number of exchanged messages)
and they fit well the characteristics of realistic services,
such as online game, where the join/leave operations have
a daily or an hourly granularity.

In Section 1, MKD protocols have been classified in two
main categories: centralized or distributed. While central-
ized key distribution protocols rely on a centralized key
server (KDC) to efficiently distribute the group key, in dis-
tributed key agreement protocols there is no centralized
server and the key is generated in a shared and contribu-
tory fashion by the member of the group, usually named
peers. Such distributed protocols are often based on the
multi-party extension of the well-known Diffie–Hellman
key agreement protocol. For example Kim et al. [17] pro-
pose a Tree-based Group Diffie–Hellman protocol (TGDH)
where each member maintains a set of keys, which are ar-
ranged in a hierarchical binary tree. A secret key and a
blinded (or public) key are associated to every tree node.
The secret key of a non-leaf node can be generated by
the secret key of one child node and the blinded key of
the other child node, similar to the classical two-party Dif-
fie–Hellman protocol. Each group member is associated to
a leaf node and the corresponding secret and blinded keys,
that can be used to generate all secret keys along the path
toward the root node secret key that, hence, can be gener-
ated by all nodes and corresponds to the group key. The
TGDH protocol has been further optimized in [15]. How-
ever, distributed protocols need a larger amount of ex-
changed messages and operations, and they typically
require full peer-to-peer communications, thus leading to
a greater complexity than the more used centralized proto-
cols. For these reasons centralized protocols are often pre-
ferred and used instead.

As described in Section 1, in a common centralized MKD
scenario, the KDC may share an individual long-term secret
key with every user of the network, while a shared short-
term key is used as group key and refreshed after any
membership change (or programmatically) using the
long-term keys. However, this plain centralized solution
is not scalable since the number of communications re-
quired for the rekeying operation is linear in the size of
the current group (denoted as n). These results should be
compared with the known lower bound O(log2 n) [9].

Wong et al. [8] proposed the Logical Key Hierarchy
(LKH) approach, based on key graphs, where keys are ar-
ranged into a hierarchy, and the key server maintains all
the keys. The LKH scheme makes use of symmetric-key
encryption (as the only cryptographic primitive), and has
a number of communications approaching the lower
bound in [9].

If a user wants to join the group, it sends a join request
to the key server. The user and key server mutually
authenticate each other using a protocol such as Secure
Socket Layer (SSL). If authenticated and accepted into the
group, the user shares with the key server a symmetric
key, called the user’s individual key.

In [18], the authors propose the MARKS protocol, which
is scalable and requires no key update messages. However,
MARKS only works if the leaving time of a member is set
when the member joins the group, so that members cannot
be expelled. Besides the scheduled leaves, there is also the
possibility of unpredictable leaves, which occurs when a
user is evicted from the group. In this case, it is unsafe to
delay the rekeying until the next time slot, and it is neces-
sary to provide a mechanism which allows immediate rev-
ocation of all the cryptographic materials known by the
evicted user.

In a previous work [19], we presented a very simple
algorithm for key derivation, which however does not
specify any management scheme to deal with unpredict-
able leave events and does not protect against collusive at-
tacks. In this work, in order to allow rapid unpredictable
evictions, we superimpose an existing asynchronous key
management mechanism, the LKH scheme [8], to our slot-
ted protocol.
3. New group key management protocol

In this section, a new group key distribution protocol is
presented. The proposed protocol allows a server (KDC) to
efficiently distribute a group key to all members of a mul-
ticast group dealing with dynamic joins and leaves of users
as group members. The proposed solution is summarized
in Section 3.1, and detailed in Sections 3.2 and 3.3.
3.1. Protocol overview

Let us consider a multicast group communication sce-
nario in which the same data has to be securely sent to a
group of destinations. In order to guarantee data confiden-
tiality, the sent message has to be encrypted with a secret
(group) key shared by, and only by, all group members. We
consider a dynamic scenario in which, at any time, a new
user may join the system as new group member and an
old user may leave the group. As described in the previous
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sections, this requires a suitable group key distribution
protocol, able to distribute a new key to all members upon
every change of group membership. We consider a key dis-
tribution scenario based on a trusted KDC that takes care
of: (i) maintaining a secure association with all users
belonging to the system; (ii) generating a new group key
every time the group membership changes; and (iii) effi-
ciently managing the distribution of the new group key
to all group members, guaranteeing both forward and
backward secrecy.

In a more general scenario, join and leave operations oc-
cur unpredictably, in a completely asynchronous and dy-
namic way. However, in order to optimize and
significantly reduce the complexity and the number of ex-
changed messages required to handle group member
changes and group key re-distribution (rekeying), a more
practical method is to allow the KDC to handle simulta-
neously a number of membership changes. This can be
achieved by splitting time into intervals (sometimes re-
ferred to as ‘‘time slots’’ or, simply, ‘‘slots’’) and letting
the KDC handle all membership changes that occur in the
same time interval. Key distribution mechanisms that
work in this way are often referred to as ‘‘batch’’ methods.
Note that our proposed method applies when these time
intervals have the same length or different lengths. How-
ever, very common scenarios are those in which member-
ship changes are handled, for practical reasons, in a daily or
monthly manner: this is the case, for example, of applica-
tions that consider service subscriptions with specific
durations (expressed exactly in days or months). Other
common possible time slot units can be minutes, seconds,
or years.

Although the time slot in which a new user wants to
join the system is in general difficult (or impossible) to
predict (as it can apply at any time), there are many
application scenarios in which the duration of the mem-
bership of a user is specified at the moment when the
user joins the system, possibly further extended on the
basis of a renewal strategy. Service subscriptions are often
handled by applications in this way, with the possibility
(in a limited subset of cases) of considering some form
of revocation mechanisms in order to handle situations
(often seen as exceptions) in which a membership has
to be revoked in advance before its natural expiration
time (for example, if a user unexpectedly leaves the sys-
tem or if he/she is removed due to a misuse or for
administrative reasons).

In spite of the above considerations, the majority of the
proposed key management mechanisms do not take
advantage of this operation and simply consider any leave
event as not pre-determined, as it always occurs randomly.

On the opposite, we explicitly consider two different
kinds of leave events: (i) ‘‘pre-determined’’ leave events,
when the leave time is selected in advance when the user
joins the network or when it refreshes his/her member-
ship, as in the case of a natural membership expiration
and (ii) ‘‘unpredictable’’ leave events, when the time of
leave does not coincide with the one selected at the time
of joining or refreshing, for example in the case of explicit
membership revocation. In our method, like in [18], both
kinds of leave events are explicitly considered, taking the
advantage of the balance of the former leaving strategy
with respect to the latter.

We consider a different group key Ki for each time slot i
with i = 0, 1, 2, . . . , N. In order to efficiently handle both
kinds of leave events, the group key is obtained through
a one-way function of two sub-keys K1i and K2:

Ki¼
: f ðK1i;K2Þ i ¼ 0;1;2; . . .

with K1i and K2 properly managed in order to handle both
kind of leaves. In particular, the values K1i are associated to
every time slots Dti (with i = 0, 1, 2, . . . , N); they are pre-
determined and provided to group members according to
their assigned membership duration. The values of K1i

are generated in an intelligent and secure manner in order
to simplify the assignment to joining users, by providing
only some root secret materials that can be used by the
member to further derive all K1i values associated with
all time slots he/she subscribed for. K1i are then used to
handle all new join and ‘‘pre-determined’’ leave events.

On the other hand, K2 is used to handle all ‘‘unpredict-
able’’ leave events. It is changed and re-distributed by the
KDC to all (and only) group members, in a scalable way,
similarly to other mechanisms already proposed in the
literature.

Since the amount of operations and exchanged mes-
sages differ for managing of the subkeys K1i and K2, the to-
tal amount of operations and exchanged messages is a
function of the rate of the ‘‘unpredictable’’ leave events
over join and ‘‘pre-determined’’ leave events.

Details of how K1i and K2 are derived and managed are
hereafter described.

3.2. Protocol details

The objective of the proposed key management proto-
col is to provide a group key that can be securely shared
by (and only by) all group members, taking into account
and properly handling:

1. regular membership changes, that are due to new users
that join the group and active members that leave the
group for ‘‘clean’’ membership expiration (‘‘pre-deter-
mined’’ leaves);

2. exceptional active member leaves, e.g., in the case of
explicit membership revocation (‘‘unpredictable’’
leaves).

In order to take into account membership changes of
type 1, the overall time span is considered divided into a
sequence of N time slots Dti with i = 0, 1, 2, . . . , N and in
general, Dti – Dtj for i – j. In practice, however, it will be
common to have Dti = Dtj = Dt "i, j, with Dt equal to stan-
dard time units, such as a minute, a second, a month, etc.
For each time interval Dti, in the following referred as
‘‘slot’’ i, a different group key Ki is determined. Consider
now a user member x that will belong to the group from
time ta to time tb + 1, i.e. from time slot Dta to time slot
Dtb: he/she will receive the subset of keys SX = {Ki, with
i = a, a + 1, a + 2, . . . , b}.

According to the above approach, as far as only mem-
bership changes of type 1 are considered, the KDC is
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requested to generate all keys Ki and give to each new
incoming member only the subset of keys corresponding
to the time slots over which he/she will belong to the
group. If the member will stay for a total of m time slots,
this will require the KDC to give to the new member m dif-
ferent keys. In order to limit the total amount of crypto-
graphic material that the KDC has to send to each new
member, a proper distribution protocol is adopted.

However, regular membership changes (type 1) are not
the only events that require the assignment and distribu-
tion of a new group key (i.e., a rekeying operation). In the
case of an unpredictable leave event (type 2) in time slot
Dth of member y that negotiated with KDC a membership
from time slot Dta to time slot Dtb, at least all previously
assigned keys (from Kh + 1 to Kb) must be re-assigned and
distributed to all valid group members. This is needed in
order to prevent y to decrypt messages that are sent after
time slot Dth with valid keys that he/she received by the
KDC in joining the group.

To handle both types of membership changes in a se-
cure and flexible way, the following key derivation and dis-
tribution protocol is proposed.

Let us consider N time slots, with N = 2D. Each time slot
Dti is associated with a key Ki defined as:

Ki¼
: f ðK1i;K2Þ i ¼ 0;1;2; . . . ;N � 1

where Ki, K1i, and K2 are fixed or variable-length bit
strings, and f(�) is a cryptographic one-way function that
returns a bit string of length equal to or greater than Ki.
If f(�) returns a bit string of length greater than Ki, a trunca-
tion can be applied. A cryptographic hash function H() (for
example SHA-1 [20] or MD5 [21]) can be used in place of
f(�) as follows:

Ki¼
: f ðK1i;K2Þ ¼ HðK1ikK2Þ i ¼ 0;1;2; . . . ;N � 1
Fig. 1. Deriving all K1 subkeys by
The subkey K1i is defined as follows. Consider a binary
tree with depth equal to D + 1, including the root node (le-
vel 0). At any level h, starting form 0, the binary tree has 2h

nodes. The last level is D, leading to 2D = N leaves. Let’s
indicate with (h, j) the node j of level h, with 0 6 h 6 D
and 0 6 j 6 2h � 1. Each node (h, j) of the tree, excluding
the last level D, has two child nodes that are respectively:
left child (h + 1,2j) and right child (h + 1,2j + 1). Each node
(h, j) is associated to a value xh,j that is derived by the value
of parent node as follows:

xhþ1;2i¼
: f0ðxh; iÞ

xhþ1;2iþ1¼
: f1ðxh; iÞ

or equivalently:

xh;i¼
: f0ðxh�1;i=2Þ i ¼ 0;2;4; . . . ;2h � 2

f1ðxh�1;ði�1Þ=2Þ i ¼ 1;3;5; . . . ;2h � 1

8<
:

where f0() and f1() are two different cryptographic one-way
functions. They could be also defined based on the same
function f() as follows:

f0ðxÞ¼: f ðxÞ
f1ðxÞ¼: f ðxþ 1Þ

In this case we can write xh,i (recursively) as:

xh;i¼
: f ðxh�1;bi=2c þ ði mod 2ÞÞ

By repeatedly applying the previous equations, starting
from the value xh,i of node (h, i) it is possible to generate
all values associated to the nodes of the subgraph that
has (h, i) as root. At the same time the value xh,i of node
(h, i) can be obtained from the value associated to any node
along the path from the xh,i to the tree’s root (0,0).
applying functions f0 and f1.
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Given such a binary tree, we define the subkey K1i equal
to the value of the leaf i, that is:

K1i¼
: xD;i

Then, K1i can be obtained from the value associated to any
node along the path from the leaf i to the tree’s root, or
equivalently from any values from xD,i to x0,0. Fig. 1 shows
the K1 subkeys derivation process described above. At the
same time, starting from the value xh,i of node (h, i) it is
possible to obtain all subkey values in the interval from
2D�h � i to 2D�h � (i + 1) � 1 included, that is all subkeys
from K12D�h �i to K12D�h �ðiþ1Þ�1. Note that, as a special case,
the value x0,0 can generate all subkeys from K10 to K1N�1.
Fig. 2 shows how to obtain backward and forward secrecy
by distributing the minimum set of values xh,i that cover
the time period of a member’s subscription.

This property can be used by the KDC to distribute the
K1i subkeys to new members in a very efficient way, reduc-
ing from O(N) to O(log (N)) the number of values that the
KDC has to pass to a new member in order to set subkeys
for all the temporal period that the new member will be-
long to the group.

The worst case occurs when the node joins the group
from time slot 1 to time slot N � 1, included. In this case,
2 � (log2(N) � 1) keys need to be distributed: xD;1; xD;N�1;

xD�1;1; xD�1; N
2�1; . . . x2;1; x2;2.

Let’s now consider the subkey K2. The value K2 is main-
tained constant as far as only regular membership changes
happen. As soon as a unpredictable leave event occurs, all
un-expired keys of the leaving member must be revoked
and replaced by new ones. This objective is reached by
replacing the K2 that in turn will change all successive
group keys Ki that are generated by the values of K1i and
K2.

When a new K2 value is generated, this has to be dis-
tributed by the KDC to all remaining valid group members.
This operation is very similar to the one faced by current
centralized key distribution protocols: for example LKH
[8] can be used.

3.3. Managing keys for unlimited time intervals

The described protocol assumes that the number of time
slots is fixed and equal to n = 2D. Therefore, it is inevitable
that the key distribution protocol is doomed to come to
an end eventually. In this section, we sketch a simple exten-
sion of the protocol to allow the KDC to handle time inter-
vals that might last beyond the one covered by a single tree
(i.e., more than n time slots). The basic idea is to instantiate
as many trees as required in order to manage a time inter-
val of arbitrary length. This extension makes it possible to
manage time intervals of any length with just a slightly in-
creased computational effort and memory consumption.

Time is split into intervals Ik of length DT and periods Pi

of length n � DT. Each period Pi is associated with a given
seed si, which is equal to the value of the root xi

0;0 of a tree.
Within a given period, the protocol works exactly as de-
scribed above. If a subscription lasts beyond the end of a
period, it is necessary to distribute keys from more then
one tree. Each tree can be computed ‘‘on the fly’’ in the fol-
lowing way:

xi
0;0¼
: gðsiÞ¼

: gðhðsi�1ÞÞ

where s is a seed, h(�) is a ‘‘one-way’’ function (i.e. hashing
function), and g(�) is a ‘‘blinding’’ function (i.e. XOR func-
tion). For instance, possible choices for h(�) and g(�) are

hðsiÞ ¼ Hðsi�1Þ ¼ Hiþ1ðsÞ
gðsiÞ ¼ s� hðsiÞ ¼ s� Hiþ1ðivÞ

where H is a hashing function and iv is an initial vector.
Therefore:
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s0 ¼ s� HðivÞ
s1 ¼ s� HðHðivÞÞ ¼ s� H2ðivÞ
. . .

si ¼ s� Hiþ1ðivÞ

The key xh,i can be calculated as

xh;i ¼ xP
h;I ¼ f ðf ð. . . f ð|fflfflfflfflffl{zfflfflfflfflffl}

htimes

gðsP�1Þ þ a0Þ þ a1Þ . . .Þ þ ah�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hbits

Þ

where P = bi/2hc is the index of the period, I = i mod 2h is
the index of the period’s interval, and a0, a1, . . . ah�1 are
the h bits of the binary representation of I.

This mechanism makes it possible to extend the func-
tioning of the protocol to cover an unlimited time interval
without extra memory requirements as keys can be com-
puted on the fly with no particular computational effort
since operations like hashing and XORing are very
lightweight.
4. Comparison of different key distribution strategies

In this section, the performance of the proposed key dis-
tribution protocol is compared with current state-of-the-
art solutions, considering different application scenarios.
The performance of the protocol is evaluated in terms of
the following metrics:

� amount of cryptographic material to be sent to a partic-
ular node or group members (K1 and K2 sub-keys),
� number of messages to be sent within the group, either

from the KDC or relayed by group members.

Table 1 shows the performances of the protocol when a
node joins the group, a node leaves the group, or a node is
evicted from a group of size n. The table shows the number
of involved receivers and the amount of cryptographic
material (values of the binary tree nodes to derive any
K1 in the group subscription interval and K2 sub-keys) that
each node must receive.

Note that, only in case of node eviction, the new K2 sub-
key must be sent to all other group members. The total
number of messages (M) needed to update K2 depends
on the distribution strategy. A naive approach could be to
send a separate message to each of the n � 1 members still
being part of the group, but this method is clearly ineffi-
cient and can be considered a worst-case example. In order
to optimize network traffic, we superimpose the LKH
‘‘user-oriented rekeying’’ strategy, which offers the best per-
formance on the client side, but increases the computa-
tional effort of the KDC. We found this solution to best
adapt to IoT scenarios, where devices typically offer little
computational power and must minimize energy con-
Table 1
Performance of the key distribution protocol evaluated in terms of number of key

Event Receivers xh,i Values per node

JOIN 1 62 � (log2(N) � 1)
LEAVE 0 0
EVICTION n � 1 0
sumption. In this case, M = (d � 1)(h � 1), where d is the
LKH tree degree, and h is the length of the longest directed
path of the LKH tree.

Tables 2–4 compare the performances of the LKH and
MARKS protocols with our key distribution protocol, in
case of join, leave, and eviction events, respectively. Note
that, the super-imposed LKH strategy is necessary only if
nodes are evicted, since the K1 sub-key alone guarantees
forward secrecy when nodes leave the group gracefully.

As already said in Section 2, MARKS only works if the
leaving time of a member is set when the member joins
the group and therefore it does not apply to the case of
unpredictable leave events, such as evictions.

The comparison between the new protocol, MARKS, and
LKH shows that the former achieves optimal performance,
in terms of the metrics taken into account, for join events,
predictable leave events, and unpredictable leave events.
In the case of join and predictable leave events, the new
protocol requires the same number of keys to be distrib-
uted and messages to be sent as MARKS.

The new approach considers also the case of node evic-
tion, in order to provide a thorough description of all pos-
sible events that might occur in a group’s lifecycle. Node
eviction is not addressed by MARKS, while the proposed
protocol manages this kind of events with the same perfor-
mance as LKH both for the number of keys to be distrib-
uted and the number of messages to be sent.

Communication between KDC and group members is
required only when nodes are evicted, thus communica-
tion overhead is kept to a minimum, thus ensuring optimal
consumption of processing and network resources.

5. Key distribution in IoT scenarios

5.1. An application for sensor data aggregation

As aforementioned in Section 1, the scheme proposed in
this work can be applied to several types of ad hoc net-
works. In this section, we will present a case study for data
aggregation in the IP-based Internet of Things (IoT).

In-network data aggregation in wireless sensor net-
works consists in executing certain operations (such as
sum and average) on intermediate nodes in order to mini-
mize the amount of transmitted messages and processing
required on nodes so that only significant information is
passed along in the network. This leads to several benefits,
i.e. energy saving, which are crucial for constrained envi-
ronments, such as low-power and lossy networks. Data
aggregation is a multipoint-to-point communication sce-
nario, which requires intermediate nodes to operate on re-
ceived data and forward a function of such input data. In
those scenarios where privacy on transmitted data is an
issue, it might be required to send encrypted data.
Encryption can be adopted not only to achieve
s to distribute and messages to be sent.

K2 sub-keys per node Total messages

1 1
0 0
1 M



Table 2
Comparison with LKH and MARKS in case of node joining group of size n.

Event keys to distribute messages

LKH h(h + 1)/2 � 1 h
MARKS 62 � (log2(N) � 1) 1
ours 62 � (log2(N) � 1) 1

Table 3
Comparison with LKH and MARKS in case of node leaving group of size n.

Event Keys to distribute Messages

LKH (d � 1)h(h � 1)/2 (d � 1)(h � 1)
MARKS 0 0
Ours 0 0

Table 4
Comparison with LKH and MARKS in case of node being evicted from group
of size n.

Event Keys to distribute Messages

LKH (d � 1)h(h � 1)/2 (d � 1)(h � 1)
MARKS Undefined Undefined
Ours (d � 1)h(h � 1)/2 + 1 (d � 1)(h � 1)
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confidentiality, but also to verify the authenticity and
integrity of messages.

Typically, secure data aggregation mechanisms require
nodes to perform the following operations:

1. at the transmitting node, prior to transmission, data are
encrypted with some cryptographic function E,

2. at the receiving node, all received data packets are
decrypted with the inverse cryptographic function
D = E�1 to get the original data,

3. data are aggregate with an aggregation function,
4. prior to transmission, aggregate data are encrypted

through E and relayed to the next hop.

This process is iterated until data reach the destination
node who is interested in receiving the result of aggrega-
tion, as shown in Fig. 3. Both symmetric and asymmetric
cryptographic scheme can be applied.
5.1.1. Asymmetric and symmetric encryption-based secure
data aggregation

Public key (asymmetric) cryptography requires the use
of a public key and a private key. Public keys can be asso-
ciated with the identity of a node by including them into a
Fig. 3. In-network da
public certificate, signed by a Certification Authority (CA)
that can be requested to verify the certificate. Public key
cryptography requires the significant effort of deploying a
Public Key Infrastructure (PKI). Moreover, asymmetric
cryptography requires higher processing and long keys
(at least 1024 bits for RSA [22]) to be used. Alternative
public key cryptographic schemes, such as Elliptic Curve
Cryptography (ECC) [23], might require shorter keys to
be used in order to achieve the same security than RSA
keys. However, because of these reasons, symmetric cryp-
tography is preferred in terms of processing speed, compu-
tational effort, and size of transmitted messages.

Symmetric cryptography requires the same key K to be
used by the sender and the receiver to perform the encryp-
tion and decryption functions. Typically, a security associ-
ation should be instantiated between each and every pair
of communicating nodes, summing up to a total of
n � (n � 1) keys to be present in a community of size n. If
some trust relationship is present among a number of
nodes, a group key can be used to encrypt sent data and
decrypt received data prior to aggregation in a much more
efficient scheme than employing a different key between
each couple of nodes.

5.1.2. Homomorphic encryption schemes
The secure data aggregation procedure described above,

requires a significant amount of work to be performed on
the aggregating node since all incoming packets need to
be decrypted and the outgoing packets needs to be en-
crypted. These operations could be avoided by applying
homomorphic encryption schemes. Homomorphic encryp-
tion is a form of encryption which allows specific types of
computations to be executed on ciphertext and obtain an
encrypted result which is the ciphertext of the result of
operations performed on the plaintext:

Efa� bg ¼ Efag � Efbg

An example of a homomorphic encryption is the RSA algo-
rithm. Let’s consider a modulus N and an exponent e. The
encryption of a message m is given by E{m} = memodN.
The homomorphic property is

Efm1 �m2g ¼ ðm1 �m2Þemod N

¼ ðm1Þemod N � ðm2Þemod N ¼ Efm1g � Efm2g

Other examples of homomorphic encryption schemes are
the ElGamal cryptosystem [24] and the Pailler cryptosys-
tem [25]. It is clear that homomorphic encryption could
dramatically improve the performances of a secure data
ta aggregation.
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aggregation mechanism by allowing aggregating nodes to
operate directly on encrypted data.

The examples cited above are all public key homomor-
phic encryption schemes. Therefore, they introduce the
drawbacks of public key cryptography which we have out-
lined previously. A symmetric homomorphic encryption
scheme could be a solution to achieve the benefits of effi-
cient symmetric cryptography and avoid unnecessary
computation on the aggregating node.

The Iterated Hill Cipher (IHC) is an additive symmetric
homomorphic scheme, based on a modification of the ori-
ginal Hill Cipher in order to cope with its vulnerability to
known-plaintext attacks. Riggio and Sicari employ modu-
lar addition as a symmetric key homomorphic function to
perform secure aggregation in hybrid mesh/sensor net-
works [26]. Addition-based aggregation functions, such as
sum and average, can be performed using either
homomorphism.

5.1.3. Secure data aggregation with symmetric homomorphic
encryption

In this work, we applied our group key distribution pro-
tocol to a particular application scenario where wireless
sensors running the Contiki OS [27]. Contiki is an open
source operating system for the Internet of Things. Contiki
allows tiny, battery-operated low-power systems commu-
nicate with the Internet. Contiki is used in a wide variety of
systems such as city sound monitoring, street lights, net-
worked electrical power meters, industrial monitoring,
radiation monitoring, construction site monitoring, alarm
systems, and remote house monitoring.

Contiki includes the uIP TCP/IP stack that provides Con-
tiki with TCP/IP networking support. uIP provides the pro-
tocols TCP, UDP, IP, and ARP. Secure communication is
integrated in the Contiki with a lightweight implementa-
tion of the IPSec protocol [28]. IPSec in Contiki requires a
hardcoded encryption key to be used, which is therefore
static. In this work, a dynamic encryption key configura-
tion mechanism has been implemented in order to make
it possible to integrate the Contiki IPSec with our key dis-
tribution protocol.

In this scenario, sensor nodes send sensed data to a col-
lecting node securely using IPSec. The presence of a KDC
which can communicate securely with each participating
node is assumed. The proposed protocol makes it possible
to insert and remove nodes seamlessly. This ensures that
only authorized nodes are able to exchange data invisible
to eavesdroppers. Eavesdroppers are also prevented by try-
ing brute force attacks, as the encryption key is changed
automatically over time even if no change in the group
membership occurs.

5.2. An application for information dissemination in VANETs

5.2.1. The big picture
In this section, we focus on a particular type of Internet

of Things scenario, already presented in [19], where the
smart-objects are vehicles. More specifically, we consider
the perspective of a service provider interested in offering
a service (partially) based on VANET communications,
adopting an approach similar to that proposed within the
X-NETAD project [29]. The scenario of interest is shown
in Fig. 4, where it is represented a single service provider
disseminating information to disjoint clusters of autho-
rized users through heterogeneous communications.

We consider a very simple Service Level Agreement
(SLA) between the service provider and the users, which
foresees three distinct categories of users: (i) Primary
Users (PUs); (ii) Secondary Users (SUs); and (iii) Unautho-
rized Users (UUs). The PUs are privileged users that period-
ically retrieve the information of interest, from the service
provider, through an Internet connection provided by a
third-party Wide Area Network (WAN) such as a cellular
network. As shown in Fig. 5, the PUs and the service pro-
vider can establish a unicast link that is relatively simple
to secure by reusing standard cryptographic techniques
and protocols (e.g., a TLS connection). The PUs propagate
the information to a larger number of SUs, by means of
multihop broadcast V2V communications, as shown in
Fig. 5. The SUs obtain information from the PUs according
to a push content distribution model (e.g., the PUs period-
ically disseminate it without any explicit query from the
SUs), but they cannot receive the information directly from
the service provider. Finally, the UUs are unauthorized
users (e.g., users without a valid account) that must not
have access to the information exchanged between PUs
and SUs.

In practice, the distinction among the three different
roles defined in the SLA is implemented through an access
control service, e.g., a service restricting access to resources
reserved to privileged entities. In particular, a confidential-
ity service is used to prevent UUs to have access to the re-
served contents. The confidentiality service can be
determined by encrypting the message in three different
manners: (i) a group-shared secret key; (ii) a receiver-
shared secret key (through symmetric cryptography); and
(iii) a receiver public key (using asymmetric cryptography).
In the first case, it is sufficient that the sender encrypts and
multicasts only one copy of the message. Conversely, in the
other cases, multiple copies of the message should be sent,
each encrypted with a different receiver-shared or public
key. For this reason, the problem of providing message
confidentiality can be mapped into the problem of sharing
a common group key between all the participants, under
the assumption that a node can freely join or leave this
group (for example, for commercial or administrative rea-
sons). Coherently with these considerations, the informa-
tion exchanged in a VANET will always be encrypted via
symmetric cryptography and therefore, all the authorized
users will share a common secret key (e.g., a group-shared
key). It is important to observe that the choice of having a
single group key shared across all the users, regardless of
their geographical positions, allows to achieve a high de-
gree of flexibility and scalability. In fact, this enable the lo-
cal clusters of nodes (visible in Fig. 4) to split or merge
together without the need of renegotiate a new group key.

Once the confidentiality service has been established,
the distinction between PUs and SUs can be easily man-
aged by the service provider in a centralized manner.
Without loss of generality, it can be assumed that the sub-
scriptions have limited durations and, hence, have to be
periodically renewed. Moreover, since a user could issue



Fig. 4. General view of the data dissemination application.

Fig. 5. A graphical representation of the data-flow of the considered
application.
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(or cancel) a new subscription at any time, its status could
unpredictably change over time. It is straightforward to
observe the needs of the confidentiality service are per-
fectly addressed by the scheme designed in Section 3.
5.2.2. Security architecture
Since the exchange of information between PUs and SUs

is entirely based on V2V communications, the application
requires the presence of dedicated (or pre-existing) VA-
NETs. Regardless of the nature of the VANETs, we assume
that the vehicles are equipped with OBUs compliant with
the IEEE 802.11p standard [30] and adhering to the IEEE
1609 protocols suite. In particular, the OBUs implement
all the security services defined in the IEEE 1609.2 stan-
dard. The application can be installed on the on-board
computer of a vehicle or it can be executed on a smart-
phone or other commercially available equipments (e.g.,
GPS navigators). The application should be able to send
and receive packets through the OBU by means of a local
connection (e.g., Bluetooth or a wired communication bus).
Generally speaking, a VANET should provide several
distinct security services, which can be summarized as fol-
lows [31].

� Confidentiality: keeping secret the information from
UUs.
� Access control: restricting the access to reserved

resources for PUs and SUs.
� Integrity: ensuring that the transmitted information

cannot be modified by UUs.
� Authentication: certifying that the origin of a message is

correctly identified.
� Identification: establishing the identity of a user.
� Non-repudiation: preventing the sender of a message

from denying having created that message.

In the multihop communication scenario presented in
Section 5.2.1, the vehicles route messages trough the entire
network by broadcasting them to all neighbors within
their coverage area. In order to protect messages against
eavesdropping, modification, and/or fake message forging
by unauthorized malicious nodes, message authentication
and confidentiality should be properly implemented before
sending messages to the neighbors.

As anticipated in Section 5.2.1, each vehicle supports
the IEEE 1609.2 protocol suite. In particular, the IEEE
1609.2 standard defines the following security functional-
ities [32]:

� digital signatures using ECC [23], specifically Elliptic
Curve Digital Signature Standard (ECDSA), by using
the Fp curves defined by the NIST [33];
� asymmetric encryption with ECC, specifically Elliptic

Curve Integrated Encryption Scheme (ECIES) [34,35];
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� purely symmetric scheme: authenticated encryption,
specifically counter mode encryption, and CBC-MAC
with AES (AES-CCM) [36].

Therefore, the IEEE 1609.2 standard defines primitives
sufficient for providing data authentication, non-repudia-
tion, data integrity, and confidentiality (under the assump-
tion of having an encryption key shared across all the
authorized users). However, the IEEE 1609.2 standard does
not address several critical questions, namely: (i) privacy;
(ii) key management; and (iii) identity management.

In order to address these issues, several security archi-
tectures have been proposed in the literature. In this work,
we have considered a general architecture largely based on
that introduced in [37]. In particular, the node architecture
is shown in Fig. 6. Coherently with the main goal of this
work, we will not detail the characteristics of the security
infrastructure, but we will only sketch it.

First of all, a PKI, constituted by several CAs, is estab-
lished. The vehicles communicate with the CAs through
either cellular-based or RSU-based communications. Each
vehicle has a unique IDentification (ID), a pair of long-term
private–public keys, and a long-term certificate issued by a
CA upon node registration. Actually, the long-term
credentials are not directly used, but they are needed to is-
sue second-level short-term credentials, denoted as
‘‘pseudonyms’’, which are actually used for securing V2V
communications. The goal of using pseudonyms is two-
fold: (i) to reduce the risk of compromising the long-term
credentials; (ii) to increase the privacy of the vehicle. How-
ever, it is important to remark that since short-term certif-
icates need to be issued from CAs, then pseudonyms can be
used only if Internet accesses are frequently available to
the vehicles. In the case of the considered application,
the PUs continuously have an Internet connection. To
Fig. 6. Security architecture of t
summarize, with respect to a legacy IEEE 1609.2 system,
the proposed architecture provides (i) a higher level of pri-
vacy and (ii) key and identity management systems.

It should be now addressed the problem of deriving
and distributing a common group key across all the
authorized users. From a logical point of view, the prob-
lem of generating a common group key is the same ad-
dressed in detail in Section 3. In fact, the service
provider is the unique entity with the right to authorized
the network users, therefore, it can act as a full-fledged
KDC reusing the technique described in Section 3 for
managing the user subscriptions and for generating the
new group keys. Instead, the distribution of the new
group keys is hindered by the lack of direct links between
the SUs and the KDC. In order to solve this problem we
have adopted a two phases strategy. In the first phase,
the KDC distributes the new group keys to the PUs by
using the unicast links existent between them, that can
be easily secured by using standard cryptographic tools
(as described in Section 5.2.1). In the second phase, the
PUs distribute the new group keys to the SUs belonging
to their local clusters. The distribution is carried out by
establishing a temporary unicast link between the PU
and each SU. The group keys can be encrypted, either
with symmetric or asymmetric cryptographic methods,
by using the encryption primitives provided by the IEEE
1609.2 stack and the cryptographic materials associated
to the pseudonyms.

It is now possible to define the operations performed by
a PU to broadcast an encrypted packet to the SUs of its lo-
cal cluster. We remark that the symbol k denotes the com-
mon group key.

1. To generate two sub-keys ki and ke from the common
secret key k.
he considered application.



Fig. 7. Structure of the packet with emphasis on its encrypted payload.
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2. To encrypt the message (denoted as m) with ke: c =
Enc(ke,m).

3. To compute the Message Authentication Code (MAC) of
c with the key ki: MAC(ki,m).

4. To compute the signature of c with the private key Ski:
Sig (Ski,c).

5. To compose the packet as follows: ckMAC (ki,c)k Sig
(Ski,c)

6. If required, to attach the certificate Cert (PKi) and,
finally, to send the message.

The structure of the packet built according to these
operations is shown in Fig. 7.

Once the encrypted message has been correctly re-
ceived, a SU should perform the following operations.

1. To obtain the public key PKi from Cert (PKi) (if it is
attached).

2. To generate two sub-keys ki and ke from the common
secret key k.

3. To verify the integrity of the message, by computing the
MAC of c with the key ki, and compare it with the
received MAC.

4. To verify the signature of c with the public key PKi (if
known). If user does not know the public key it can also
decide not to verify the signature at all.

5. To finally decrypt the message c with ke, after having
verified the authenticity and the integrity of the packet:
m = Dec(ke,c).

Finally, it is worth to be mentioned that the described
system has been implemented and validated on a platform
based on Android smartphones equipped with GPS, IEEE
802.11 interface, and 3G interface. According to the preli-
minary results, the system has worked as expected exhib-
iting a performance level coherent with the data presented
in Section 4. Unfortunately, because of the small number of
available devices, we were unable to perform experiments
on large scale scenario, e.g. thousands of nodes.
6. Conclusions

In this paper, we have presented an innovative protocol
for distributing a secret group key to all group members, in
a dynamic scenario in which members join and leave the
multicast group. The proposed protocol, differently from
the majority of the current mechanisms, considers both
the cases in which a member leaves the group in a predict-
able manner, for example for membership subscription
expiration, or in a unpredictable manner, such as in case
of membership revocation, while ensuring both backward
and forward secrecy. In order to optimize and significantly
reduce the number of exchanged messages required for
handling group member changes and group key re-distri-
bution (rekeying), time is split into time-intervals, thus let-
ting the KDC to handle together all membership changes
that occur in the same time interval (batch method). For
each time interval a new key is automatically derived by
all active members, without any interaction with the
KDC. In such way both join and pre-determined leave
event can be easily handled. Only in case of key revocation
events explicit communication between KDC and group
member is required, allowing our protocol to better per-
form than current key distribution protocols. The proposed
scheme has been integrated in an application scenario
where Contiki OS-based sensor nodes disseminate sensed
data securely using IPSec. This approach makes it is possi-
ble to provide group-level confidentiality and integrity, to-
gether with per-node authentication and non-repudiation.
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