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Abstract

In this paper, we present a novel design criterion for lowsity parity-check (LDPC)-coded modulations based on
the concatenation of an LDPC code with a coded modulator (@&N¥dred for the specific transmission channel.

Although we use an analysis based on extrinsic informatiansfer (EXIT) charts, we focus on the bit error rate

(BER) performance as opposed to the convergence thredhiodt, we characterize the convergence behavior of the
decoding process as a function of the LDPC code degreehlisons. Then, the BER performance is accurately
estimated by deriving upper and lower bounds as functiorthefextrinsic information.

1 Introduction novel and general upper bound for the BER as a function
of the extrinsic information. We then propose a code
Low-density parity-check (LDPC) codes [1], [2] are adesign criterion, based on the BER evolution with the
coding technique which is gaining increasing attentiornumber of decoding iterations, which can be used to
(from an implementation viewpoint) among the scientificactually design some codes.
community and the industry. In particular, since LDPC This paper is structured as follows. In Section 2,
codes exhibit near-capacity performance on a variety oEXIT chart-based convergence analysis of LDPC-coded
memoryless channels, there is high interest in investigamodulations is reviewed. In Section 3, bounds for the
ing their performance on practical channels [3]. BER as a function of the extrinsic information are derived.
A simple, although powerful, technique for exploiting In Section 4, the decoding convergence of the BER
LDPC codes over generic channels is based on the use f analyzed as a function of the LDPC code degree
LDPC-coded modulations. This approach is based on the distributions. In Section 5, we introduce a novel code
concatenation of an LDPC encoder and a coded modulalesign criterion based on the obtained results. Section 6
tor (CM) suitable for transmission over the consideredconcludes the paper.
channel. This is the approach followed in [4], where
an LDPC encoder is concatenated with a multiple-input
multiple-output channel modulator. At the receiver, asoft2  EXIT Chart-Based Analysis
input soft-output (SISO) module [5] designed for the
concatenation of CM and channel iteratively exchanges [4], the authors present an iterative receiver for LDPC
soft reliabilities with a standard LDPC decoder. codes concatenated with a modulator designed to cope
In this paper, we provide insights into the decodingwith the specific transmission channel. Following the
convergence of LDPC-coded modulations. We adopt theotation in [8], the receiver can be decomposed into two
receiver block decomposition introduced in [4] and charmain blocks: (i) blockA, comprising a SISO module
acterize the behavior of the extrinsic information transfe for the modulator and the set of all variable nodes,
(EXIT) curves [6] in the neighborhood of the poifit, 1)  denoted as variable node detector (VND) and (ii) blBck
in the EXIT chart, i.e., the point of successful decodingcomprising the set of all check nodes, denoted as check
convergence. We highlight the dependence of the EXIThode detector (CND).
curves of the decoding blocks on the LDPC code param- Since blocksA and B exchange iteratively vectors of
eters, i.e., the degree distributions [7], devoting palic  real valued reliabilities associated with the transmitted
attention to the final iterations needed for convergence.DPC codeword and since for each block these vectors
A novel bound on LDPC code parameters is given agan be computed as a function of the observed received
a necessary condition for decoding convergence. Thisignal and the vector coming from the other block, an
bound is used in order to justify some previously knownanalysis of the decoding convergence based on EXIT
features of LDPC codes optimized for specific codedcharts can be performed [4], [6]. The analysis based on
modulations and channels, such as differentially encodeBXIT chart tracks the evolution of the mutual information
(DE) phase shift keying (PSK) on additive white GaussianMI) between the codeword bits and their corresponding
noise (AWGN) channel and inter-symbol interferencereliabilities. It is based on the assumption that the MI
(ISI) channels [8], [9]. associated with the output reliability vector of a block
In order to characterize the extrinsic information evo-is a function only of the MI associated with the input
lution on the EXIT chart in terms of BER, we introduce a vector (and a function of the channel statistical desaripti
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as well). This assumption represents an accurate approx- W

imation and bounds have recently been derived on the
MI input-output relation, also referred to @sformation

Actual BER + A
Fano lower bound X -
MAP upper bound ¥ ]

combining [10], [11]. Nevertheless, in practical situations 102

the functional relation assumption turns out to be quite L

accurate in predicting the system performance [6]. = 1077 ¢
M

3 Upper and Lower Bounds for the
BER

1075 F

1076
Usually, an EXIT chart-based analysis assumes decoding I
convergence, i.e., sufficiently low BER, when the Ml 10*70 T s 1 s o v .
between the vector of reliabilities and the codeword bits Ey/No

has become equal to 1 [6]. This is because a MI equal
to 1 implies that the codeword bits can be expressed asFg. 1. Actual BER, upper MAP bound and Fano lower bound for a
function of the reliabilities with probability one. regular (3,6) BPSK modulated LDPC code of codeword lendgtb00

Nevertheless, it is usually impossible for the M to over an AWGN channel considering 3, 6 and 10 iterations.
become equal to 1 with a finite number of decoding
iterations. On the other hand, if knowledge of the EXIT?"2 MI-based Upper Bound for the BER
curves is available, one can compute the evolution of thén order to characterize the BER performance, we now
MI towards 1 as a function of the number of iterations or,derive an upper bound for the BER as a function of
given a maximum number of iterations, one can computéhe MI. In order to find a useful upper bound for the
the minimum signal-to-noise rafigSNR) needed in order BER, a decision criterion or, equivalently, a decision
to attain a given MI (usually close td). Therefore, it function f4(-) have to be fixed. In many cases of practical
becomes useful to have upper and lower bounds on thigterest, the reliability of a bit is represented by tae

BER as functions of the M. posteriori probability of that bit to be one. Given a set
of constraints on the code characteristics, a maxinaum
3.1 MI-based Lower Bound for the BER posteriori (MAP) decision strategy can be implemented

The reliability values for the codeword bits are usuallystraightforwardly simply by deciding for the most proba-

computed by iterative algorithms in two forms: (i) esti- ble bit. Thus, we investigate MAP decision of the bit given

mates of the probability of each bit to be equal to 1 andts reliability. In the general case, this choice requires

(ii) the corresponding log-likelihood ratio [1]. In gengra perfect knowledge of the conditional probability density

these reliabilities are random variables (RV) drawn acfunction (PDF)f(y|z). The following theorem gives an

cording to a given distribution which is a function of upper bound on the BER, for a giveii.X;Y’), assuming

several parameters such as, for example, the SNR, tHdAP decision.

number of iterations, etc. Typically, a reliability value Theorem 1: Let X be a binary RV such thabP{X =

is used at the end of the iterative processing to make 8} = P{X = 1} = 1/2, Y be a RV andf(y|z) be the

decision on the corresponding hit This has to be done conditional PDF ofY” given X. Let

by applying a proper functiof; (-) to the reliability value.
We assume binary equiprobable transmission of infor-

mation bits equal ta or 0. We denote by = I(X;Y)the  Given the conditional entropyf (X|Y) = 1 — I(X;Y),

MI betweenX (a generic bit) and” (its corresponding then

reliability), at given values of SNR, number of iterations, P=P{X #£d} < H(X]Y)

etc. A lower bound on the BER, generally denotedPas —

& = argmax f(y|x).
xr

o Proof: See the Appendix. ]
's given by the Fano bound [12]. In fact, In Fig. 1, the obtained bounds, along with the actual
HX) =1 BER performance versus the bit SNIR, /Ny, are shown
I(X;Y) = 1-—H(X|Y) considering a regular (3,6) LDPC code with codeword
length 12000 [1]. The modulation format is binary shift
>
H(Fe) = H(qu) (1) phase keying (BPSK). The considered numbers of itera-
Pe > H[1-I1(X;Y)] () tions are 3, 6 and 10. The bounds clearly describe the

where inequality (1) is the Fano bound applied to a binar€havior of the BER curve. Thus, the convergence of
RV. The entropyH (p) £ —plog(p) — (1 — p)log(1 — p) the MI has useful implications on the convergence of the

is invertible if p € (0,1/2]. The meaning of inequality BER. This finding will be exploited in the next sections.
(2) is that, even choosing the best decision strategy, the

BER cannot be lower thai —*[1 — I]. 4 Decoding Convergence
IHere, the SNR is defined, in general terms, as a parametehwhic

completely defines the channel and such that the Ml betweinput In Fig. 2, th(_:" decoding traje_ctory of the MI Oh a generic
and the output of the channel is a monotonic function of it. EXIT chart is shown, referring to the decoding scheme
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T I where!!! is the EXIT function associated with a generic
// degree: variable node. In the process of obtaining the
o8 = = reliabilities associated tdy, at the input of the CM-SISO
Becod b A block, a generic degreevariable node acts as a degree-
06 ecoding Trajectory | . i . S i X
Ia ‘ (i + 1) variable node with na@ priori information, i.e.,
H Start Point ] with input a priori probability equal tol /2. This is due
o4 1 to the symmetry of the computation of variable nodes
3 7 with respect to the messages coming from both the graph
o02r ok A EXIT chort In and the channel, i.e., the priori probability [1]. As a
I Block B EXIT chart Ig! ===+ I consequence,
0 1 1 1 1 1 1 1 1
0 02 04 06 08 _ (k+1)
7 Iy = ; MLy (Is,0) - 6)

Fig. 2. Decoding trajectory on an EXIT chart-based LDPCetbd Substituting (5) and (6) into (4), one obtains
modulation decoding analysis.

dI af“) a1 oI I("“)
. " s~ 2| 31 T ats 8IS Z g
NG B y B S
CM-SISO VND ) (7
< where% denotes the derivative of the CM-SISO EXIT
Iy I Ly . ..
curve with respect to the MIy, as itsa priori input.
Fig. 3. Representation of blook. The blockB is formed by the CND. As considered for

block A, the EXIT curve of blockB can be written as
in [4]. The upper curve is the EXIT curve of blodk, a weighted linear combination of the degree distribution

which comprises the CM-SISO block and the VND. Thelrs} as follows [4], [13]:

lower curve is the inverse of EXIT curve of the bloBk In — T9D (1 8
which comprises the CND. It is easily recognized that in B ij ¢ (Ia) ®)
order for the Ml to converge to 1, the EXIT curve of block
A, |_e_,IA( ), and the inverse of the EXIT curve of block where] denotes the EXIT function associated with a

J

B, i.e., Ig'(I), must satisfy the following condition: generic degreg-check node. From (8), one obtains that
= the derivative oflg, with respect tola, can be written
Ia() > Ig1)  0<I<1. @) as
Moreover, given the behavior ofa (I) and Ig*(I) in dls _ Z deC )
proximity of the point(1,1), one can completely char- dla

acterize the convergence of the Ml as a function of the
number of iterations.

The degree distributions of an LDPC code are deflneJI
as a couple of polynomials\(z) = >, \;z*~! and

p(x) =, pja’~", where the coefficient§\;} and{p;}
denote the fraction of edges in the LDPC code graph
connected to degreevariable nodes and degrgecheck
nodes, respectively [7].

In Fig. 3, a representation of blogk is given and the
Ml related to the reliability vectors involved in the compu-
tation is shown. In particular, the functional relatiorshi
of the MI values is as followsI 5 is a function of/g and
Ig; Ig is a function ofI,, which is also a function ofg I‘(j) (Is, Is)

In [14], it is shown that the reliability distributions
the convergence region, i.e., around the pdihtl)

the EXIT charts, due to a large variance, tend to
behave like the distributions found for a binary erasure
channel (BEC). In other words, the reliabilities tend to
group into high, i.e., corresponding to sure decisions,
and low, i.e., erasure-like. This fact suggests that in the
convergence reg|on one can approximate the information
transfer functlonsI )(-,) and I(J)() with the BEC
information combmlng functions for a single parity check
node and a single variable node [10], [15]:

1-(1-1Is)(1—Ig)~" (10)
Ia = Ia(Is, Is(Iy (Ig))). ID(Ia) ~ I (11)

In order to characterize the decoding convergence, we The particular cases corresponding td(CQ),
now compute the first order Taylor series expansiohof 1<1>(]B Is), and 12)(113 0) need no approximation,
as a function of/g. The derivative off4 is as follows  since in these three particular cases the check and

¢

dIn 0Ia 0OIa OIg @ variable nodes act as identity blocks:
dIg 0Ig 0Is 0l Ig)<IA) — I
On the other hand/a can be expressed as a linear (1) o
combination of terms depending dg and s, weighted IV(Q()IB’IS) = Is (12)
by the coefficient \;} [4], [13]: I’ (Is,0) = Is.
Ip = Z)\J‘(j) (I, Is) (5) We remark that from (5), (8), (11) and (13), one can

conclude the following facts:

i
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e Ig(1)=1
e Ia(1,Is) = 1— A + IsA; which is lower thanl if 0sh
A >0andIg <1 for Ig = 1. '
In other words, sincdg(1) = 1, it must be either\; = 0.6k
0 or Is = 1 for Ig = 1, for the decoding process to Is
converge. o4+t
We now substitute the previously given approximations T
(10) and (11) into (7) and (9) in order to find the first order 02 SNR= 1 dB %
Taylor series approximation of the EXIT curves of blocks SNR=3 dB
A andB at the point(1,1): ° 0z 04 06 08
Iy
Py 0 i=1 !
aTV(l, IS) = 1-1Is 1=2 Fig. 4. EXIT curvelg, as a function ofly-, of the CM-SISO block
B 0 otherwise for BPSK and AWGN channel.
aI‘V“(”)_ 1 =1 '
ols * %771 0 otherwise ol
Substituting these relations into (7), one obtains
0.6+
dia 2 Olg Ig
— (1) = A{=—=— + X(1 —Ig). 13 5
dIB( ) 18[\/ + 2( S) ( ) 04‘7
g
Moreover, from (9) and (11) it follows that 3
SE 1)~ Y- 1y
aIA o 3 J pj ' 0 I I L L
J 0 02 04 06 08
The derivative of the inverse of the EXIT curve of block Iy

B is therefore given b
9 y Fig. 5. EXIT curveslg, as a function ofly-, of the CM-SISO block

oIt 1 for DE-QPSK and AWGN channel. The various curves correspond
B (1) = - . different values (equally spaced by 0.5 dB) of SNR, from O Bttom
OIa Z]’ (J— 1)Pj curve) to 2 dB (top curve).

In order for the decoding process to converge, (3) must
hold and the derivative of the two functions must satisfyis congdition can be directly related to the following
the following inequality: stability condition given in [7]:
OIs 1 1
N2 4+ (11 . 14 | — ; 202

J

This bound gives a relation between, Ao, ,I,S(IV) where o2 is variance of the additive noise sample and
and{p,}, which represents a necessary condition that aq/ag is the SNR

LDPC-coded modulation system must satisfy in order to

reach decoding convergence. Example 2 In [8], code optimization for DE M-ary
In the following, some examples of application of the PSK (MPSK) LDPC-coded modulations is considered.
obtained results are given. The optimized LDPC codes show a structure very dif-

) ) ferent from that of standard LDPC codes for the AWGN
E_Xa”f'p'e 1 Cor_13|der a single L_DP_C'COdEd COMMU- channel. In particular, the fraction of degrevariable
nication system with BPSK transmission over an AWGNnode)\g is significantly increased. In Fig. 5, EXIT curves

channel. In this case, the CM block is simply the BPSK, . o DE-QPSK CM-SISO block are shown, for various
modulator and the CM-SISO block could consist of a,,,es of the SNR. One can notice that(1) = 1.

block pgrformlng a symbql-by—symbol conversion f_rom Therefore, given that in the optimized codes= 0, the
the received sample domain to the log-likelihaagriori bound (14) becomes

probability domain. Since no side information is needed
by the CM-SISO block to perform this task, the associated Ay < 1
EXIT curve I5 is a constant function of the MIy of (1—1Is)> (5 — Dp;
the reliabilities passed by the VND to the CM-SISO
block. This is shown explicitly in Fig. 4, obtained through
computer simulations. Sinck (1) < 1, it must hold that

A1 = 0. Moreover, the bound (14) becomes

where the presence of the terfh — Is) ~ 0 at the
denominator implies that the bound o is relaxed,
thus allowing a larger optimized value for this coefficient.
The significant difference between the obtained optimized
1 degree distributions and the degree distributions of an

A .
2 < (1—1Is)> (5 — Dpj LDPC code for the AWGN channel suggests that the
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‘Nlexrnol-¥é‘elsz};_x\(&;6§+ “link” the MI to the BER, it is possible to design LDPC
oo b codes for a given asymptotic BER convergence as a
081 ISI ch. (1,2,3,2,1) —&— || : - :
i - function of the number of iterations.

ISI ch. (1,1,0,—1,-1

The considered analysis does not take into account
cycles in the code graph [1], [2]. Cycles have a major
impact on three important LDPC codes parameters: (i) the
codeword length, (ii) the maximum number of iterations
0l i and (iii) the maximum allowed node degree. In general,
decoding tends to be close to optimal if (i) the codeword

‘ length is large, (ii) the number of iterations needed for
Iy ' convergence is kept low, and (iii) the maximum nodes
degree is low.
Fig. 6. EXIT chartlg of the CM-SISO block for 4PSK and several Given these considerations, a new LDPC design crite-
ISI channels. . .
rion can be based on the convergence of the Ml at a given
value in a given number of iterations. If the number of

extended\, range has been exploited. Since the optimizaitérations is low, convergence is likely to be guaranteed
tion algorithm in [8] optimizes the global convergence@lso for short codeword lengths. We now provide the
threshold, it is very likely that the increased range for'€@der with an example of application of the proposed

)\ allows to achieve a better decoding threshold at thé&'iterion.
expense of decoding convergence speed. Example 4  Given a system such that both the deriva-

Example3  In [9], [16], examples of optimized LDPC tives, evaluated irl, of the EXIT functions of block#A
codes are given both for an AWGN channel affected byand B are known and non-zero, the convergence law of
inter-symbol interference (ISI) and for a partial responséhe decoding process can be derived as follows.

(PR) channel. In [9], it is shown how optimized codes may !N the neighborhood ofi the EXIT curves/, and
differ from AWGN LDPC codes if the channel response is/B can .be approximated by their first-order Taylor series
long enough. In Fig. 6, several EXIT curves of CM-SISO €Xpansions:

blocks for several ISI channels are shown. In particular, Ia(l) =~ 1—a(l-1)

the SNR is fixed and ISI channels with impulse response
coefficients (the impulse energy normalization factor is

not shown) (1,1), (1,1, 1_), (1,2,1), (1,2,_3,2, 1) and where
(1,1,0,—1,—1) are considered. As noted in [9], a linear

Is(I) ~ 1-b(1—1)

behavior of the EXIT curves is easily recognized, as a 2 )@% + X (1 — I5(1))
well as the increase of the slope of the EXIT curves for olv

longer channel impulse response length. Sihgd) < 1, b £ Z(j —1)p;.

degreet variable nodes are not allowed. The bound\gn J

is equal to that for BPSK transmission over the AWGNThe recursion characterizing the decoding behavior is
channel. Nevertheless, due to the reduced 4PSK input

channel capacity of the ISI channels, the SNR needed Iny1 = 1—a(l—Iz) (15)
to achieve convergence at a given code rate is higher that Iypio = 1-b(1—Iony1).

that needed for the AWGN channel. This leads to a Iargeéubstituting the variablél,, = 1 — I,
Is(1) value and, therefore, to a larger allowgd value, (15), one obtains

according to

in the recursion

H2n+1 = aHa,

1
H2n+2 = bH2n+1 .

(1—1Is)>2;0 = Dp; . . .
] -~ o The start point of the recursion (15) &, (or Hap,
This result can be verified by optimizing LDPC codestqr recursion (16)) wherey, is the number of iterations

for ISI or PR channels. The resulting codes exhibit highyeeded to reach the convergence region, i.e., the region
values for); in the case of channels with long impulse iy \which the first order Taylor series approximation for
response [9]. I5 andIg holds. By solving (16), one gets

HZ(n+no) = (ab)nH2no

Ny < (16)

5 A Nove Design Criterion .
an
The results obtained in Section 3 and Section 4 suggest Iy(ning) = 1 — (ab)"(1 — Izy,)

that knowledge of EXIT functions in the proximity of

the point (1,1) of the EXIT charts can be exploited Which is the Ml at the(no +n)-th iteration. Applying the
to design LDPC codes for LDPC-coded modulations. Inbound (1) one obtains

particular, since EXIT charts enable analysis and design H,

of convergence of MI and since there are bounds which BERy4n, < (ab)" 20 17)
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whereBER,, denotes the BER after iterations. Inequal-
ity (17) allows the computation of the minimum number
of additional iterations to perform, starting from,, in
order to obtain the desired BER, denoted as BER:

log(2BER"™&°"/H,, )
log(ab) '

Mmin =

H(X|Y=y)

April 3-7, 2006, Munich

H(P{X=a|Y=y}) = H(P{E|Y=y})

Therefore, givenH (X|Y = y), assuming that the MAP
strategy is usedP{E|Y = y} can be written as

P{E)Y =y} = H'[H(X]Y = y)] (19)

) _ _ _ where H=1(.) is the inverse of the functio (p) for
An alternative, more useful, viewpoint could be the de&grb c

(0, 3]. The following derivation, which proves the

of the degree distributions. Towards this end, by simplgneorem. holds:

manipulation of (17) one obtains

target
ab < <2BER >
Hy,

1/n

and, therefore,

A%%‘H\z(l—fs(l))}

QBERtarget
. o (22E
3T, >_(=1)p; _( i )

J

which represents a design constraint guaranteeing conver-
gence to the desireBER'#°" in n + n, iterations. 1

[2]
6 Concluding Remarks

In this paper, we have presented a novel bound for thel®!
BER performance of LDPC-coded modulations based on
MI. This bound can be used to “link” an EXIT chart-based
analysis with the BER performance. The EXIT chart- [4
based analysis of LDPC-coded modulations has been
carried out focusing on the convergence region, i.e., theld]
point(1,1) of the EXIT chart. The decoding convergence
behavior has been characterized as a function of the
LDPC code degree distributions. This analysis has ledI6l
to a new bound for the degree distributions which can
be interpreted as a practical generalization of the boun
given in [7] for LDPC codes transmitted over memoryless
channels. 8
Based on the above considerations and results, a novel
LDPC code design criterion has been proposed. This cri-
terion gives a new bound for the coefficients of the LDPC 9
code degree distributions in order to obtain convergence
within a specified number of iterations. This may havel10]
important implications in the design of LDPC codes with

7]

short codeword length. [11]
APPENDIX [12]
The MAP strategy entails a decision for as a function [13]
of y, according to

Z = argmax P{X =z|Y =y} . [14]

This implies the following relation for the probability of
occurrence of the error eveit = { X # 7}: [15]

P{ElY =y} = 1—-max, P{X =z|Y =y}

= min, P{X =z|Y =y} [16]

(18)
which is, obviously, a number lower than or equal {.
Considering (18), one can conclude that

P = B P =)
= BHOHXY =y)))  (0)
< 2 21)

1/n where (20) follows from (19) and (21) follows from the
fact thatH ~!(z) < z/2,Vz: 0 <z < 1.
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