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Abstract

In this paper, we present a novel design criterion for low-density parity-check (LDPC)-coded modulations based on
the concatenation of an LDPC code with a coded modulator (CM)tailored for the specific transmission channel.
Although we use an analysis based on extrinsic information transfer (EXIT) charts, we focus on the bit error rate
(BER) performance as opposed to the convergence threshold.First, we characterize the convergence behavior of the
decoding process as a function of the LDPC code degree distributions. Then, the BER performance is accurately
estimated by deriving upper and lower bounds as functions ofthe extrinsic information.

1 Introduction

Low-density parity-check (LDPC) codes [1], [2] are a
coding technique which is gaining increasing attention
(from an implementation viewpoint) among the scientific
community and the industry. In particular, since LDPC
codes exhibit near-capacity performance on a variety of
memoryless channels, there is high interest in investigat-
ing their performance on practical channels [3].

A simple, although powerful, technique for exploiting
LDPC codes over generic channels is based on the use of
LDPC-coded modulations. This approach is based on the
concatenation of an LDPC encoder and a coded modula-
tor (CM) suitable for transmission over the considered
channel. This is the approach followed in [4], where
an LDPC encoder is concatenated with a multiple-input
multiple-output channel modulator. At the receiver, a soft-
input soft-output (SISO) module [5] designed for the
concatenation of CM and channel iteratively exchanges
soft reliabilities with a standard LDPC decoder.

In this paper, we provide insights into the decoding
convergence of LDPC-coded modulations. We adopt the
receiver block decomposition introduced in [4] and char-
acterize the behavior of the extrinsic information transfer
(EXIT) curves [6] in the neighborhood of the point(1, 1)
in the EXIT chart, i.e., the point of successful decoding
convergence. We highlight the dependence of the EXIT
curves of the decoding blocks on the LDPC code param-
eters, i.e., the degree distributions [7], devoting particular
attention to the final iterations needed for convergence.
A novel bound on LDPC code parameters is given as
a necessary condition for decoding convergence. This
bound is used in order to justify some previously known
features of LDPC codes optimized for specific coded-
modulations and channels, such as differentially encoded
(DE) phase shift keying (PSK) on additive white Gaussian
noise (AWGN) channel and inter-symbol interference
(ISI) channels [8], [9].

In order to characterize the extrinsic information evo-
lution on the EXIT chart in terms of BER, we introduce a

novel and general upper bound for the BER as a function
of the extrinsic information. We then propose a code
design criterion, based on the BER evolution with the
number of decoding iterations, which can be used to
actually design some codes.

This paper is structured as follows. In Section 2,
EXIT chart-based convergence analysis of LDPC-coded
modulations is reviewed. In Section 3, bounds for the
BER as a function of the extrinsic information are derived.
In Section 4, the decoding convergence of the BER
is analyzed as a function of the LDPC code degree
distributions. In Section 5, we introduce a novel code
design criterion based on the obtained results. Section 6
concludes the paper.

2 EXIT Chart-Based Analysis

In [4], the authors present an iterative receiver for LDPC
codes concatenated with a modulator designed to cope
with the specific transmission channel. Following the
notation in [8], the receiver can be decomposed into two
main blocks: (i) blockA, comprising a SISO module
for the modulator and the set of all variable nodes,
denoted as variable node detector (VND) and (ii) blockB,
comprising the set of all check nodes, denoted as check
node detector (CND).

Since blocksA and B exchange iteratively vectors of
real valued reliabilities associated with the transmitted
LDPC codeword and since for each block these vectors
can be computed as a function of the observed received
signal and the vector coming from the other block, an
analysis of the decoding convergence based on EXIT
charts can be performed [4], [6]. The analysis based on
EXIT chart tracks the evolution of the mutual information
(MI) between the codeword bits and their corresponding
reliabilities. It is based on the assumption that the MI
associated with the output reliability vector of a block
is a function only of the MI associated with the input
vector (and a function of the channel statistical description
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as well). This assumption represents an accurate approx-
imation and bounds have recently been derived on the
MI input-output relation, also referred to asinformation
combining [10], [11]. Nevertheless, in practical situations
the functional relation assumption turns out to be quite
accurate in predicting the system performance [6].

3 Upper and Lower Bounds for the
BER

Usually, an EXIT chart-based analysis assumes decoding
convergence, i.e., sufficiently low BER, when the MI
between the vector of reliabilities and the codeword bits
has become equal to 1 [6]. This is because a MI equal
to 1 implies that the codeword bits can be expressed as a
function of the reliabilities with probability one.

Nevertheless, it is usually impossible for the MI to
become equal to 1 with a finite number of decoding
iterations. On the other hand, if knowledge of the EXIT
curves is available, one can compute the evolution of the
MI towards 1 as a function of the number of iterations or,
given a maximum number of iterations, one can compute
the minimum signal-to-noise ratio1 (SNR) needed in order
to attain a given MI (usually close to1). Therefore, it
becomes useful to have upper and lower bounds on the
BER as functions of the MI.

3.1 MI-based Lower Bound for the BER
The reliability values for the codeword bits are usually
computed by iterative algorithms in two forms: (i) esti-
mates of the probability of each bit to be equal to 1 and
(ii) the corresponding log-likelihood ratio [1]. In general,
these reliabilities are random variables (RV) drawn ac-
cording to a given distribution which is a function of
several parameters such as, for example, the SNR, the
number of iterations, etc. Typically, a reliability valuey
is used at the end of the iterative processing to make a
decision on the corresponding bitx. This has to be done
by applying a proper functionfd(·) to the reliability value.

We assume binary equiprobable transmission of infor-
mation bits equal to1 or 0. We denote byI = I(X ; Y ) the
MI betweenX (a generic bit) andY (its corresponding
reliability), at given values of SNR, number of iterations,
etc. A lower bound on the BER, generally denoted asPe,
is given by the Fano bound [12]. In fact,

H(X) = 1

I(X ; Y ) = 1 − H(X |Y )

H(Pe) ≥ H(X |Y ) (1)

Pe ≥ H−1[1 − I(X ; Y )] (2)

where inequality (1) is the Fano bound applied to a binary
RV. The entropyH(p) , −p log(p) − (1 − p) log(1 − p)
is invertible if p ∈ (0, 1/2]. The meaning of inequality
(2) is that, even choosing the best decision strategy, the
BER cannot be lower thanH−1[1 − I].

1Here, the SNR is defined, in general terms, as a parameter which
completely defines the channel and such that the MI between the input
and the output of the channel is a monotonic function of it.
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Fig. 1. Actual BER, upper MAP bound and Fano lower bound for a
regular (3,6) BPSK modulated LDPC code of codeword length12000
over an AWGN channel considering 3, 6 and 10 iterations.

3.2 MI-based Upper Bound for the BER
In order to characterize the BER performance, we now
derive an upper bound for the BER as a function of
the MI. In order to find a useful upper bound for the
BER, a decision criterion or, equivalently, a decision
functionfd(·) have to be fixed. In many cases of practical
interest, the reliability of a bit is represented by thea
posteriori probability of that bit to be one. Given a set
of constraints on the code characteristics, a maximuma
posteriori (MAP) decision strategy can be implemented
straightforwardly simply by deciding for the most proba-
ble bit. Thus, we investigate MAP decision of the bit given
its reliability. In the general case, this choice requires
perfect knowledge of the conditional probability density
function (PDF)f(y|x). The following theorem gives an
upper bound on the BER, for a givenI(X ; Y ), assuming
MAP decision.

Theorem 1: Let X be a binary RV such thatP{X =
0} = P{X = 1} = 1/2, Y be a RV andf(y|x) be the
conditional PDF ofY given X . Let

x̂ = argmax
x

f(y|x).

Given the conditional entropyH(X |Y ) = 1 − I(X ; Y ),
then

Pe = P{X 6= x̂} ≤
H(X |Y )

2
.

Proof: See the Appendix.
In Fig. 1, the obtained bounds, along with the actual

BER performance versus the bit SNREb/N0, are shown
considering a regular (3,6) LDPC code with codeword
length 12000 [1]. The modulation format is binary shift
phase keying (BPSK). The considered numbers of itera-
tions are 3, 6 and 10. The bounds clearly describe the
behavior of the BER curve. Thus, the convergence of
the MI has useful implications on the convergence of the
BER. This finding will be exploited in the next sections.

4 Decoding Convergence
In Fig. 2, the decoding trajectory of the MI on a generic
EXIT chart is shown, referring to the decoding scheme
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Fig. 2. Decoding trajectory on an EXIT chart-based LDPC-coded
modulation decoding analysis.
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Fig. 3. Representation of blockA.

in [4]. The upper curve is the EXIT curve of blockA,
which comprises the CM-SISO block and the VND. The
lower curve is the inverse of EXIT curve of the blockB,
which comprises the CND. It is easily recognized that in
order for the MI to converge to 1, the EXIT curve of block
A, i.e.,IA(I), and the inverse of the EXIT curve of block
B, i.e., I−1

B
(I), must satisfy the following condition:

IA(I) > I−1
B

(I) 0 < I < 1 . (3)

Moreover, given the behavior ofIA(I) and I−1
B

(I) in
proximity of the point(1, 1), one can completely char-
acterize the convergence of the MI as a function of the
number of iterations.

The degree distributions of an LDPC code are defined
as a couple of polynomialsλ(x) =

∑

i λix
i−1 and

ρ(x) =
∑

j ρjx
j−1, where the coefficients{λi} and{ρj}

denote the fraction of edges in the LDPC code graph
connected to degree-i variable nodes and degree-j check
nodes, respectively [7].

In Fig. 3, a representation of blockA is given and the
MI related to the reliability vectors involved in the compu-
tation is shown. In particular, the functional relationships
of the MI values is as follows:IA is a function ofIB and
IS; IS is a function ofIV , which is also a function ofIB

IA = IA(IB, IS(IV (IB))).

In order to characterize the decoding convergence, we
now compute the first order Taylor series expansion ofIA
as a function ofIB. The derivative ofIA is as follows

dIA
dIB

=
∂IA
∂IB

+
∂IA
∂IS

∂IS

∂IB
. (4)

On the other hand,IA can be expressed as a linear
combination of terms depending onIB andIS , weighted
by the coefficients{λi} [4], [13]:

IA =
∑

i

λiI
(i)
V (IB, IS) (5)

whereI
(i)
V is the EXIT function associated with a generic

degree-i variable node. In the process of obtaining the
reliabilities associated toIV , at the input of the CM-SISO
block, a generic degree-i variable node acts as a degree-
(i + 1) variable node with noa priori information, i.e.,
with input a priori probability equal to1/2. This is due
to the symmetry of the computation of variable nodes
with respect to the messages coming from both the graph
and the channel, i.e., thea priori probability [1]. As a
consequence,

IV =
∑

k

λkI
(k+1)
V (IB, 0) . (6)

Substituting (5) and (6) into (4), one obtains

dIA
dIB

=
∑

i

λi

[

∂I
(i)
V

∂IB
+

∂I
(i)
V

∂IS

∂IS

∂IV

∑

k

λk
∂I

(k+1)
V

∂IB

]

(7)
where ∂IS

∂IV
denotes the derivative of the CM-SISO EXIT

curve with respect to the MIIV as itsa priori input.
The blockB is formed by the CND. As considered for

block A, the EXIT curve of blockB can be written as
a weighted linear combination of the degree distribution
{ρj} as follows [4], [13]:

IB =
∑

j

ρjI
(j)
C (IA) (8)

whereI
(j)
C denotes the EXIT function associated with a

generic degree-j check node. From (8), one obtains that
the derivative ofIB, with respect toIA, can be written
as

dIB
dIA

=
∑

j

ρj
dI

(j)
C

dIA
(IA). (9)

In [14], it is shown that the reliability distributions
in the convergence region, i.e., around the point(1, 1)
in the EXIT charts, due to a large variance, tend to
behave like the distributions found for a binary erasure
channel (BEC). In other words, the reliabilities tend to
group into high, i.e., corresponding to sure decisions,
and low, i.e., erasure-like. This fact suggests that in the
convergence region one can approximate the information
transfer functionsI(i)

V (·, ·) and I
(j)
C (·) with the BEC

information combining functions for a single parity check
node and a single variable node [10], [15]:

I
(i)
V (IB, IS) ≃ 1 − (1 − IS)(1 − IB)i−1 (10)

I
(j)
C (IA) ≃ Ij−1

A
. (11)

The particular cases corresponding toI(2)
C ,

I
(1)
V (IB, IS), and I

(2)
V (IB, 0) need no approximation,

since in these three particular cases the check and
variable nodes act as identity blocks:

I
(2)
C (IA) = IA

I
(1)
V (IB, IS) = IS (12)

I
(2)
V (IB, 0) = IB.

We remark that from (5), (8), (11) and (13), one can
conclude the following facts:
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• IB(1) = 1
• IA(1, IS) = 1− λ1 + ISλ1 which is lower than1 if

λ1 > 0 andIS < 1 for IB = 1.

In other words, sinceIB(1) = 1, it must be eitherλ1 =
0 or IS = 1 for IB = 1, for the decoding process to
converge.

We now substitute the previously given approximations
(10) and (11) into (7) and (9) in order to find the first order
Taylor series approximation of the EXIT curves of blocks
A andB at the point(1, 1):

∂I
(i)
V

∂IB
(1, IS) =







0 i = 1
1 − IS i = 2
0 otherwise

∂I
(i)
V

∂IS
(1, IS) =

{

1 i = 1
0 otherwise.

Substituting these relations into (7), one obtains

dIA
dIB

(1) = λ2
1

∂IS

∂IV
+ λ2(1 − IS) . (13)

Moreover, from (9) and (11) it follows that

∂IB
∂IA

(1) ≃
∑

j

(j − 1)ρj .

The derivative of the inverse of the EXIT curve of block
B is therefore given by

∂I−1
B

∂IA
(1) =

1
∑

j(j − 1)ρj
.

In order for the decoding process to converge, (3) must
hold and the derivative of the two functions must satisfy
the following inequality:

λ2
1

∂IS

∂IV
+ λ2(1 − IS) <

1
∑

j(j − 1)ρj
. (14)

This bound gives a relation betweenλ1, λ2, IS(IV )
and{ρj}, which represents a necessary condition that an
LDPC-coded modulation system must satisfy in order to
reach decoding convergence.

In the following, some examples of application of the
obtained results are given.

Example 1 Consider a single LDPC-coded commu-
nication system with BPSK transmission over an AWGN
channel. In this case, the CM block is simply the BPSK
modulator and the CM-SISO block could consist of a
block performing a symbol-by-symbol conversion from
the received sample domain to the log-likelihooda priori
probability domain. Since no side information is needed
by the CM-SISO block to perform this task, the associated
EXIT curve IS is a constant function of the MIIV of
the reliabilities passed by the VND to the CM-SISO
block. This is shown explicitly in Fig. 4, obtained through
computer simulations. SinceIS(1) < 1, it must hold that
λ1 = 0. Moreover, the bound (14) becomes

λ2 <
1

(1 − IS)
∑

j(j − 1)ρj
.

 0
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Fig. 4. EXIT curveIS , as a function ofIV , of the CM-SISO block
for BPSK and AWGN channel.
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Fig. 5. EXIT curvesIS , as a function ofIV , of the CM-SISO block
for DE-QPSK and AWGN channel. The various curves correspondto
different values (equally spaced by 0.5 dB) of SNR, from 0 dB (bottom
curve) to 2 dB (top curve).

This condition can be directly related to the following
stability condition given in [7]:

λ2

∑

j

(j − 1)ρj < e
1

2σ2

where σ2 is variance of the additive noise sample and
1/σ2 is the SNR.

Example 2 In [8], code optimization for DE M-ary
PSK (MPSK) LDPC-coded modulations is considered.
The optimized LDPC codes show a structure very dif-
ferent from that of standard LDPC codes for the AWGN
channel. In particular, the fraction of degree-2 variable
nodeλ2 is significantly increased. In Fig. 5, EXIT curves
for a DE-QPSK CM-SISO block are shown, for various
values of the SNR. One can notice thatIS(1) = 1.
Therefore, given that in the optimized codesλ1 = 0, the
bound (14) becomes

λ2 <
1

(1 − IS)
∑

j(j − 1)ρj

where the presence of the term(1 − IS) ≃ 0 at the
denominator implies that the bound onλ2 is relaxed,
thus allowing a larger optimized value for this coefficient.
The significant difference between the obtained optimized
degree distributions and the degree distributions of an
LDPC code for the AWGN channel suggests that the
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Fig. 6. EXIT chartIS of the CM-SISO block for 4PSK and several
ISI channels.

extendedλ2 range has been exploited. Since the optimiza-
tion algorithm in [8] optimizes the global convergence
threshold, it is very likely that the increased range for
λ2 allows to achieve a better decoding threshold at the
expense of decoding convergence speed.

Example 3 In [9], [16], examples of optimized LDPC
codes are given both for an AWGN channel affected by
inter-symbol interference (ISI) and for a partial response
(PR) channel. In [9], it is shown how optimized codes may
differ from AWGN LDPC codes if the channel response is
long enough. In Fig. 6, several EXIT curves of CM-SISO
blocks for several ISI channels are shown. In particular,
the SNR is fixed and ISI channels with impulse response
coefficients (the impulse energy normalization factor is
not shown) (1, 1), (1, 1, 1), (1, 2, 1), (1, 2, 3, 2, 1) and
(1, 1, 0,−1,−1) are considered. As noted in [9], a linear
behavior of the EXIT curves is easily recognized, as
well as the increase of the slope of the EXIT curves for
longer channel impulse response length. SinceIS(1) < 1,
degree-1 variable nodes are not allowed. The bound onλ2

is equal to that for BPSK transmission over the AWGN
channel. Nevertheless, due to the reduced 4PSK input
channel capacity of the ISI channels, the SNR needed
to achieve convergence at a given code rate is higher that
that needed for the AWGN channel. This leads to a larger
IS(1) value and, therefore, to a larger allowedλ2 value,
according to

λ2 <
1

(1 − IS)
∑

j(j − 1)ρj
.

This result can be verified by optimizing LDPC codes
for ISI or PR channels. The resulting codes exhibit high
values forλ2 in the case of channels with long impulse
response [9].

5 A Novel Design Criterion
The results obtained in Section 3 and Section 4 suggest
that knowledge of EXIT functions in the proximity of
the point (1, 1) of the EXIT charts can be exploited
to design LDPC codes for LDPC-coded modulations. In
particular, since EXIT charts enable analysis and design
of convergence of MI and since there are bounds which

“link” the MI to the BER, it is possible to design LDPC
codes for a given asymptotic BER convergence as a
function of the number of iterations.

The considered analysis does not take into account
cycles in the code graph [1], [2]. Cycles have a major
impact on three important LDPC codes parameters: (i) the
codeword length, (ii) the maximum number of iterations
and (iii) the maximum allowed node degree. In general,
decoding tends to be close to optimal if (i) the codeword
length is large, (ii) the number of iterations needed for
convergence is kept low, and (iii) the maximum nodes
degree is low.

Given these considerations, a new LDPC design crite-
rion can be based on the convergence of the MI at a given
value in a given number of iterations. If the number of
iterations is low, convergence is likely to be guaranteed
also for short codeword lengths. We now provide the
reader with an example of application of the proposed
criterion.

Example 4 Given a system such that both the deriva-
tives, evaluated in1, of the EXIT functions of blocksA
and B are known and non-zero, the convergence law of
the decoding process can be derived as follows.

In the neighborhood of1 the EXIT curvesIA and
IB can be approximated by their first-order Taylor series
expansions:

IA(I) ≃ 1 − a(1 − I)

IB(I) ≃ 1 − b(1 − I)

where

a , λ2
1

∂IS

∂IV
+ λ2(1 − IS(1))

b ,
∑

j

(j − 1)ρj .

The recursion characterizing the decoding behavior is

I2n+1 = 1 − a(1 − I2n)
I2n+2 = 1 − b(1 − I2n+1) .

(15)

Substituting the variableHn = 1 − In in the recursion
(15), one obtains

H2n+1 = aH2n

H2n+2 = bH2n+1 .
(16)

The start point of the recursion (15) isI2n0
(or H2n0

for recursion (16)) wheren0 is the number of iterations
needed to reach the convergence region, i.e., the region
in which the first order Taylor series approximation for
IA andIB holds. By solving (16), one gets

H2(n+n0) = (ab)nH2n0

and
I2(n+n0) = 1 − (ab)n(1 − I2n0

)

which is the MI at the(n0 +n)-th iteration. Applying the
bound (1) one obtains

BERn+n0
≤ (ab)n Hn0

2
(17)

Turbo – Coding – 2006    ·    April 3–7, 2006, Munich



whereBERn denotes the BER aftern iterations. Inequal-
ity (17) allows the computation of the minimum number
of additional iterations to perform, starting fromn0, in
order to obtain the desired BER, denoted as BERtarget:

nmin =
log(2BERtarget/Hn0

)

log(ab)
.

An alternative, more useful, viewpoint could be the design
of the degree distributions. Towards this end, by simple
manipulation of (17) one obtains

ab ≤

(

2BERtarget

Hn0

)1/n

and, therefore,
[

λ2
1

∂IS

∂IV
+λ2(1−IS(1))

]

∑

j

(j−1)ρj ≤

(

2BERtarget

Hn0

)1/n

which represents a design constraint guaranteeing conver-
gence to the desiredBERtarget in n + n0 iterations.

6 Concluding Remarks
In this paper, we have presented a novel bound for the
BER performance of LDPC-coded modulations based on
MI. This bound can be used to “link” an EXIT chart-based
analysis with the BER performance. The EXIT chart-
based analysis of LDPC-coded modulations has been
carried out focusing on the convergence region, i.e., the
point (1, 1) of the EXIT chart. The decoding convergence
behavior has been characterized as a function of the
LDPC code degree distributions. This analysis has led
to a new bound for the degree distributions which can
be interpreted as a practical generalization of the bound
given in [7] for LDPC codes transmitted over memoryless
channels.

Based on the above considerations and results, a novel
LDPC code design criterion has been proposed. This cri-
terion gives a new bound for the coefficients of the LDPC
code degree distributions in order to obtain convergence
within a specified number of iterations. This may have
important implications in the design of LDPC codes with
short codeword length.

APPENDIX

The MAP strategy entails a decision forx̂, as a function
of y, according to

x̂ = argmax
x

P{X = x|Y = y} .

This implies the following relation for the probability of
occurrence of the error eventE = {X 6= x̂}:

P{E|Y = y} = 1 − maxx P{X = x|Y = y}
= minx P{X = x|Y = y}

(18)
which is, obviously, a number lower than or equal to1/2.
Considering (18), one can conclude that

H(X |Y=y) = H(P{X =x|Y =y}) = H(P{E|Y=y})

Therefore, givenH(X |Y = y), assuming that the MAP
strategy is used,P{E|Y = y} can be written as

P{E|Y = y} = H−1[H(X |Y = y)] (19)

where H−1(·) is the inverse of the functionH(p) for
p ∈ (0, 1

2 ]. The following derivation, which proves the
theorem, holds:

Pe = Ey{P{E|Y = y}

= E{H−1[H(X |Y = y)]} (20)

≤
H(X |Y )

2
(21)

where (20) follows from (19) and (21) follows from the
fact thatH−1(x) < x/2, ∀x : 0 ≤ x < 1.
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