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Introduction

Vanity, definitely my favorite sin.

– The Devil’s Advocate

TELECOMMUNICATIONS are a growing field in the global industry, and their re-
quest is increasing more and more every year. Due to this growing demand,

the available bandwidths are getting insufficient to fulfill the global request. Inde-
pendently from the kind of communication system (satellite, wireless, optical), the
desire of every telecommunications operator is to transmit at the highest possible rate
in the available bandwidth for a given power. In more technical words, the aim is to
maximize the spectral efficiency of the communication systems.

In this thesis, we will consider techniques to improve the spectral efficiency of
digital communication systems, operating on the whole transceiver scheme. First,
we will focus on receiver schemes having detection algorithms with a complexity
constraint. We will optimize the parameters of the reduced detector with the aim
of maximizing the achievable information rate. Namely, we will adopt the channel
shortening technique (see [1, 2] and references therein).

Then, we will focus on a technique that is getting very popular in the last years
(although presented for the first time in 1975): faster-than-Nyquist signaling, and its
extension which is time packing (see [3, 4, 5] and references therein). Time packing
is a very simple technique that consists in introducing intersymbol interference on
purpose with the aim of increasing the spectral efficiency of finite order constella-
tions.



2 Introduction

Finally, in the last chapters we will combine all the presented techniques, and we
will consider their application to satellite channels.

Although we will not consider here optical communications, we point out that
many of these techniques, can be applied (with suitable tweaks) also to these scenar-
ios. It is worth to cite [6, 7, 8].

The remainder of this thesis is organized as follows: Chapter 1 will introduce
the basics of the work in this thesis. Chapter 2 will focus entirely on the channel
shortening technique, illustrating also many practical detection schemes. In Chapter 3
we will turn our attention to the time packing technique, showing its potential. Finally
in Chapters 4 and 5 we will connect the dots and apply the proposed techniques to
the satellite channel.

Publications

The work in this thesis is part of the results of the research activities conducted during
the PhD studies, with the following publications:

Journals

• A. Modenini, F. Rusek, and G. Colavolpe "Optimal transmit filters for ISI chan-
nels under channel shortening detection," IEEE Transactions on Communica-
tions, vol. 61, pp. 4997-5005, December 2013.

• A. Piemontese, A. Modenini, G. Colavolpe, and N. Alagha "Improving the
spectral efficiency of nonlinear satellite systems through time-frequency pack-
ing and advanced processing," IEEE Transactions on Communications, vol. 61,
pp. 3404-3412, August 2013.

• G. Colavolpe, A. Modenini, and F. Rusek, "Channel Shortening for Nonlinear
Satellite Channels," Communications Letters, IEEE , vol.16, no.12, pp.1929-
1932, December 2012.
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• G. Colavolpe, Tommaso Foggi, A. Modenini, and A. Piemontese, "Faster-than-
Nyquist and beyond: how to improve spectral efficiency by accepting interfer-
ence," Opt. Express 19, 26600-26609 (2011).

Conferences

• A. Piemontese, A. Modenini, G. Colavolpe, and N. Alagha, "Spectral Effi-
ciency of Time-Frequency-Packed Nonlinear Satellite Systems," in 31th AAIA
International communications satellite systems conference, Florence, Italy, Oc-
tober 2013.

• G. Colavolpe, and A. Modenini, "Iterative carrier syncrhonization in the ab-
sence of distributed pilots for low SNR applications," in Proc. Intern. Work-
shop of Tracking Telemetetry and Command System for Space Communi-
cations. (TTC’13), European Space Agency, Darmstadt, Germany, September
2013.

• A. Modenini, F. Rusek, and G. Colavolpe, "Optimal transmit filters for con-
strained complexity channel shortening detectors," in Proc. IEEE Intern. Conf.
Commun. (ICC’13), Budapest, Hungary, June 2013, pp. 1688-1693.

• A. Modenini, G. Colavolpe, and N. Alagha, "How to significantly improve
the spectral efficiency of linear modulations through time-frequency packing
and advanced processing," in Proc. IEEE Intern. Conf. Commun. (ICC’12),
Ottawa, Canada, June 2012, pp. 3430-3434.

Patents

• G. Colavolpe, A. Modenini, A. Piemontese, and N. Alagha, "Data detection
method and data detector for signals transmitted over a communication channel
with inter-symbol interference," assigned to ESA-ESTEC, The Neederlands.
International patent application n. F027800186/WO/PCT, December 2012.



4 Introduction

Common abbreviations

AWGN additive white Gaussian noise
AIR achievable information rate
ASE achievable spectral efficiency
BCJR Bahl Cocke Jelinek Raviv (algorithm)
CS channel shortening
DTFT discrete time Fourier transform
DFT discrete Fourier transform
HPA high power amplifier
ICI interchannel interference
IMUX input multiplexer (filter)
IR information rate
ISI intersymbol interference
FTN faster-than-Nyquist
MAP maximum a posteriori
MF matched filter
MIMO multiple-input multiple-output
MMSE minimum mean square error
OMUX output multiplexer (filter)
PSK phase shift keying (modulation)
QAM quadrature amplitude (modulation)
SE spectral efficiency
WF whitening filter
WMF whitening matched filter

Mathematical notation

h scalar (possibly complex)
h∗ complex-conjugated of the complex scalar
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ℜ(h) real part of of the complex scalar
ℑ(h) imaginary part of the complex scalar
hhh vector
hhhT transposed vector
hhh† transposed and conjugated vector (Hermitian)
HHH matrix
III identity matrix
(HHH)i j scalar entry (i, j) of the matrix
HHHT transposed matrix
HHH† transposed and conjugated matrix (Hermitian)
Tr(HHH) trace of the matrix
h block vector
hT transposed block vector
h† transposed and conjugated block vector (Hermitian)
H block matrix
(H)i j matrix entry (i, j) of the block matrix
HT transposed block matrix
H† transposed and conjugated block matrix (Hermitian)
δi Kronecker delta
⊗ convolution
F [y(ω)] functional of y(ω)
δF [y(ω)]

δy functional derivative w.r.t. y(ω)

P(c) probability mass function of a discrete random variable c
H(c) entropy of a discrete random variable c
p(r) probability density function of a continuous random variable r
h(r) entropy of a continous random variable r





Chapter 1

Basics

THIS chapter will introduce the basic arguments on which we will mainly focus
in this thesis. The chapter is organized as follows: in §1.1 we introduce the

notation for linear modulations. In §1.2 we describe the main observation models. In
§1.3 we describe optimal detection algorithms for the presented observation models.
Finally, in §1.4 we present the figures of merit that will be used for the performance
analysis.

1.1 Linear modulations over the AWGN channel

In this thesis, we will mainly consider linearly modulated signals whose complex
envelope can be expressed as

s(t) =
N−1

∑
k=0

ck p(t− kT ) (1.1)

being {ck}N−1
k=0 the transmitted symbols, p(t) the shaping pulse, and T the symbol

time. Symbols {ck} will be considered belonging to a M-ary constellation in the
complex domain. The transmitted symbols can be either coded or uncoded. If the
signal is transmitted over a channel with additive white Gaussian noise (AWGN), the
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complex envelope of the received signal will read

r(t) = s(t)+w(t) (1.2)

=
N−1

∑
k=0

ck p(t− kT )+w(t) (1.3)

where w(t) is white Gaussian noise having power spectral density N0. Without loss
of generality, in (1.3) we considered a frequency flat channel. Clearly, the extension
to frequency selective channels is obtained straightforwardly: the received shaping
pulse in (1.3) will be equal to

p(t)⊗h(t) (1.4)

being h(t) the channel impulse response.

1.2 Observation models

For detection, we need a discrete-time observation model rrr of the received signal. The
observation model rrr shall be a sufficient statistics, i.e., a function of the received sig-
nal that does not involve any information loss. For the received signal (1.3), different
sufficient statistics can be found.

The first model that we consider is the Ungerboeck observation model [9]. The
Ungerboeck observation model is obtained as shown in Figure 1.1. The received sig-
nal passes through a filter matched to the shaping pulse p(t) (matched filter, MF). The
signal at the output is then sampled with time interval T . The sequence of samples
rrr = [r0, . . . ,rN−1]

T results to be

rk =
ν

∑
i=−ν

ck−igi +nk (1.5)

where
gi =

∫
∞

−∞

p(t)p∗(t− iT )dt (1.6)

are the intersymbol interference (ISI) taps, which are null for |i| > ν (being ν the
channel memory), and {nk} are Gaussian random variables with autocorrelation func-
tion

E{nk+in∗k}= N0gi . (1.7)
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Forney
model

model
Ungerboeck

r(t)

WF

p∗(−t)

kT

Figure 1.1: Block diagram of the system which carry out the Ungerboeck observation
model and the Forney observation model.

The samples (1.5) can be gathered in a useful matrix notation

rrr = GGGccc+nnn (1.8)

where ccc and nnn are defined as ccc = [c0, . . . ,cN−1]
T , nnn = [n0, . . . ,nN−1]

T , and GGG is a
Toeplitz matrix (see Appendix A) with entries (GGG)`m = g`−m.

Since white noise is often preferred, the MF output can be filtered by a whitening
filter (WF)1 as shown in Figure 1.1. This yields another sufficient statistics known as
Forney observation model [10]. The Forney model reads

rk =
ν

∑
i=0

ck−ihi +wk (1.9)

where {wk} are Gaussian random variables with E{wk+iwk}= N0δi being δi the Kro-
necker delta, and {hi}ν

i=0 are the ISI taps such that gi = hi⊗h∗−i. The value of memory
ν of the Forney model is always equal to the one of the Ungerboeck model. The For-
ney observation model (1.9) can be expressed by means of the matrix notation

rrr = HHHccc+www (1.10)

where HHH is a Toeplitz and lower triangular matrix with entries (HHH)`m = h`−m. More-
over it holds HHH†HHH = GGG.

1The cascade of the MF and the WF is called whitened matched filter (WMF).
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Both the Ungerboeck and Forney models show that a discrete-time channel equiv-
alent to the continuous-time one can be found. In addition to the Ungerboeck and
Forney models, there exist other sets of sufficient statistics (although not consider in
this thesis). Another example of sufficient statistics is the one described in [11].

1.3 Optimal MAP detection: the BCJR algorithm

Optimal maximum a posteriori (MAP) symbol detection is based on the strategy

ĉk = argmax
ck

P(ck|rrr) k = 0, . . . ,N−1 . (1.11)

The a posteriori probabilities P(ck|rrr) can be effectively computed by means of the
Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [12]. Let us define σk as the state of the
channel at the discrete time k, and gather all the states in the vector σσσ = [σ0, . . . ,σN−1]

T .
The basic hypothesis of the BCJR algorithm is that it exists a definition of the state
σk which allows to factorize the probability P(ccc,σσσ |rrr) as

P(ccc,σσσ |rrr) ∝

N−1

∏
k=0

Λk(rk,ck,σk,σk+1)P(ck) (1.12)

where P(ck) is the a priori probability on the symbol ck at time k, and Λk(rk,ck,σk,σk+1)

is the metric at time k. The metrics are not necessarily probability mass functions.
The BCJR algorithm can be derived as follow. Equation (1.12) can be represented

by the factor graph (FG, see [13]) in Figure 1.2. The application of the sum product
algorithm (SPA) to the FG in Figure 1.2 gives a unique message passing algorithm to
compute any marginal probability of (1.12). In particular, we are interested in the a
posteriori probabilities in (1.11) that are obtained with the following marginalization:

P(ck|rrr) = ∑
∼{ck}

P(ccc,σσσ |rrr) , (1.13)

where ∑∼{ck} denotes the sum with respect to all the variables, except ck. Denoting
the messages on the graph by αk(σk) and βk(σk) as shown in in Figure 1.3, it can
be shown that the a posteriori probabilities are obtained with the following message
passing algorithm:
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• Initialize the algorithm as

α0(σ0) = 1 (1.14)

βN(σN) = 1 . (1.15)

• Forward recursion: for each k= 0, . . . ,N−1 compute the messages αk+1(σk+1)

as
αk+1(σk+1) = ∑

ck,σk

αk(σk)Λk(rk,ck,σk,σk+1)P(ck) . (1.16)

• Backward recursion: for each k = N − 1,N − 2, . . . ,0 compute the messages
βk(σk) as

βk(σk) = ∑
ck,σk+1

βk+1(σk+1)Λk(rk,ck,σk,σk+1)P(ck) . (1.17)

• Completion: for each k = 0, . . . ,N−1 compute the a posteriori probabilities as

P(ck|r) ∝ P(ck) ∑
σk,σk+1

α(σk)Λk(rk,ck,σk,σk+1)β (σk+1) . (1.18)

The complexity of the BCJR algorithm is proportional to O(MS), being M the car-
dinality of the transmitted symbols {ck} and S the cardinality of the state {σk}. The
algorithm is conveniently implemented in the logarithmic domain [14]. The reader
can notice that the BCJR algorithm performs a trellis processing similar to the Viterbi
algorithm. In fact the algorithms are stricly related. It can be shown that working in
the logarithm domain, and by substituting the logarithm of a sum of exponentials
with the max of the arguments, the Viterbi algorithm is obtained [13].

For the sake of clarity we finally show the BCJR algorithm for the observation
models presented in §1.2. For the Forney model, it is easy to notice from (1.9) that
the state can be defined by the vector of the past symbols σσσ k = [ck−1, . . . ,ck−ν ]. Thus,
the conditional probability factorizes with terms

Λk(ck,σσσ k,σσσ k+1) = p(rk|ck,σσσ k)I (ck,σσσ k,σσσ k+1) (1.19)

= exp

{
−|yk−∑

ν
i=0 hick−i|2
N0

}
I (ck,σσσ k,σσσ k+1) (1.20)
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where I (ck,σσσ k,σσσ k+1) is an indicator function: it is equal to 1 if the transition
(ck,σk)→ σk+1 is valid, and to 0 otherwise.

Since the cardinality of the state is S = Mν , the complexity of the algorithm
increases exponentially with ν . Moreover it can be shown that for the Forney model
the forward and backward recursions have the following probabilistic meaning [15]

αk(σk) = P(σk|rrrk−1
0 ) ∀k = 0, . . . ,N (1.21)

βk(σk) = p(rrrN−1
k |σk) ∀k = 0, . . . ,N (1.22)

where rrrb
a denotes either the vector [ra, . . . ,rb] for any a ≤ b, or the empty set other-

wise.
For the Ungerboeck observation model it can be shown (see [16]) that the state

can be defined again as σσσ k = [ck−1, . . . ,ck−ν ] and the conditional probability factor-
izes with terms

Λk(ck,σσσ k,σσσ k+1) = exp

{
2ℜ
(
c∗krk

)
−|ck|2g0−2c∗k ∑

ν
i=1 gick−i

N0

}
I (ck,σσσ k,σσσ k+1) .

(1.23)
Since the memory ν of the Ungerboeck model in (1.5) is always equal to the memory
of the Forney model, also the complexity of the algorithms is the same. We point
out that for the Ungerboeck model the Λk(ck,σσσ k,σσσ k+1) are not probability density
functions as for the Forney case.

1.4 Performance analysis

We will consider different figures of merit for the performance analysis. The first fig-
ure of merit is the spectral efficiency (SE) that can be achieved by a given modulation
and coding format (MODCOD) on a given channel defined as

SE =
r log2(M)

TW
[bit/s/Hz] (1.24)

where r is the rate of the adopted channel code, and W is the reference bandwidth.
The reference bandwidth can be the available bandwidth of the channel, the transmit-
ted signal bandwidth, or any other bandwidth definition depending on the considered
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communication system. In a frequency division multiplexed (FDM) system, it can
be defined as the distance between the carriers of two adjacent channels [17]. The
achieved SE will be often placed in the Shannon plane as a function of the signal-to-
noise ratio (SNR). For each SE, the corresponding SNR is the value which guarantees
a reliable communication. In many practical applications the communication is con-
sidered reliable if the packet error rate (PER) is below a given threshold, for example
10−5.

The second figure of merit that we consider is the achievable information rate
(AIR). For a channel with channel law p(rrr|ccc), and a particular modulation format,
the information rate (IR) is defined as [18]

I(ccc;rrr) = h(rrr)−h(rrr|ccc) (1.25)

= E{− log2 p(rrr)}−E{− log2 p(rrr|ccc)} , (1.26)

and measures the highest rate achievable on the channel with the adopted modula-
tion format. In many applications, however, the receiver could consider a mismatched
channel law q(rrr|ccc) (also denoted as auxiliary channel) different from the actual chan-
nel law p(rrr|ccc). We define thus, the achievable information rate as the highest rate
achievable on the channel with the mismatched receiver [19, 20]. It reads

IR = h(rrr)−h(rrr|ccc) (1.27)

= E{− log2 q(rrr)}−E{− log2 q(rrr|ccc)} (1.28)

where q(rrr) = ∑ccc q(rrr|ccc)P(ccc). We point out that in (1.28) the average is computed with
respect to the actual statistics p(rrr|ccc), and the mismatched entropies are explicitly
denoted by h to distinguish them from the standard entropies h. The AIR is always
upper bounded as

IR ≤ I(ccc;rrr) (1.29)

with equality if and only if q(rrr|ccc) = p(rrr|ccc), or in other words, if and only if the
receiver performs optimal detection and decoding [21].

Since the bandwidth in many applications is getting more and more a limited
resource, it is of interest to evaluate the achievable spectral efficiency (ASE) which
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is defined as
η =

IR

TW
[bit/s/Hz] . (1.30)

The ASE, in simple words, is the maximum SE that can be achieved with a joint
detection and decoding scheme. It can be computed independently of the adopted
coding scheme [21], avoiding long PER simulations.





Chapter 2

Channel shortening

THE complexity of the optimal detection increases exponentially with the mem-
ory taken into account by the detector (see §1.3). Thus, for many practical

communication schemes, optimal detection can be prohibitive, since the complexity
is unmanageable. In this chapter, we consider detectors with reduced complexity. The
complexity reduction techniques can be classified mainly in two families:

• techniques that perform detection on the original trellis but only a fraction of
the available paths is explored (e.g. the M -BCJR in [22] and sphere decoding
[23]).

• techniques that work on a reduced trellis which is then fully processed.

We consider the channel shortening (CS), a complexity reduction technique which
belongs to the second family. Channel shortening is a technique originally proposed
in 1972 by Falconer and Magee [1], and recently improved by Rusek and Prlja [2]. In
this chapter we will first review the CS technique proposed by Rusek and Prlja and
then, the previous works on CS in §2.2. In §2.3 we will derive an adaptive version of
CS. The optimization of the transmit filter for CS detectors will be discussed in §2.4.
Finally in §2.5 and §2.6 we extend the CS to other channels.
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2.1 CS algorithm

Let us consider the discrete-time ISI channel with AWGN

rk =
ν

∑
i=0

hick−i +wk (2.1)

where {ck} are the transmitted symbols belonging to a properly normalized M-ary
constellation, {hi}ν

i=0 are the ISI taps, ν is the channel memory, and {wk} are inde-
pendent Gaussian random variables with variance N0.

The observable {rk} can be filtered with a discrete-time filter matched to {hi}.
The resulting observable is the Ungerboeck observation model (1.5), having gi =

∑k h∗k−ihk. The optimal detection is performed by means of the BCJR algorithm. Us-
ing the matrix notations (1.8), the channel law can be expressed as

p(rrr|ccc) ∝ exp

{
ℜ
(
ccc†HHH†rrr

)
− ccc†GGGccc

N0

}
(2.2)

where GGG=HHH†HHH and is semi-positive definite. We now consider a reduced-complexity
detector, which considers a mismatched channel law

q(rrr|ccc) ∝ exp
{

ℜ
(
ccc†(HHHr)†rrr

)
− ccc†GGGrccc

}
, (2.3)

where HHHr is the new front end filter, named channel shortener, and GGGr is the ISI to be
set at detector, named target response. The superscript r denotes that they are solely
considered at receiver, and are different from the actual HHH and GGG. For simplicity the
matrix HHHr and GGGr in (2.3) include also the noise variance N0. Let L≤ ν the memory
taken into account by the detector. Due to this constraint on the complexity, the target
response must be such that

(GGGr)i j = 0 ∀|i− j|> L . (2.4)

The matrix GGGr does not need to be semi-positive definite [24].
The achievable information rate (AIR) of the mismatched detector (see §1.4) is

IR = h(rrr)−h(rrr|ccc) . (2.5)
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The aim of CS is, for a given L, find the HHHr and GGGr which maximize the AIR. Namely
we want to solve the following maximization problem

IOPT = max
HHHr,GGGr

IR (2.6)

under the constraint (2.4).
The optimization for achievable information rate was completely solved in [2]

under the assumption that ccc are independent Gaussian symbols. Closed-form expres-
sions for GGGr, HHHr for the ISI channel can be found with the following algorithm:

• Compute the sequence {bi}L
i=−L as

bi =
1

2π

∫
π

−π

N0

|H(ω)|2 +N0
e jωidω (2.7)

where H(ω) is the discrete time Fourier transform (DTFT) of {hi}.

• Compute the real-valued scalar

C = b0−bbbBBB−1bbb†, (2.8)

where bbb = [b1,b2, . . . ,bL], and BBB is L×L Toeplitz with entries (BBB)i j = b j−i.

• Define the vector uuu = 1√
C
[1,−bbbBBB−1] and find the optimal target response as

Gr(ω) = |U(ω)|2−1 , (2.9)

where U(ω) is the DFT of {ui}.

• Finally, the optimal channel shortener is found as

Hr(ω) =
H(ω)

|H(ω)|2 +N0
(Gr(ω)+1) . (2.10)

By using the optimal channel shortener and the target response IOPT results to be

IOPT =− log2(C ) . (2.11)

The proof is shown in [2].



20 Chapter 2. Channel shortening

Clearly, when L = ν , the trivial solution Gr(ω) = |H(ω)|2, Hr(ω) = H(ω) is
found and the achievable rate simplifies to the famous formula

− log2(C ) =
∫

∞

−∞

log2

(
1+
|H(ω)|2

N0

)
dω . (2.12)

Although the algorithm here is limited to the ISI channel, we point out that CS
can be applied also to multiple-input multiple-output (MIMO) channel. In fact [2]
worked on a slightly general model which represents either the ISI channel (2.1) or a
the MIMO channel.

Now, the first question that the reader could ask is, why should we be interested in
the optimal solution for Gaussian inputs, when practical communication schemes use
finite cardinality alphabets? Although we cannot give a proof, in our experience we
saw that employing the solution for Gaussian inputs for finite low-order cardinality
alphabets, the resulting AIR is still excellent (see [2, 25, 26]).

Before going ahead let us show an example for the sake of clarity. We consid-
ered an EPR4 channel having channel response hhh= [0.5 ,0.5 ,−0.5 ,−0.5]. Figure 2.1
shows the AIR by employing a BPSK modulation and the CS detector. For compari-
son the figure shows also the AIR by employing the naïve technique of truncating the
considered ISI at detector to L values, and the AIR for optimal detection (L = ν = 3),
for which the CS technique and truncation are the same algorithm. The AIR were
computed by means of the Monte Carlo method described in [21]. From the figure
it can be seen that CS outperforms the truncation method, with SNR gains beyond
3 dB.

2.2 Previous works on CS

The original paper in 1973 by Magee and Falconer [1] proposed channel shortening
detectors optimized from a minimum mean-square-error (MMSE) perspective, and
many papers in the literature followed the same approach (e.g. [27, 28]). In [1], the
detector considered a mismatched channel law

q(rrr|ccc) ∝ exp

{
−|WWWrrr−QQQccc|2

N0

}
(2.13)
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Figure 2.1: AIRs of the CS detector on the EPR4 channel.

where WWW and QQQ are Toeplitz matrix, representing the channel shortener and the target
response respectively. However, two main flaws in this approach can be found: first of
all, minimizing the mean-square-error does not directly correspond to achieving the
highest information rate (in the Shannon sense) that can be supported by a shortening
detector. Second, it can observed that (2.13) can be equivalently expressed as

q(rrr|ccc) ∝ exp

{
2ℜ(ccc†QQQ†WWWrrr)− ccc†WWW †WWWc

N0

}
(2.14)

which is equal to (2.3) by setting HHHr =WWW †QQQ and GGGr =WWW †WWW . Thus, it can be noticed
that the traditional CS detector requires GGGr to be semi-positive definite and HHHr to
have a specific structure. In [2] and [29], it is shown that the new CS presented in the
previous section, outperforms the traditional CS.

Other papers on CS instead adopted other figures of merit: for example [30] pro-
posed maximum shortening signal-noise-ratio (MSSNR) which minimizes the en-
ergy outside a window of interest and holds the energy inside fixed. The work in [31]
instead considered the sum-squared auto-correlation (SA) of the combined channel-
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equalizer response, and tries to minimize the SA outside a window of interest. How-
ever, all these techniques do not imply a maximization of the AIR.

Before Rusek and Prlja publication [2] in 2012, in almost forty years of CS, the
only work who adopted an information theoretic approach was [32] by Abou-Faycal
and Lapidoth, presented in a conference in 2000.

Unfortunately, although [32] is an excellent work and has very similar results
to [2], the full version of the paper was not available on the web and it had very few
citations. In fact, Rusek and Prlja were not aware of [32] and worked independently.
The common points and differences between the two works can be summarized as
follow:

• Both works choose the channel shortener and target ISI by maximizing the
achievable information rate. The target ISI GGGr is found with the same algorithm
(although it looks different in the two works).

• The work [32] considered the Forney detection instead of Ungerboeck detec-
tion. Thus, if GGGr is positive definite, the two techniques are the same. In the
case GGGr is not positive definite, [32] does not give a clear answer on how the
channel shortener can be computed.

• The framework of [2] was also for MIMO channel.

• The proof of [2] gave a closed formula for the channel shortener. Instead [32]
left a parameter to be optimized in the formula.

2.3 Adaptive CS detector for unknown channels

The optimal CS detector in §2.1 is carried out by assuming a perfect knowledge of
the ISI channel. In this section, we consider the case of unknown ISI taps {hi} of the
channel model (2.1), and we will derive an adaptive CS detector.

The derivation of the adaptive CS detector relies on the following observations.
First, the optimal channel shortener (2.10) is the combination of two filters: a MMSE
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filter and a filter with frequency response Gr(ω)+1. Second, the sequence {bi}L
i=−L

is the autocorrelation of the error

bi = E{ei+ke∗k} (2.15)

being ek = ck− ĉk and ĉk the output of the MMSE filter. This is found by observing
that N0/(|H(ω)|2 +N0) is the power spectral density of the error at the output of a
MMSE filter [33].

The adaptive CS detector can be summarized in the following steps:

• the transmitter sends a training sequence, known at receiver side.

• the receiver computes the MMSE filter by means of the training sequence.

• the receiver estimates the error correlation bk.

The first two steps can be easily done by means of the least mean square (LMS)
algorithm, or the recursive least square (RLS) algorithm [34]. The last step, the error-
correlation estimation, can be easily done by computing at receiver the error sequence
{ek}, and using standard estimators (e.g., the xcorr in Matlab).

2.4 Optimized transmit filter for CS detector

In §2.1 we showed the algorithm to derive the optimal CS detector when the consid-
ered memory L is lower then the actual memory ν .

In this section, we extend the CS algorithm by designing a proper transmit filter
to be employed jointly with a channel-shortening detector with the aim of further
improving the achievable information rate. In other words, we consider to adopt,
at the receiver side, a channel-shortening detector and then solve for the optimal
transmit filter to be used jointly with it. When the use of the optimal full-complexity
receiver is allowed, the answer to this question is the classical waterfilling filter. We
are generalizing the waterfilling concept to the case of reduced-complexity channel-
shortening detectors, i.e., we essentially redo Hirt’s derivations [35], but this time
with the practical constraint of a given receiver complexity.
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Our results are not as conclusive as in the unconstrained receiver complexity case.
With functional analysis, we can prove that, for real channels, the optimal transmit
filter has a frequency response described by L+ 1 real-scalar values. In general, for
complex channels, the optimal transmit filter is described by L+ 1 complex scalar
values. The transmit filter optimization thereby becomes a problem of finite dimen-
sionality, and a numerical optimization provides the optimal spectrum. Note that, in
practice, L is limited to rather small values and L = 1 is an appealing choice from a
complexity perspective. This essentially leads to very effective numerical optimiza-
tions.

Problem formulation

We consider the channel model (2.1). The transmitted symbols {ck} are a precoded
version of the information symbols {ak} as

ck = ak⊗ pk (2.16)

= ∑
i

ak−i pi (2.17)

where {pi} is a transmit filter subject to the power constraint ∑i |pi|2 = 1. Using a
matrix notation we can express (2.16) as

ccc = PPPaaa (2.18)

where PPP is a Toeplitz matrix with entries (PPP)i j = pi− j. The combined channel-precoder
thus reads

rrr = HHHccc+www (2.19)

= HHHPPPaaa+www (2.20)

= VVV aaa+www , (2.21)

where VVV = HHHPPP. Equivalently, (2.21) can be expressed by means of the scalar notation

rk =
νC

∑
i=0

viak−i +wk (2.22)
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where vi = hi⊗ pi, and νC is the combined memory. If the CS detector with memory
L is used for detection on the combined channel precoder HHHPPP, the AIR (for Gaussian
symbols) reads

IOPT =− log2(C ) (2.23)

where C is the real-valued scalar (2.8), function of the coefficients {bi}L
i=−L which

read

bi =
1

2π

∫
π

−π

N0

|V (ω)|2 +N0
e jωidω (2.24)

=
1

2π

∫
π

−π

N0

|P(ω)|2|H(ω)|2 +N0
e jωidω . (2.25)

The problem we aim at solving is to maximize the AIR IOPT of (2.23) over the
transmit filter P(ω), i.e., the DTFT of ppp. Thus, we have the following optimization
problem at hand

minP(ω)C [P(ω)]

such that (2.26)
∫

π

−π
|P(ω)|2dω = 2π .

In (2.26), we have made explicit the dependency of C on P(ω), but not on N0

and H(ω), since these are not subject to optimization. Since the starting point is the
expression of the AIR when the optimal channel-shortening detector is employed,
we are thus jointly optimizing the channel shortening filter, the target response, and
the transmit filter, although for Gaussian inputs only. However, as shown in the nu-
merical results, when a low-cardinality discrete alphabet is employed, a significant
performance improvement is still observed (see also [2]).

The optimization problem (2.26) is an instance of calculus of variations. We have
not been able to solve it in closed form, but we can reduce the optimization problem
into an L+1 dimensional problem, which can then efficiently be solved by standard
numerical methods. The main result of this optimization is the following theorem.



26 Chapter 2. Channel shortening

Theorem 1. The optimal transmit filter with continuous spectrum for the channel
H(ω) with a memory L channel-shortening detector satisfies

|P(ω)|2 = max


0,

N0√
|H(ω)|2

√√√√ L

∑
`=−L

A`e j`ω − N0

|H(ω)|2


 , (2.27)

where {A`} are complex-valued scalar constants with Hermitian symmetry, i.e.

A` = A∗−` . (2.28)

For the proof see the Appendix C.
Theorem 1 gives a general form of the optimal transmit filter to be used for a

memory L channel shortening detector. By definition, it becomes the classical wa-
terfilling filter when L = νC. Hence, it also provides an insight to the behavior of the
transmit filter for the classical waterfilling algorithm. We remind the reader that ν +1
denotes the duration of the channel impulse response and νC +1 denotes the duration
of the combined transmit filter and channel response. We summarize our finding in
the following

Theorem 2. Let P(ω) be the transmit filter found through the waterfilling algorithm.
Then,

νC ≥ ν .

For a proof, see the Appendix D.
Whereas the statement is trivial when the transmit filter and the channel have

a finite impulse response (FIR), the theorem proves that this fact holds also when
they have infinite impulse responses (IIR). Thus, for a FIR channel response, the
waterfilling solution cannot contain any pole that cancels a zero of the channel, while,
for IIR channels, the waterfilling solution cannot contain any zero that cancels a pole.
Thus, the overall channel cannot be with memory shorter than the original one.

Theorem 2 reveals the interesting fact that the waterfilling algorithm trades a rate
gain for detection complexity. By using the optimal transmit filter, a capacity gain
is achieved, but the associated decoding complexity (of a full complexity detector)
must inherently increase. Thus, with waterfilling, it is not possible to achieve both a
rate gain and a decoding complexity reduction at the same time.
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Numerical results for the optimized filter

Theorem 1 provides a general form of the optimal transmit filter for channel short-
ening detection of ISI channels. What remain to be optimized are the L+1 complex-
valued constants {A`}. A closed form optimization seems out of reach since the con-
straint in (2.26) has no simple analytical form in {A`}. In fact, the integral

∫ √
1+Acos(x)dx

is an instance of the incomplete elliptic integral of the second kind, for which no
closed form is known to date.

We have applied a straightforward numerical optimization of the variables {A`}
under the constraints in (2.26) and

L

∑
`=−L

A`e j`ω ≥ 0. (2.29)

With a standard workstation and any randomly generated channel impulse response,
the optimization is stable, converges to the same solution no matter the starting po-
sition as long as the signal-to-noise-ratio (SNR) is not very high or very low, and is
altogether a matter of fractions of a second.

We now describe some illuminating examples. In all cases, the transmit power is
the same both in the absence and presence of the optimal transmit filter. We first con-
sider the complex channel hhh = [0.5,0.5,−0.5,−0.5 j] with memory ν = 3.1 Fig. 2.2
shows the AIR IOPT for Gaussian inputs when the transmit filter is optimized for dif-
ferent values of the memory L considered by the receiver. For comparison, the figure
also gives IOPT for a flat transmit power spectrum (i.e., no transmit filter at all) and the
channel capacity (i.e., when using the spectrum obtained by means of the waterfilling
algorithm and assuming a receiver with unconstrained complexity). It can be seen
that using an optimized transmit filter for each L, significant gains are achieved w.r.t.
the flat power spectrum at all SNRs. The flat spectrum reaches its maximum informa-
tion rate when L = ν but suffers a loss from the channel capacity. On the other hand,

1Other examples can be found in [26].
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Figure 2.2: AIRs for Gaussian inputs when different values of the memory L are
considered at receiver.

we can see that the optimized transmit filter when L = ν achieves an achievable rate
which is close to the channel capacity. However, there is not an exact match. This loss
is due to the fact that ν must be lower than the combined channel-precoder memory
νC as stated by Theorem 2.

This behavior is clearly illustrated by Fig. 2.3, which plots the information rate
when the transmit filter is found through the waterfilling algorithm and the receiver
complexity is constrained with values of the memory L. It can be seen that when the
memory L is increased more and more, even above ν , the information rate becomes
closer and closer to the channel capacity. Moreover, it is important to notice that if,
naïvely, a transmit filter found through the waterfilling algorithm is used when the
receiver complexity is constrained, a loss w.r.t. the optimized case occurs and it may
even be better to not have any transmit filter at all for high SNR values.

Although the results were so far presented only for Gaussian symbols, we now
show that when the optimized transmit filter and detector for Gaussian inputs are used
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Figure 2.3: AIRs for Gaussian inputs with the waterfilling-solution power spectrum,
when different values of the memory L are considered at receiver.

for low-cardinality discrete alphabets, the ensuing IR is still excellent.2 Fig. 2.4 shows
the AIR for a binary phase shift keying (BPSK) modulation. It can be noticed that the
behavior among the curves for BPSK reflects the behavior for Gaussian symbols.
The AIR can be approached in practice with proper modulation and coding formats.
Fig. 2.5 shows the bit error rate (BER) of a BPSK-based system using the DVB-S2
low-density parity-check code with rate 1/2. In all cases, 10 internal iterations within
the LDPC decoder and 10 global iterations were carried out. It can be noticed that
the performance is in accordance with the AIR results. All simulations that we have
presented were also carried out for other channels (e.g., EPR4, Proakis B and C) and
our findings for those channels are in principle identical to those for the channel here
presented.

2We remind the reader that IOPT refers to an optimized detector while IR refers to the achievable
rate for a non optimized detector. Since the filters have been optimized for Gaussian inputs, but we are
using here low-cardinality constellations, the filters could be further optimized and for these reason we
use the notation IR.
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Figure 2.4: AIRs for BPSK modulation when different values of the memory L are
considered at receiver.
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Finally we show that Theorem 1, similarly to waterfilling, has a graphical in-
terpretation, although not effective as well. Let us define A(ω) =

√
∑

L
`=−L A`e j`ω .

It can be seen from (2.27) that |P(ω)|2 6= 0 when A(ω) ≥ 1
|H(ω)| . Let us now con-

sider as an example the Proakis B channel, for which hhh = [0.407,0.815,0.407] and
suppose that we are constrained at the receiver side to L = 1. Since the channel is
real, A(ω) can be expressed as a function of the two real parameters A0 and A1 as
A(ω) =

√
A0 +2A1cos(ω). The magnitude of 1

|H(ω)| , is depicted in Figure 2.6 (top).
If we also report the optimal expression of A(ω) (the optimal coefficients are A0' 7.3
and A1 ' 5.2 when N0 = 0.9) in the same figure, we obtain that the non-zero part of
the frequency response of the transmit filter is given by the gray filled difference
in the figure. The final amount of power spent on each frequency will be obtained
by weighing the gray filled curve by N0/|H(ω)| (center part of the figure), and by
reporting it over the abscissa (bottom part of the figure).
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2.5 Extension to MIMO-ISI channels

We extend now the CS framework to MIMO-ISI channels of the form

rrrk =
ν

∑
i=0

HHH iccck−i +wwwk (2.30)

where the ISI taps {HHH i}ν
i=0 are K×K matrix. Vectors rrrk, ccck, and wwwk are, respectively,

the observable, the transmitted symbols (independent identically distributed, IID) and
the white noise having autocorrelation function

E
{

wwwk+iwww
†
k

}
= N0IIIδi (2.31)

where III is the identity matrix, and δi the Kronecker delta. All vectors are column
vectors with size K. Without loss of generality in (2.30) we assumed that the number
of transmitting antennas is equal to the number of receiving antennas, since any non-
square channel, can be decomposed into a square equivalent channel by means of the
QR factorization [2, 29, 36].

All vectors in (2.30) can be gathered in a block-matrix notation as

r = Hc+w (2.32)

where H is block Toeplitz, with submatrix (H)`m = HHH`−m. Notice that for K = 1,
(2.32) becomes the matrix notation (1.10) of the scalar case. For the matrix response
{HHH i}, we define the discrete time Fourier transform (DTFT) as

HHH(ω) = ∑
i

HHH ie− jωi (2.33)

which is equivalent to take scalar DTFT of each entry in the matrix {HHH i}. The anti-
trasform is thus define as

HHH i =
1

2π

∫
π

−π

HHH(ω)e jωidω . (2.34)

The optimal detection for the channel (2.30) can be done with a generalized ver-
sion of the Ungerboeck BCJR algorithm described in §1.3. The Ungerboeck obser-
vation model is derived by filtering the samples {rrrk} with a filter matched to the
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Figure 2.7: Block diagram of the CS transceiver scheme over a MIMO-ISI channel
for K = 3.

channel, having DTFT HHH†(ω). Then, BCJR detection is performed based on the met-
ric

Λk(ccck,σσσ k,σσσ k+1)= exp





ℜ

(
2ccc†

krrrk

)
− ccc†

kGGG0ccck−2ccc†
k ∑

ν
i=1 GGGiccck−i

N0



I (ccck,σσσ k,σσσ k+1) ,

(2.35)
where σσσ kkk = [ccck−1, . . . ,ccck−ν ] is a block vector, and {GGGi}ν

i=−ν
reads

GGGi =
min(ν ,ν+i)

∑
k=max(0,i)

HHH†
k−iHHHk . (2.36)

Optimal detection has complexity O(M(ν+1)K). We consider instead a channel
shortening detector as in Figure 2.7 where the front-end HHHr(ω) is a matrix filter with
size K×K. The detection is performed on a target ISI {GGGr

i}L
i=−L, being L ≤ ν the

memory taken into account at detector. The proposed CS detector performs detection
on a shorter ISI, but by fully processing each matrix ISI tap GGGr

i with size K×K. The
ensuing complexity of the CS detector is O(M(L+1)K).

The optimal front-end filter {HHHr
i} and target response {GGGr

i} are obtained in closed
form through the following steps:

• Compute

BBB(ω) = N0HHH†(ω)
[
HHH(ω)HHH†(ω)+N0III

]−1
(HHH†(ω))−1 . (2.37)

Applying the anti trasform to BBB(ω) yields the matrix sequence {BBBi}.
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• Find

C = BBB0−BB−1B† (2.38)

where we defined the block matrix B = [BBB1, ...,BBBL] and the block Toeplitz B
constructed on {BBBi} as

B =




BBB0 BBB1 . . . BBBL−1

BBB†
1 BBB0 . . . BBBL−2
...

. . .
...

BBB†
L−1 BBB†

L−2 . . . BBB0




. (2.39)

• Define the sequence {UUU i} where UUU0 is the Cholesky decomposition of C,
namely C =UUU†

0UUU0, and UUU i for 1≤ i≤ L is the (1, i) matrix entry of

U =−UUU0BB−1 . (2.40)

• Set

GGGr
i =

min(L,L+i)

∑
k=max(0,i)

UUU†
k−iUUUk−δiIII . (2.41)

• The optimal front-end filter is given by

HHHr(ω) =
[
HHH(ω)HHH†(ω)+N0III

]−1
HHH(ω)(GGGr(ω)+ III) . (2.42)

The proof is given in Appendix B.

Optimization of the transmit filter for MIMO-ISI channels

On MIMO-ISI channels, a transmit filter can be adopted with the aim of further im-
proving the performance (as did for the scalar case in §2.4). Namely, we consider the
transmitted symbols {ccck}, a precoded version of the information symbols {aaak}. We
will show that the advantages of a transmit filter are twofold: we can further improve
the achievable information rate, and detection can be performed as for K independent
parallel channels with complexity O(ML+1).
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Figure 2.8: Block diagram of the transceiver for 2×2 MIMO-ISI channels.

It is well known that a K×K MIMO channel can be decomposed into K indepen-
dent parallel channels by means of singular value decomposition (SVD) [37]. With a
similar approach, the DTFT of {HHH i} in (2.34), can be factorized by means of SVD as

HHH(ω) =UUUH(ω)ΣΣΣ(ω)VVV †
H(ω) ,

where UUUH(ω) and VVV H(ω) are unitary matrices and ΣΣΣ(ω) is a diagonal matrix with
elements {Σi(ω)}K

i=1. By adopting the MIMO filter VVV H(ω) at the transmitter and the
filter UUU†

H(ω) at the receiver, without any information loss we obtain K independent
parallel channels with channel responses {Σi(ω)}K

i=1. The transceiver block diagram
is as shown in Fig. 2.8 for the case K = 2. The objective function to be maximized is

IOPT =
K

∑
i=1
− log2(Ci) (2.43)

under the constraint
K

∑
i=1

1
2π

∫
π

−π

|Pi(ω)|2dω = K (2.44)

where Ci is given in (2.8) and Pi(ω) is the precoder for the channel Σi(ω). By solving
the Euler-Lagrange equation, the optimal precoders have spectra of the form (2.27).
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Numerical results for MIMO-ISI channels

We now consider a 2×2 MIMO-ISI channel, with ν = 3 and taps

HHH0 =

(
−0.080302 0.256280

0.385964 0.353422

)
(2.45)

HHH1 =

(
0.440662 −0.168631
0.159813 −0.338684

)
(2.46)

HHH2 =

(
−0.358555 −0.303972
−0.084969 0.668917

)
(2.47)

HHH3 =

(
0.669006 0.066229
0.347376 −0.207065

)
. (2.48)

Fig. 2.9 shows the AIR IOPT for Gaussian inputs as a function of EH/N0, being
EH = ∑` Tr(HHH`HHH

†
`). The transmit filters are optimized for the equivalent channels

Σ1(ω) and Σ2(ω) for different values of the memory L considered by the receiver.
For comparison, the figure also gives IOPT for flat transmit power spectra (i.e., ccck = aaak

and E{aaak+iaaa
†
k}= IIIδi (where III is the identity matrix and δi is the Kronecker delta) and

the channel capacity (i.e., when using the spectra obtained by means of the waterfill-
ing algorithm and assuming a receiver with unconstrained complexity). It can be seen
that conclusions for scalar ISI channels also hold for MIMO-ISI. However, we found
that, for MIMO-ISI channels, the objective function seems to have some local max-
ima, and thus the optimization can depend on the starting position. This problem can
be easily solved by running the optimization more times (three times were always
enough in all our tests) and keeping the maximum value.

2.6 Channel shortening for continuous-time channels

This section shows that the CS framework, although derived for discrete-time chan-
nel models, can be easily extended to continuous-time AWGN channels. Namely we
extend the channel shortening technique to the single carrier scenario, and a multi-
carrier scenario, with frequency division multiplexing (FDM).
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Figure 2.9: AIRs for Gaussian inputs over a MIMO-ISI channel with K = 2 and ν = 3,
when different values of the memory L are considered at the receiver.

Linear modulation on the continuous-time AWGN channel

We consider a linear modulation over a continuous-time AWGN channel. The re-
ceived signal reads

r(t) =
N−1

∑
k=0

ck p̃(t− kT )+w(t) (2.49)

where {ck}N−1
k=0 are the N transmitted symbols, which are independent and identically

distributed (IID). The p̃(t) is the shaping pulse, T the symbol time, and w(t) is white
Gaussian noise with power spectral density N0. The shaping pulse p̃(t) is constrained
to have bandwidth W and energy

∫ W/2

−W/2
|P̃( f )|2d f = 1 (2.50)

being P̃( f ) the Fourier transform of p̃(t). The channel is assumed perfectly known
at the receiver and time-invariant. The channel frequency response is assumed flat
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over W , although the generalization to the case of a frequency-selective channel is
straightforward.

As explained in §1.2, a sufficient statistics for detection of (2.49) can be car-
ried out by using a whitening matched filter (WMF). The ensuing observable, is the
Forney observation model and reads as (2.22), where the ISI {vi} of the combined
channel precoder is such that

|V (ω)|2 = 1
T ∑

i

∣∣∣∣P̃
(

ω

2πT
− i

T

)∣∣∣∣
2

, (2.51)

and optimal detection can be performed with the BCJR algorithm (see §1.3). Clearly,
this discrete-time model will depend on the adopted shaping pulse, its bandwidth, the
employed symbol time, and the channel impulse response if the channel is frequency
selective.

Instead of optimal detection, we want to consider a CS detector with memory L.
The optimal target ISI and channel shortener are derived again through (2.8)–(2.10)
by means of the {bi}L

i=−L in (2.24). The corresponding channel shortening receiver
is shown in Figure 2.10a. Since the WMF can be implemented as a cascade of a
continuous-time matched filter followed by a discrete-time whitening filter, this latter
filter can be combined with the channel shortening filter obtaining a single discrete-
time filter with frequency response

H̃r(ω) =
Gr(ω)+1
|V (ω)|2 +N0

. (2.52)

The corresponding channel shortening receiver is shown in Figure 2.10b.

The shaping pulse p̃(t) can be also optimized by means of the framework in §2.4.
The DTFT of {vk} can be decomposed as

|V (ω)|2 = |P(ω)|2|H(ω)|2 (2.53)

where

H(ω) =





1 |ω| ≤ 2WT π

0 otherwise
, ω ∈ [−π,π] . (2.54)
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Figure 2.10: Block diagram of the CS receiver for continuous-time AWGN channels.

Thus the optimization problem is still given by (2.26) where the optimal shaping
pulse is such that

|P̃( f )|2 = T |P(2πT f )|2 (2.55)

with |P(ω)|2 given in (2.27).

Clearly, when 2WT ≥ 1, the optimal solution is trivial and |P(ω)|2 is flat. Thus,
for 2WT = 1 the p̃(t) is a sinc function, whereas for 2WT > 1 the p̃(t) can be a pulse
whose spectrum has vestigial symmetry (e.g., pulses with a root raised cosine (RRC)
spectrum). For 2WT < 1, the symbol time is such that the Nyquist condition for the
absence of ISI cannot be satisfied. Thus, we are working in the domain of the faster-
than-Nyquist (FTN) paradigm [3, 38, 39] or its extension represented by time pack-
ing [5, 40]. Note that, as said before, the discrete-time channel model, will depend
on the values of W and T . When changing the values of W and/or T , the correspond-
ing optimal pulse will change and so the maximum value of the AIR for the given
allowed complexity. In general, when reducing the value of WT , the maximum AIR
value will decrease. However, the spectral efficiency, defined as the ratio between the
AIR and the product WT could, in principle, increase [3, 38, 41, 39, 40, 5]. This is
the rationale behind FTN/time packing that allows to improve the spectral efficiency
by accepting interference. The optimal value of T is, in that case, properly optimized
to maximize the spectral efficiency. This optimization can be now performed by also
using, for each value of T , the corresponding optimal shaping pulse. In other words,
we can find the optimal pulse for a constrained complexity detector when FTN/time
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packing is adopted.
We point out that, for this scenario, the numerical computation of the optimal

shaping pulse in the time-domain can require the adoption of some windowing tech-
nique or the use of Parks-McClellan algorithm [42] to obtain a practical pulse since
H(ω) has a spectrum with an ideal frequency cut.

We finally point out that the optimization of the shaping pulse to frequency se-
lective AWGN channels is done straightforwardly by properly defining the chan-
nel (2.54).

Numerical results for the optimized shaping pulse

We computed the optimal shaping pulse on a bandlimited AWGN channel when the
bandwidth W and the symbol time T are such that 2WT = 0.48. Hence, we are in the
realm of FTN/time packing and the considered ISI is only due to the adoption of such
a technique. Fig. 2.11 shows the achievable spectral efficiency (ASE) η = IR/WT for
a BPSK modulation on the continuous-time AWGN channel as a function of the ratio
Eb/N0, Eb being the received signal energy per information bit. Two values of the
memory, namely L = 1 and L = 2 are considered at the detector. For comparison,
the figure also gives the ASE for pulses with RRC spectrum and roll-off α = 0.1 or
α = 0.2, and the unconstrained capacity for the AWGN channel. It can be seen that
the optimized pulse outperforms the other pulses.

FDM on the continous-time AWGN channel

We consider a scenario with K carriers, each transmitting the symbols {c(`)k }N−1
k=0 ,

being ` the index of the carrier. The received signal reads

r(t) =
K−1

∑
`=0

N−1

∑
k=0

c(`)k p`(t− kT )e j2πF̀ t +w(t) (2.56)

where F̀ is the frequency of the `-th carrier, p`(t) its shaping pulse, T the symbol
time, and w(t) white Gaussian noise with power spectral density N0.

A sufficient statistics rrrk = [r(0)k , . . . ,r(K−1)
k ]T , for the detection of (2.56) is found

by adopting a bank of matched filter to the received signal. The block diagram for
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K = 3 is shown in Figure 2.12. It can be shown that the observable rrrk reads

rrrk = ∑
i

GGGk,k−iccck−i +nnnk (2.57)

where ccck = [c(0)k , . . . ,c(K−1)
k ]T , nnnk is colored Gaussian noise with autocorrelation

E{nnnk+innnk}= N0GGGk+i,k (2.58)

and GGGk, j is a K×K matrix with entries

(
GGGk, j

)
`,u = e− j2π(F̀ −Fu) jT

∫
∞

−∞

pu(t)p∗`(t− (k− j)T )e− j2π(F̀ −Fu)tdt . (2.59)

Clearly the channel (2.57) is not stationary, since the matrix GGGk, j are time variant.
However if the receiver is modified as in Figure 2.13 we obtain the equivalent sta-
tionary channel

zzzk = ∑
i

G̃GGixxxk−i + ñnnk (2.60)
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Figure 2.12: Block diagram of the FDM transceiver scheme over the AWGN channel,
when K = 3.

where (
G̃GGi
)
`,u = e− j2π(F̀ −Fu)iT

∫
∞

−∞

pu(t)p∗`(t− iT )e− j2π(F̀ −Fu)tdt , (2.61)

xxxk = ccck ◦




e j2πF0kT

...
e j2πFK−1kT


 , (2.62)

and ◦ is the Hadamard product. The equivalent stationary channel does not involve
any information loss. In fact, it is easy to prove that

I(ccc;rrr) = I(ccc;zzz) . (2.63)

Finally, it can be noticed that (2.60) is the Ungerboeck observation model of a
MIMO-ISI channel. Thus the CS detector can be designed as described in §2.5.
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Chapter 3

Time packing

IN satellite links for broadcasting and broadband applications, orthogonal signal-
ing, that ensures absence of intersymbol interference (ISI), is often adopted. As

an example, in the 2nd-generation satellite digital video broadcasting (DVB-S2) stan-
dard [43], a conventional square-root raised-cosine (RRC) pulse shaping filter is spec-
ified at the transmitter. In an additive white Gaussian noise channel and in the absence
of other impairments, the use of a matched filter (MF) at the receiver and proper sam-
pling ensure that optimal detection can be performed on a symbol-by-symbol basis.
On the other hand, it is known that, when finite-order constellations are considered
[e.g., phase-shift keying (PSK)], the efficiency of the communication system can be
improved by giving up the orthogonality condition, thus accepting interference. For
example, faster-than-Nyquist signaling (FTN, see [3, 4]) is a well known technique
consisting of reducing the spacing between two adjacent pulses in the time-domain
well below the Nyquist rate, thus introducing ISI. If the receiver is able to cope with
the interference, the efficiency of the communication system will be increased. In
the original papers on FTN signaling [3, 4], this optimal time spacing is obtained
as the smallest value giving no reduction of the minimum Euclidean distance with
respect to the Nyquist case. This ensures that, asymptotically, the ISI-free perfor-
mance is reached, at least when the optimal detector is adopted. The i.u.d. capacity
or information rate, i.e., the average mutual information when the channel inputs are
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independent and uniformly distributed (i.u.d.) random variables, is then computed,
still assuming the adoption of the optimal detector [44, 45]. However, the complex-
ity of this optimal detector easily becomes unmanageable, and no hints are provided
on how to perform the optimization in the more practical scenario where a reduced-
complexity receiver is employed.

In [5], a different approach for improving the spectral efficiency, that relies on
both time packing of adjacent symbols and reducing the spacing of the adjacent chan-
nels when applicable (multi-carrier transmission), has been considered. It is assumed
that, at the receiver side, a symbol-by-symbol detector working on the samples at
the MF output is adopted, and the corresponding information rate is computed, by
also optimizing time and frequency spacings to maximize the achievable spectral ef-
ficiency (ASE). Hence, rather than the minimum distance, the ASE is the performance
measure and, in addition, a low-complexity detection algorithm, characterized by a
given allowable complexity irrespectively of the interference set size, is considered at
the receiver rather than the optimal detector employed in [3, 4, 44, 45]. Although the
MF output represents a set of sufficient statistics for optimal detection, a suboptimal
symbol-by-symbol receiver is considered in [5]. Hence, the ASE can be improved by
employing more sophisticated detection algorithms. In this chapter, we will consider
two cases: (i) a proper filtering of the MF output plus a symbol-by-symbol detector
and (ii) the maximum a posteriori (MAP) symbol detector that, in order to limit the
receiver complexity, takes into account only a limited amount of interference.

This technique represents a good alternative, for low-order constellations, to the
shaping of the transmitted symbol distribution [46], providing spectral efficiencies
that cannot be reached when orthogonal signaling is employed. Improving the ASE
without increasing the constellation order can be considerably convenient since the
larger the constellation size, the higher the decoding complexity and the lower the ro-
bustness to channel impairments such as time-varying phase noise and non-linearities.
In the case of frequency packing, a further improvement could be achieved by adopt-
ing, at the receiver side, a multi-user detector. The remainder of this chapter is orga-
nized as follows. The system model is described in §3.1. In §3.2, we compute and
optimize the spectral efficiency considering detectors with different complexity. Nu-
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merical results are reported in §3.4, where we also show the performance of some
efficient modulation and coding formats (MODCODs) designed accordingly.

3.1 System model

We consider an additive white Gaussian noise (AWGN) channel and a frequency-
division multiplexed system where perfectly synchronized (downlink assumption)
adjacent channels employ the same linear modulation format, shaping pulse p(t),
and symbol interval (or time spacing) T . The shaping pulse is assumed to have unit
energy. The received signal can be expressed as

r(t) =
√

Es ∑
k,`

c(`)k p(t− kT )e j2π`Ft +w(t) (3.1)

where Es is the symbol energy, c(`)k the symbol transmitted over the u-th channel
during the `-th symbol interval, F the frequency spacing between adjacent channels,
and w(t) a circularly symmetric zero-mean white Gaussian noise process with power
spectral density N0. The transmitted symbols {c(`)k } are independent and uniformly
distributed and belong to a given zero-mean M-ary complex constellation χ properly
normalized such that E{|c(`)k |2} = 1. Note that the summations in (3.1) extend from
−∞ to +∞, namely an infinite number of time epochs and carriers are employed. For
the spectral efficiency computation, we will consider the central user only using F as
a measure of the signal bandwidth.

The base pulse p(t) has often RRC-shaped spectrum (RRC pulse in the following)
with roll-off factor α . In addition to it, we will consider other transmit pulses, e.g., a
pulse whose spectrum is raised-cosine (RC) shaped (RC pulse in the following) and
a Gaussian pulse. In general, we will consider the case of time-frequency packing
and we will optimize the frequency separation F between two adjacent users and the
symbol interval T in order to maximize the ASE. In the case of bandlimited pulses
(i.e., RRC and RC pulses), we will also consider time packing only. In this case,
adjacent users are not allowed to overlap in frequency (i.e., F = (1+α)/T for RRC
and RC pulses) and we may assume that only the user with ` = 0 is transmitted. In
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satellite communications, this can correspond to the use of a single carrier occupying
the entire transponder bandwidth. This is of particular interest since the on-board
power amplifier can operate closer to saturation and hence improve the efficiency.

3.2 Spectral efficiency optimization

In this section, we shown how to compute the ASE for a given receiver and how to
optimize the values of T and F .

Symbol-by-Symbol detection

Let us consider the central user (i.e., that for `= 0). We first consider the case shown
in Figure 3.1(a) of a receiver composed by a filter matched to the shaping pulse p(t),
followed by a proper discrete-time filter, that works on γ ≥ 1 samples per symbol
interval, and a symbol-by-symbol (SBS) detector. Although the discrete-time filter
could be, in general, fractionally-spaced (FS, i.e., γ > 1), the detector will operate on
one sample per symbol interval. These samples will be denoted by {r(0)k } and can be
expressed as

r(0)k =
√

Esc
(0)
k h(0,0,k)+

√
Es ∑

(n,`)6=(0,0)
c(`)k−nh(n, `,k)+ zk (3.2)

in which h(n, `,k) is the residual interference at time kT due to the `-th user and the
(k−n)-th transmitted symbol, and {zk} is the additive noise term, in general colored
unless a whitening filter (WF) is employed after the MF. The discrete-time filter is
assumed properly normalized such that the noise variance is N0. The dependence of
coefficients h(n, `,k) on k is through a complex coefficient of unit amplitude which
disappears for ` = 0 (hence h(n,0,k) is independent of k) and is due to the fact that
F is not an integer multiple of 1/T .

Eq. (3.2) shows the two different impairments experienced by the receiver, namely
the background noise and the interference. Instead of simply neglecting the interfer-
ence due to adjacent symbols and users, we pursue here a more general approach,
which consists of modeling the interference as a zero-mean Gaussian process with
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Figure 3.1: Some considered receivers: (a) symbol-by-symbol detector and (b) single-
user detector based on trellis processing.

power spectral density equal to NI , of course independent of the additive thermal
noise—we point out that this approximation is exploited only by the receiver, while
in the actual channel the interference is clearly generated as in (3.2). Note that the
interference is really Gaussian distributed only if the transmitted symbols c(`)k are
Gaussian distributed as well. However, especially when the interference set is small,
e.g., when T and F are large, the actual interference distribution may substantially
differ from a Gaussian distribution.

We define auxiliary channel the channel model assumed by the receiver. With the
above mentioned Gaussian approximation, the auxiliary channel is

r(0)k =
√

Esc
(0)
k h(0,0,k)+vk (3.3)

where {vk} are independent and identically distributed zero-mean circularly symmet-
ric Gaussian random variables, with variance N0 +NI . It turns out that

NI = Es ∑
(n,`)6=(0,0)

|h(n, `,k)|2 (3.4)

which results to be independent of k, as can be easily shown. We are interested in eval-
uating the ultimate performance limits achievable by a symbol-by-symbol receiver
designed for the auxiliary channel (3.3) when the actual channel is that in (3.2), in
terms of information rate (or spectral efficiency). This issue is an instance of mis-
matched detection [19] (see also [21]). The achievable information rate (AIR), mea-
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sured in bit per channel use, for this mismatched receiver is

IR = h(r(0)k )−h(r(0)k |c
(0)
k ) (3.5)

where

h(r(0)k ) = −E

{
log2

(
∑
c∈χ

q(r(0)k |c)
1
M

)}
(3.6)

h(r(0)k |c
(0)
k ) = −E

{
log2 q(r(0)k |c

(0)
k )
}

(3.7)

where q(r(0)k |c
(0)
k ) is a Gaussian probability density function (PDF) of mean c(0)k and

variance (N0 +NI) (in accordance with the auxiliary channel model), while the outer
statistical average, with respect to c(0)k and r(0)k , is carried out according to the real
channel model (3.2) [21]. Eq. (3.5) can be evaluated efficiently by means of a Monte
Carlo average [21]. From a system viewpoint, the spectral efficiency, that is the
amount of information transmitted per second and per Hertz, is a more significant
quality figure than the information rate. Under the assumption of infinite transmis-
sion, the ASE is defined as

η =
IR

FT
[b/s/Hz] . (3.8)

For a given constellation and shaping pulse, it is possible to find the spacings
T and F that provide the largest ASE. In general, we could expect that the optimal
spacings depend on the signal-to-noise ratio (SNR). In fact, it is possible to show that,
as the SNR increases, not only does the ASE increase, but also the optimal values of
the spacings change. The properties of the function η(T,F,ES/N0) cannot be easily
studied in closed form, but it is clear, by physical arguments, that it is bounded,
continuous in T and F , and tends to zero when T,F → 0 or T,F → ∞. Hence, the
function η(T,F) has a maximum value—according to our findings, in most cases
there are no local maxima other than the global maximum. Formally, for a given
modulation format, shaping pulse, and value of ES/N0, the optimization problem
consists of finding the maximum of η(T,F,ES/N0) varying T and F . This problem
can be solved by evaluating η(T,F,ES/N0) on a grid of values of T and F (coarse
search), followed by an interpolation of the obtained values (fine search).
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A measure of the SNR more significant than Es/N0 is given by Eb/N0, being Eb

the mean energy per information bit, for which Es = I(Es)Eb holds. The optimization
problem becomes

ηM(Eb/N0) = max
T,F>0

η(T,F,Eb/N0) . (3.9)

In order to solve it for a given value of Eb/N0, we employed the following technique.
The AIR is first evaluated for some values of the couple (T,F), and Es/N0. The
two sets, including their cardinalities, must be designed so as to ensure an accurate
sampling of the AIR, when the latter is interpreted as a function of T , F , and Es/N0.
For each couple (Ti,Fj), cubic spline interpolation can be used to obtain a continuous
function of Es/N0 (fine search), denoted as I(Ti,Fj,Es/N0). Then, given a value of
Eb/N0 the following fixed-point problems are solved in Es/N0 for different couples
(Ti,Fj),

Es

N0
= I
(

Ti,Fj,
Es

N0

)
Eb

N0
(3.10)

and the AIRs corresponding to the solutions are denoted by I(Ti,Fj,Eb/N0). Further
improvements could be achieved by adding NI as variable in eq. (3.9). However, we
have found by numerical results that choosing NI as in (3.4) is almost optimal.

The spectral efficiency depends on the employed discrete-time filter. Since the
optimization of this filter with the aim of maximizing the spectral efficiency is a hard
task, we restricted our analysis to the cases of a WF, that will be also considered
in §3.2, and of a minimum mean square error (MMSE) feedforward equalizer, possi-
bly fractionally spaced (FS) with at most 22 taps.

Single-User Trellis Processing

Improved, still achievable, lower bounds can be obtained by relaxing the constraint
on the adopted detection algorithm. In other words, we can consider a more complex
receiver able to cope with (a portion of) the interference introduced by the adoption
of the time-frequency packing. The receiver considered in this section will not cope
with the interference due to the adjacent users—a single-user receiver is still adopted.
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For a general channel with finite intersymbol interference, an optimal MAP sym-
bol detector can be designed working on the samples at the WF output as shown in
Figure 3.1(b). These samples, denoted to as Forney observation model (see §1.2),
can still be expressed as in (3.2) with a proper expression of coefficients h(n, `,k).
We assume to adopt the optimal receiver for the following auxiliary channel:

r(0)k =
√

Es ∑
0≤n≤L

fnc(0)k−n +vk (3.11)

where { fn}n≥0 are such that fn = h(n,0,k) and, as mentioned, are independent of
k, whereas the noise samples {vn}, that take into account the white noise and the
residual interference, are assumed independent and identically distributed zero-mean
circularly symmetric Gaussian random variables with variance (N0 +NI), with

NI = ∑
n>L

Es| fn|2 +∑
n

∑
6̀=0

Es|h(n, `,k)|2 . (3.12)

which is still independent of k. The corresponding MAP symbol detector takes the
form of the classical algorithm by Bahl, Cocke, Jelinek and Raviv (BCJR) [12] work-
ing on a trellis whose state takes into account L interfering symbols only, according to
a given maximal allowable receiver complexity. The number of trellis states is equal
to S = ML.

Let us define ccc = [c(0)0 ,c(0)1 , ...,c(0)N−1] and rrr = [r(0)0 ,r(0)1 , ...,r(0)N−1], N being a proper
integer. The simulation-based method described in [21] allows to evaluate the AIR
for the mismatched receiver, i.e.,

IR = lim
N→+∞

1
N

I(ccc;rrr)

= lim
N→+∞

1
N

E
{

log2
q(rrr|ccc)
q(rrr)

} [
bit

ch.use

]
. (3.13)

In (3.13), q(rrr|ccc) and q(rrr) are PDF according to the auxiliary channel model, while
the outer statistical average is with respect to the input and output sequences eval-
uated according to the actual channel model [21]. Eq. (3.13) can be evaluated re-
cursively through the forward recursion of the BCJR detection algorithm matched
to the auxiliary channel model [21]. Once the AIR has been computed, the spectral
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efficiency can be derived and the optimal time and frequency spacings optimized ac-
cordingly, as described in the previous section. For channels with finite ISI, optimal
MAP symbol detection can be equivalently implemented by working directly on the
MF output [16], i.e., on the so-called Ungerboeck observation model (see §1.2). The
equivalence does not hold when reduced-complexity detection is considered and in-
terference from adjacent channels arises. Since it is difficult to predict which is the
most convenient observation model, it is of interest to evaluate the ASE when both
models are employed and this can be done as described for the Forney model (see
also [47] for details).

Multi-User Detection

Although the assumption of a single-user auxiliary channel gives very useful re-
sults, tighter lower bounds can be obtained by using a more general auxiliary channel
model. In fact, we can consider a receiver for the central user (that with ` = 0) that,
in addition to the interference taken into account by the receivers in §3.2, also takes
into account the J adjacent signals on each side as well (multi-user receiver)—we
again point out that this approximation is exploited only by the receiver, while in
the actual channel the interference is generated as in (3.1). The exact MAP receiver
for the multi-user auxiliary channel can be easily derived and employed to find the
ASE in the new scenario. The benefit of employing the multi-user auxiliary channel
model when evaluating the ASE is two-fold: first, it allows to evaluate the perfor-
mance degradation due to the use of single-user receivers, despite the presence of
a strong adjacent channel interference, with respect to a more involved multi-user
receiver, which is more matched to the real channel. Second, it gives a practical per-
formance upper bound when low-complexity approximate multi-user receivers, for
example based on linear equalization or interference cancellation, are employed (as
examples, those in [48] and references therein). Obviously, in this case some (limited)
degradation must be expected.
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3.3 Channel shortening detection for time packing

In the previous section, we adopted mismatched detectors which consider just a lim-
ited amount of interference. The interference considered at the detector is a truncation
of the actual interference (both in time and frequency). Clearly, the truncation does
not maximize the ASE, which is instead what time packing aims to. A better approach
than truncation, is the adoption of channel shortening (CS) detectors, as described in
§2.6. Namely, for a given memory L considered at detector, we set the ISI at detector
and the front-end filter as the ones which maximize the achievable spectral efficiency.
Moreover, as shown in §2.6, the shaping pulse can be also optimized to improve the
performance.
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Figure 3.2: ASE for QPSK with Gray mapping and a RRC pulse having α = 0.2.

3.4 Numerical results

In this section, we report the optimized spectral efficiency ηM as a function of Eb/N0

for different modulation formats and shaping pulses. The considered modulation for-
mats are the quaternary and octal PSK (QPSK and 8PSK).

Fig. 3.2 shows the optimized ASE in case of time packing only for the QPSK
modulation with a RRC pulse with roll-off α = 0.2. Both symbol-by-symbol detec-
tion and trellis processing (this latter taking into account L = 4 interfering symbols)
are considered assuming Gray mapping. In this case, at the receiver side we may use
two identical and independent detectors, one working on the in-phase and the other
one on the quadrature component. This is beneficial in case of adoption of a MAP
symbol detector. In fact, when L interfering symbols are taken into account, we have
two detectors working on a trellis with 2L states instead of a single detector working
on a trellis with 4L states. Hence, for a given complexity, a larger number of interfer-
ers can be taken into account. The curve related to the absence of time packing (i.e., in
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Figure 3.3: ASE for 8PSK with a RRC pulse having α = 0.2.

case of orthogonal signaling) and the Shannon Limit for AWGN [18], are also shown
for comparison. It can be observed that the time-packing technique allows to improve
the spectral efficiency for each Eb/N0 value with respect to the case of orthogonal sig-
naling. Moreover it can noticed that, in case of use of a symbol-by-symbol detector,
the FS-MMSE equalizer seems the best option whereas the Ungerboeck observation
model is more suited in case of trellis processing. Similar considerations hold for
the 8PSK modulation with a RRC pulse of α = 0.2. The relevant results are shown
in Fig. 3.3. Still considering QPSK with Gray mapping and trellis processing with
S = 16, we evaluated the effect of different shaping pulses. In particular, RRC and
RC pulses with different roll-off factors have been considered along with prolate
spheroidal wave functions [49] and the Gaussian pulse. In these two latter cases, fre-
quency packing is also employed. Fig. 3.4 shows the performance of some of the
considered pulses. In particular, RRC pulses with α equal to 0.2 and 1.0 outperform
all other pulses at low and high Eb/N0 values, respectively. In particular, an impres-
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Figure 3.4: ASE for QPSK with Gray mapping by using different pulses. At the
receiver, a MF front end and trellis processing with S = 16 is considered.

sive asymptotic spectral efficiency of 4.3 bit/s/Hz is obtained with QPSK and α = 1.1

What information theory promises can be approached by using proper coding
schemes. We considered MODCODs using the low-density parity-check (LDPC)
codes with length 64,800 bits of the DVB-S2 standard [43], properly combined with
QPSK and 8PSK modulations with time packing. RRC pulses with α = 0.2 or α = 1
are considered. The corresponding packet error rate (PER) have been computed by
means of Monte Carlo simulations and the results are reported in the spectral effi-
ciency plane in Fig. 3.5 using, as reference, an MPEG PER of 10−4. In the same
figure, the performance of the MODCODs based on the same LDPC codes with or-
thogonal signaling and employing QPSK, 8PSK, and the amplitude phase-shift key-
ing (APSK) modulation with 16 and 32 symbols (16- and 32APSK) [43], are also

1This is due to the fact that the shaping pulse is smoother and so, for a given value of T , the intro-
duced interference is lower.
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Figure 3.5: Designed MODCODs for QPSK and 8PSK with RRC pulses.

shown for comparison. We can observe that we can reach, with QPSK, values of
spectral efficiency that, in case of orthogonal signaling, cannot be reached even with
16APSK.

The performance can be improved by adopting a CS detector. Figure 3.6 shows
the optimized ASE for RRC and QPSK modulation with Gray mapping and α = 0.2
by adopting the time packing technique and single-user trellis processing. Detection
is performed by adopting two identical and independent detectors, one working on
the in-phase and the other one on the quadrature component. The figure shows the
ASE obtained by single-user trellis processing in either case of CS or truncation of
the ISI. The considered numbers of states are S = 8 and S = 64. In the case of ISI
truncation, we optimized also the noise variance at detector, in order to achieve the
best performance. For comparison purpose, we also showed the ASE by quadrature
amplitude (QAM) with cardinality 64 and 256 with orthogonal signaling. It can be
noticed that CS outperforms the truncation and exhibits an excellent ASE, which for
some SNR values is even higher than the one achieved by QAM modulations.
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Chapter 4

Detection for satellite channels

SATELLITE channels are affected by nonlinear distortions and by intersymbol
interference (ISI). The former originate from the presence of a high power

amplifier (HPA), whereas the latter is introduced by the input and output multi-
plexing (IMUX and OMUX) filters placed before and after the HPA. During the
last decades, the nonlinear effects and the channel memory have been coped with
nonlinear compensation and data predistortion at the transmitter side (see [50] and
references therein) or with advanced detection techniques (see [51] and references
therein).

When the channel memory is too large to be taken into account at the detec-
tor, these advanced detection techniques quickly become unmanageable and low-
complexity solutions are required. The conceptually simplest solution is to let the
detector work with a truncated version of the channel response. However, as ex-
pected, such a strategy often yields poor performance unless the truncated part of
the channel response has negligible power. Channel shortening, already described
in Chapter 2, can be an alternative. This chapter generalizes the analysis in [2] to
maximum-a-posteriori (MAP) detection for nonlinear satellite channels. In §4.1, we
briefly review the system model for the satellite channel and the underlying detection
algorithm assumed in this thesis. In §4.2, we extend the channel shortening technique
and in §4.3 we assess its performance by numerical simulations.
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ho(t)

w(t)

s(t) r(t)
hi(t)

Satellite transponder

HPA

∑
k ckp(t− kT )

Figure 4.1: Block diagram of the satellite channel.

4.1 System model and considered detector

We consider a linear modulation with shaping pulse p(t), symbol time T , and uni-
formly and identically distributed input symbols {ck} belonging to an M-ary constel-
lation, properly normalized such that E{|ck|2} = 1. The nonlinear satellite channel,
considering a single-channel-per-transponder scenario, is depicted in Figure 4.1. It
includes an IMUX filter hi(t) which removes the adjacent channels, a HPA, and an
OMUX filter ho(t) aimed at reducing the spectral broadening caused by the nonlin-
ear amplifier. Although the HPA is a nonlinear memoryless device, the overall system
has memory due to the presence of IMUX and OMUX filters. The received signal is
further corrupted by additive white Gaussian noise whose low-pass equivalent w(t)
has power spectral density N0. The complex baseband representation of the received
signal has thus the following expression

r(t) = s(t)+w(t) , (4.1)

where s(t) is the signal at the output of the OMUX filter.
In [51], it is shown that a suitable approximate model for the signal s(t) is based

on the following vth-order (with v being any odd integer) simplified Volterra-series
expansion

s(t)'∑
k

NV−1

∑
i=0

ck

[
|ck|2ih(2i+1)(t− kT )

]
, (4.2)

where NV = (v+1)/2, and h(2i+1)(t) are complex waveforms given by linear combi-
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nations of the the original NV Volterra kernels. This simplified Volterra-series expan-
sion is obtained from the classical one by neglecting some suitable terms. For further
details, the reader can refer to [51]. We point out that the approximation (4.2) is used
only for the receiver design and not for generating the received signal r(t).

It is easy to show that MAP symbol detection based on this simplified model can
be performed through a bank of filters followed by a conventional BCJR detector [12]
with proper branch metrics and working on a trellis whose number of states exponen-
tially depends on the channel memory. When the actual channel memory is large, we
have to resort to complexity reduction techniques. A possible approach is the use of
reduced-state techniques (e.g., see [15]) or the use of the graph-based technique de-
scribed in [51] whose complexity linearly depends on the channel memory. However,
to obtain a further complexity reduction, all these techniques can be combined with
the CS technique described in [2] properly extended to the channel at hand.

We will separately consider the cases of phase-shift keying (PSK) modulations
and amplitude/phase shift keying (APSK) modulations typically employed in satellite
transmissions.

PSK modulations

It can be seen that the condition |ck|2 = 1 implies that the signal (4.2) simplifies to a
linear modulation

s(t)'∑
k

ckh̄(t− kT ) (4.3)

where h̄(t) = ∑
NV−1
i=0 h(2i+1)(t) [51]. In this case, detection can be perfomed using the

samples {rk} at the output of a filter matched to h̄(t) as described in §1.3, and the
application of CS can be carried out as described in §2.6 for linear channels.

APSK modulations

The samples at the output of a bank of filters matched to the pulses h(2i+1)(t), for
i = 0, ...,NV −1 form a set of sufficient statistics for detection. Namely, considering
an v-th order expansion, we have NV matched filters whose output, sampled at discrete



64 Chapter 4. Detection for satellite channels

time k can be collected in a NV ×1 vector that can be expressed as

rrrk = ∑
i

GGGiccck−i +nnnk , (4.4)

where ccck =
[
ck, ck|ck|2, ...,ck|ck|v−1

]T ,

GGGi =




g(1,1)i g(1,3)i · · · g(1,v)i

g(1,3)∗−i g(3,3)i · · · g(3,v)i
...

. . .
...

g(1,v)∗−i g(3,v)∗−i · · · g(v,v)i




, (4.5)

having defined g(m,l)
i =

∫
∞

−∞
h(n)(t)h(m)∗(t− lT )dt, and nnnk is a Gaussian vector with

E{nnnk+innn
†
k}= N0GGGi . (4.6)

Vectors {rrrk} can be collected into a single vector

r = Gc+n , (4.7)

where G is a block Toeplitz matrix constructed from the matrices {GGGi}, whereas c
and n are block vectors from {ccck} and {nk}. The channel is fully described through
its conditional probability density function of the output given the input symbols,
which reads

p(r|c) ∝ exp
(

2ℜ(c†r)− c†Gc
N0

)
. (4.8)

According to the CS approach, a low-complexity detector works on a mismatched
channel law [2]

q(r|c) ∝ exp
(
2ℜ(c†(Hr)†r)− c†Grc

)
, (4.9)

where Hr,Gr are block Toeplitz matrices constructed from the sequences {HHHr
i} and

{GGGr
i}, respectively, being {HHHr

i} the channel shortener operating on r, and {GGGr
i} the

target response, to be properly designed. Without loss of generality we absorb the
noise variance N0 into the two matrices in (4.9). In order to reduce the detection
complexity, we constrain {GGGr

i} to

GGGr
i = 0 |i|> L (4.10)
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Figure 4.2: Block diagram of the suboptimal receiver for the nonlinear satellite chan-
nel.

which implies that the memory after CS is L instead of the true memory of the chan-
nel. The resulting receiver is suboptimal since it assumes (4.9) rather than the actual
law (4.8), and is depicted in Figure 4.2.

4.2 Channel shortening

The achievable information rate (AIR) IR of a mismatched detector that works with
(4.9) is given by

IR = h(r)−h(r|c) (4.11)

= lim
N→∞

1
N

E
{

log2
q(r|c)
q(r)

}
[bit/ch.use] (4.12)

where N is the number of transmitted symbols and the average is carried out w.r.t. r
and c, according to the actual channel (see [21]).

The CS technique finds the optimal Hr,Gr solving the following optimization
problem

arg max
Hr,Gr

IR (4.13)

under the constraints specified in (4.10).
Problem (4.13) for a discrete alphabet is a complicated task. However it can be

solved in closed form under the assumption that c is composed of Gaussian random
variables. Although this assumption is not even approximately true, since the actual
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symbols are functions of each other, we will show in the simulation results that a very
good performance is still achieved.

Defining the correlation matrix VVV = E{ccckccc†
k}, the optimal matrix-valued front-

end filter {HHHr
i} and target response {GGGr

i} are obtained in closed form through the
following steps:

• Compute the DTFT matrix GGG(ω) of GGGi and use the spectral decomposition to
find LLL(ω), i.e., decompose GGG(ω) = LLL†(ω)LLL(ω). Compute

BBB(ω) = N0VVV LLL†(ω)

·
[
LLL(ω)VVV LLL†(ω)+N0III

]−1
(LLL†(ω))−1 (4.14)

where III is the identity matrix. The anti trasform yields the matrix sequence
{BBBi} having size NV ×NV .

• Find
C = BBB0−BB−1B† (4.15)

where we defined the block matrix B = [BBB1, ...,BBBL] with size1 NV ×NV L and
the block Toeplitz B with size NV L×NV L constructed on {BBBi}.

• Define the sequence {UUUk} where UUU0 is the Cholesky decomposition of C,
namely C=UUU†

0UUU0, and UUU i for 1≤ i≤L is the (1, i) matrix entry of U =−UUU0BB−1.

• Set

GGGr
i =

min(L,L+i)

∑
k=max(0,i)

UUU†
k−iUUUk−VVV δi (4.16)

where δi is the Kronecker delta.

• The optimal front-end filter is given by

(HHHr(ω))† =
(
GGGr(ω)+VVV−1)

·VVV LLL†(ω)
[
LLL(ω)VVV LLL†(ω)+N0III

]−1
(LLL†(ω))−1 . (4.17)

1 Here, the size for block matrix means the number of scalar entries, as well as for standard matrix.
This notation is different from the one adopted in [25].
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The algorithm is carried out by observing that the channel equation (4.7), under the
Gaussian assumption, is the Ungerboeck observation model of the MIMO-ISI chan-
nel (2.32). Thus the proof is the one showed in Appendix B for MIMO-ISI channels.

We point out that by analogy to [2] for linear channels, when L = 0 the optimal
channel shortener is a special case of the MMSE filter of [52] applied to (4.2).

4.3 Numerical results

We consider 8PSK and 16APSK modulations. The shaping pulse p(t) has a root-
raised-cosine (RRC) spectrum with roll-off 0.05. The IMUX and OMUX filters have
frequency characteristics specified in [43] with a 3dB bandwidth of 0.94/T and
0.85/T respectively. The nonlinear transfer characteristic is the Saleh model [53]
with parameters αa = 2.1322, αφ = 1.7054, βa = 1.0746, and βφ = 1.5072. A 5th-
order Volterra expansion is considered at the receiver. We report all results as func-
tions of the ratio between the normalized power at the saturation Psat and the noise
power spectral density N0.

The AIR in eq. (4.12) can be computed using the Monte Carlo method described
in [21]. Figure 4.3 shows the AIR values when CS is employed in combination with
a 8PSK modulation, and an input back-off (IBO) equal to zero. Results are shown for
different values of the detector memory L and an optimization of the noise variance
at the receiver has been carried out to further improve the approximate model. For
comparison, we show also the AIR values when a simple truncation of the ISI at
the detector is adopted. The detector with L = 4 can be considered as effective as
a full complexity one, since most of the ISI is taken into account2. It can be seen
that CS has higher AIR than a simple truncation of the ISI response, even though it
is designed for a vector c with Gaussian components. CS with memory L = 2 gives
only a minimal performance degradation for all Psat/N0 values. Similar conclusions
hold for the 16APSK, depicted in Figure 4.4. We found similar CS gains also with
other modulations (QPSK and 32APSK) and other transponder characteristics (e.g.,

2The pulse with RRC spectrum gives an infinite memory of the channel. However, based on inves-
tigations beyond those presented in this thesis, we may assume that L = 4 is almost optimal.
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Figure 4.3: AIR for 8PSK modulation on the nonlinear satellite channel with IBO=0
dB.

the HPA in [43]).
The AIRs can be approached in practice with proper modulation and coding

(MODCODs) formats. In Figure 4.5 we report the bit error rate (BER) of some MOD-
CODs based on the DVB-S2 low-density parity-check code (LDPC) with rate 1/2. We
performed iterative detection and decoding with a maximum of 50 global iterations.
We note that the MODCODs performance reflects the AIRs well.
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4.4 Conclusions

We generalized the CS technique to the case of nonlinear satellite channels. We
showed that when the memory L is lower than the channel memory, an optimization
of the mismatched channel law at the detector yields significantly better performance
than a truncation of the channel impulse response.



Chapter 5

Spectrally efficient
communications over the satellite
channel

IN this chapter, we apply the time-frequency packing (TF packing) technique to
nonlinear satellite channels. In particular, we design highly efficient schemes by

choosing the time and frequency spacings which give the maximum value of SE.
We assume a realistic satellite channel where nonlinear distortions originate from the
presence of a high-power amplifier (HPA). The considered system is also affected by
intersymbol interference (ISI), due to the presence of input and output multiplexing
(IMUX and OMUX) filters placed before and after the HPA and intentionally intro-
duced by the adoption of the time packing technique as well. We limit our investiga-
tion to systems in single-carrier-per-transponder operation (i.e., each transponder is
devoted to the amplification of the signal coming from only one user1). Although in-
terchannel interference (ICI) is also present due to frequency packing of signals com-
ing from different transponders, a single-user detector is considered at the receiver.
We consider two different approaches to detection for nonlinear channels, namely
the use of a detector taking into account the nonlinear effects and a more traditional

1However, the actual transponders can be hosted on two or more co-located satellites.
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scheme based on predistortion and memoryless detection. In the case of predistortion,
we consider the dynamic data predistortion technique described in [54, 55], whereas
in the case of advanced detection we consider the receiver described in the previ-
ous chapter employing the channel shortening technique (CS) for nonlinear satellite
channels. It should be noted that we apply the TF packing technique to nonlinear
satellite channels for which, usually, even by using RRC pulses there is still ISI at the
receiver.

As mentioned, with respect to Chapter 3, we here consider nonlinear satellite
channels instead of linear ones. Our aim here is to show the benefits that can be
obtained by employing time-frequency packing jointly with a channel shortening re-
ceiver.

The proposed TF packing technique promises to provide increased SEs at least
for low-order modulation formats. In fact, when dense constellations with shaping are
employed, we fall in a scenario similar to that of the Gaussian channel with Gaussian
inputs for which orthogonal signaling with no excess bandwidth (rectangular shap-
ing pulses) is optimal (although this is mainly true for the linear channel and not in
the presence of a nonlinear HPA, since shaping increases the peak-to-average power
ratio). Improving the achievable SE without increasing the constellation order can be
considerably convenient since it is well known that low-order constellations are more
robust to channel impairments such as time-varying phase noise and non-linearities.
It is expected that the use of low-order modulations in conjunction with TF packing
provides similar advantages in terms of robustness against channel impairments.

The proposed approach to improve the SE is very general and the case of satellite
systems for broadband and broadcasting applications must be thus considered just as
an example to illustrate the benefits that can be obtained through the application of
the TF packing paradigm coupled with advanced receiver processing.

The remainder of this chapter is organized as follows. In §5.1, we introduce the
system model. The framework that we use to evaluate the SE of satellite systems
is detailed in §5.2, whereas different approaches to the detection for the considered
channel are described in §5.3. Numerical results are reported in §5.4, where we show
how the proposed technique can improve the SE of DVB-S2 systems. Finally, con-
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clusions are drawn in §5.5.

5.1 System Model

We consider the forward link of a transparent satellite system, where synchronous
users employ the same linear modulation format, shaping pulse p(t), and symbol
interval (or time spacing) T , and access the channel according to a frequency division
multiplexing scheme. The transmitted signal in the uplink can be expressed as

x(t) = ∑
`

∑
k

c(`)k p(t− kT )e j2π`Fut , (5.1)

where c(`)k is the symbol transmitted by user ` during the k-th symbol interval, and
Fu is the frequency spacing between adjacent channels.2 The transmitted symbols
belong to a given zero-mean M-ary complex constellation. Notice that, in order to
leave out border effects, the summations in (5.1) extend from −∞ to +∞, namely an
infinite number of time epochs and carriers are considered. In DVB-S2 standard the
base pulse p(t) is an RRC-shaped pulse with roll-off factor α (equal to 0.2, 0.3, or
0.35 depending on the service requirements). We denote by W the bandwidth of pulse
p(t). In case of pulses employed in DVB-S2, it is W = (1+α)/T since orthogonal
signaling is considered. When time packing is adopted, W becomes a further degree
of freedom, as described later.

As commonly assumed for broadband and broadcasting systems, on the feeder
uplink (between the gateway and the satellite) the impact of thermal noise can be ne-
glected due to a high transmit signal strength. Hence, in our analysis, we have consid-
ered a noiseless feeder uplink. Although the TF packing can be applied to other and
more general scenarios, we consider here a single-carrier-per-transponder scenario,
where different carriers undergo independent amplification by different transponders
on board of satellite, each of which works with a single carrier occupying its entire
bandwidth. This case is particularly relevant for digital broadcasting services since
it allows a more efficient use of on-board resources (in particular the HPA can work

2In this scenario, we will use the terms, “channels”, “users”, and “carriers” interchangeably.
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Figure 5.1: System model.

closer to saturation).3 The transponder model for user ` is composed of an IMUX
filter which selects the `-th carrier, an HPA, and an OMUX filter which reduces the
out-of-band power due to the spectral regrowth after nonlinear amplification [43].
The HPA is a nonlinear memoryless device defined through its AM/AM and AM/PM
characteristics, describing the amplitude and phase distortions caused on the signal
at its input.

The outputs of different transponders are multiplexed again in the downlink to
form the signal s(t), and we assume that the adjacent users have a frequency sep-
aration of Fd , usually equal to that in the uplink. Fig. 5.1 shows the system model
highlighting the satellite transponder for user with ` = 0. The useful signal at the
user terminal is still the sum of independent contributions, one for each transponder
(although these contributions are no more, rigorously, linearly modulated due to the
nonlinear transformation of the on-board HPA). The received signal is also corrupted
by the downlink AWGN, whose low-pass equivalent w(t) has power spectral density
(PSD) N0. The low-pass equivalent of the received signal has thus expression

r(t) = s(t)+w(t) . (5.2)

We remark that, in the simulation results, this system has been simulated with realistic

3The multiple-carriers-per-transponder scenario is conceptually similar to that considered in this
chapter, the only difference being the fact that more adjacent carriers are amplified by the same HPA.
Thus, the effects of nonlinear ICI (intermodulation distortion) become more relevant and proper multi-
carrier detection or predistortion algorithms could be also considered [56, 57, 58].
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assumptions. In other words, the satellite receives the entire signal (5.1). Each carrier
is then selected by the IMUX filter of its own transponder,4 amplified by its own
HPA, filtered again by the OMUX filter, and then the signals at the output of all
transponders are multiplexed again on air.

We evaluate the ultimate performance limits of this communication system when
single-user detection is employed at the receiver side. The proposed technique con-
sists of allowing interference in time and/or frequency by reducing the values of T ,
Fu, and Fd , (partially) coping with it at the receiver, in order to increase the SE. In
other words, T , Fu, and Fd are chosen as the values that give the maximum value of
the SE. These values depend on the employed detector—the larger the interference
that the receiver can cope with, the larger the SE and the lower the values of time
and frequency spacings. Notice that, since we are considering single-user detection,
the receiver is not able to deal with the interference due to the overlap of different
channels. In this case, the optimization of the frequency spacings is actually an op-
timization of the frequency guard bands generally introduced in satellite systems to
avoid the nonlinear cross-talk, since a single-user receiver can tolerate only a very
small amount of ICI.

The considered nonlinear satellite channel reduces, as a particular case, to the
linear channel, provided that the HPA is driven far from saturation. Hence, all the
considerations in this chapter can be straightforwardly extended to the linear channel
case. A few results can be found on Chapter 3.

5.2 Optimization of the spectral efficiency

We describe the framework used to evaluate the ultimate performance limits of the
considered satellite system and to perform the optimization of the time and frequency
spacings. To simplify the analysis, we will assume Fu = Fd = F . We perform this in-
vestigation by constraining the complexity of the employed receiver. In particular, as
mentioned, we assume that a single-user detector is used. For this reason, without

4Being the IMUX a non ideal filter and due to a possible overlap among different carriers, this
filtering will not be perfect and ICI will occur.
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loss of generality we only consider the detection of symbols ccc(0) = {c(0)k } of user
with ` = 0.5 In addition, we also consider low-complexity receivers taking into ac-
count only a portion of the actual channel memory. Under these constraints, we com-
pute the IR, i.e., the average mutual information when the channel inputs are i.u.d.
random variables belonging to a given constellation. Provided that a proper auxiliary
channel can be defined for which the adopted low-complexity receiver is optimal, the
computed IR represents an achievable lower bound of the IR of the actual channel,
according to mismatched detection [19].

Denoting by rrr(0) a set of sufficient statistics for the detection of ccc(0), the achiev-
able IR, measured in bit per channel use, can be obtained as

IR = lim
N→∞

1
N

E

{
log

q(rrr(0)|ccc(0))
q(rrr(0))

}
, (5.3)

where N is the number of transmitted symbols. The probability density functions
q(rrr(0)|ccc(0)) and q(rrr(0)) are computed by using the optimal maximum-a-posteriori
(MAP) symbol detector for the auxiliary channel, while the expectation in (5.3) is
with respect to the input and output sequences generated according to the actual chan-
nel model [21]. In the next section, we will discuss two different low-complexity de-
tectors for nonlinear satellite channels and we will define the corresponding auxiliary
channels.

We can define the user’s bandwidth as the frequency separation F between two
adjacent carriers. The achievable SE is thus

η =
IR

FT
[b/s/Hz]. (5.4)

The aim of the proposed technique is to find the values of F and T providing, for each
value of the signal-to-noise ratio (SNR), the maximum value of SE achievable by that
particular receiver, optimal for the considered specific auxiliary channel. Namely, we
compute

ηM = max
F,T>0

η(F,T ) . (5.5)

5Assuming a system with an infinite number of users, the results do not depend on a specific user.
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Typically, the dependency on the SNR value is not critical, in the sense that we can
identify, for each shaping pulse and modulation format, two or at most three SNR
regions for which the optimal spacings practically have the same value.

Having removed the constraint of orthogonal signaling, one more degree of free-
dom in the SE optimization is represented by the bandwidth W of the shaping pulse
p(t). Hence, guided by the same idea behind the TF packing technique, we can also
optimize W , further increasing both ICI and ISI due to the adjacent users and to the
IMUX and OMUX filters, respectively. Whereas on the AWGN channel this opti-
mization is implicit in TF packing, in the sense that we can obtain the same ICI by
fixing F and increasing W or by fixing W and decreasing F , this is no more true for
our nonlinear channel since IMUX and OMUX bandwidths are kept fixed. Hence, an
increased value of W also increases the ISI. The benefit of the bandwidth optimiza-
tion is twofold: it can be used as an alternative to frequency packing (e.g., in cases
where the transponder frequency plan cannot be modified and hence frequency pack-
ing is not an option), or it can be used to improve the results of TF packing. In this
case, we thus compute

ηM = max
F,T,W>0

η(F,T,W ) . (5.6)

For fair comparisons in terms of SE, we need a proper definition of the SNR. We
define the SNR as the ratio Psat/N0F between the peak power Psat at the output of
an HPA in response to a continuous wave input, denoted as the amplifier saturation
power, and the noise power in the bandwidth assigned to each carrier, which coin-
cides with the frequency spacing F between two adjacent carriers. This is because in
a satellite forward link, the two main resource constraints are the available frequency
spectrum and the radiated power on-board of the satellite. The adopted SNR defi-
nition is independent of the transmit waveform and its parameters. This provides a
common measure to compare the performance of different solutions in a fair manner.
In the following, we also define the output back-off (OBO) for each waveform (or
modulation scheme) as the power ratio (in dBs) between the unmodulated carrier at
saturation and the modulated carrier after the OMUX.

Without loss of generality, T and F in (5.4)-(5.6) can be normalized to some
reference values TB and FB. We will denote ν = F/FB and τ = T/TB. In the numerical
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results, we will choose TB and FB as the symbol time and the frequency spacing
adopted in the DVB-S2 standard, which is considered as a benchmark scenario.

5.3 Considered detectors and corresponding auxiliary chan-
nel models

The system model described in §5.1 is representative of the considered scenario and
has been employed in the information-theoretic analysis and in the simulations re-
sults. In this section, we describe the employed auxiliary channel models and the
corresponding optimal MAP symbol detectors. As explained in §5.2, they are used
to compute two lower bounds on the SE for the considered channel [21]. Since these
lower bounds are achievable by those receivers, we will say that the computed lower
bounds are the SE values of the considered channel when those receivers are em-
ployed.

Memoryless model and predistortion at the transmitter

When the HPA AM/AM and AM/PM characteristics are properly estimated and
fed back to the transmitter, the sequence of symbols {c(`)k } can be properly pre-
distorted to form the sequence {c′(`)k } that is transmitted instead, in order to com-
pensate for the effect of the non-linearity and possibly to reduce the ISI. Here we
consider the dynamic data predistortion technique described in [54, 55] and also sug-
gested for the application in DVB-S2 systems [43], where the symbol c′(`)k transmit-
ted by user ` at time k is a function of a sequence of 2Lp + 1 input symbols, i.e.,
c′k = f (ck−Lp , . . . ,ck, . . . ,ck+Lp). The mapping f at the transmitter is implemented
through a look-up table (LUT), which is computed through an iterative procedure
performed off-line and described in [54, 55] for each modulation format, setting of
the system parameters, and SNR value. This procedure searches the best trade-off be-
tween the interference reduction and the increase of the OBO. The complexity at the
transmitter depends on the number of symbols accounted for through the parameter
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Lp. The transmitted signal is thus

x(t) = ∑
`

∑
k

c′(`)k p(t− kT )e j2π`Ft (5.7)

whereas, at the receiver, a simple single-user memoryless channel is assumed corre-
sponding to the auxiliary channel (for user with `= 0)

r(0)k = c(0)k +nk (5.8)

where nk is a zero-mean circularly symmetric white Gaussian process with PSD
(N0 +NI), NI being a design parameter which can be optimized through computer
simulations—an increase of the assumed noise variance can improve the computed
achievable lower bound on the SE [5].

Model with memory and advanced detection

A valid alternative to nonlinear compensation techniques at the transmitter relies
upon the adoption of advanced detectors which can manage the nonlinear distor-
tions and the ISI. In this work, we consider detection based on an approximate signal
model described in [51], which comes from a simplified Volterra series expansion of
the nonlinear channel. To limit the receiver complexity with a limited performance
degradation, we also apply a CS technique [1]. In fact, when the memory of the chan-
nel is too large to be taken into account by a full complexity detector, an excellent
performance can be achieved by properly filtering the received signal before adopting
a reduced-state detector [1].

A very effective CS technique for general linear channels is described in [2],
while its extension to nonlinear satellite systems is reported in Chapter 4. We will
denote the memory taken into account by the advanced detection scheme as Lr.

5.4 Numerical results

Spectral efficiency

Considering the DVB-S2 system as a benchmark scenario, we now show the improve-
ment, in terms of SE, that can be obtained by adopting the TF packing technique joint
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with an advanced processing at the receiver. In the following, we assume as reference
the time and frequency spacings of DVB-S2, i.e., 1/TB = 27.5 Mbaud and FB = 41.5
MHz, and use these values to normalize all time and frequency spacings. Let us con-
sider a typical DVB-S2 scenario where, at the transmitter, the shaping pulse p(t) has
a RRC spectrum, whereas the IMUX and OMUX filters and the nonlinear charac-
teristics of the HPA are those reported in [43, Figs. H.12 and H.13]. The standard
considers the following modulation formats: QPSK, 8PSK, 16APSK, and 32APSK.
To combat ISI and nonlinear distortions, a data predistorter is employed at the trans-
mitter whereas at the receiver a symbol-by-symbol detector is assumed. Here, we
consider the predistorter described in §5.3, with Lp = 2 for QPSK, 8PSK 16APSK,
and Lp = 1 for 32APSK. The SE results have been obtained by computing the IR
in (5.3) by means of the Monte Carlo method described in [21]. For each case, i.e.,
for each modulation format, employed detection algorithm, and choice of the system
parameter, we also performed a coarse optimization of the noise variance to be set at
receiver [5], and of the amplifier operation point through the OBO. Unless otherwise
specified, the roll-off factor of the RRC pulses is α = 0.2, which is the lowest value
considered in the standard.

We first consider the achievable SE of our benchmark scenario, and in Fig. 5.2
we report η as a function of Psat/N0F for the four modulation formats of the stan-
dard (QPSK, 8PSK, 16APSK, and 32APSK). In this case, it is W = (1+α)/TB. We
verified that comparable SE values can be also obtained by using, instead of the pre-
distorter, the advanced detection scheme of §5.3 with Lr = 0 (MMSE detection). We
also consider two alternative ways that, at least in the case of a linear channel, can
be used to improve the SE without resorting to TF packing.6 The simplest approach
relies on the increase of the modulation cardinality, and in Fig. 5.2 we also show the
SE for the 64APSK modulation [59]. It can be seen that the 64APSK modulation,
due to the higher impact of the non-linearities, allows to increase the SE only at high
SNR values and it seems there is no hope to improve the SE in the low and medium
SNR regions.

6On a nonlinear satellite channel, due to the increased peak-to-average power ratio, their application
must be carefully considered since not necessarily produces the expected benefits.
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Figure 5.2: Spectral efficiency of DVB-S2 modulations with roll-off 0.2, data pre-
distortion, and memoryless detection. Comparison with a constellation of increased
cardinality (64APSK).

An alternative way of improving the SE is based on a reduction of the roll-off
factor. In Fig. 5.3, we consider QPSK and 16APSK modulations in a scenario where
predistortion at the transmitter and symbol-by-symbol detection at the receiver are
still employed. We show the SE improvement that can be obtained by reducing the
roll-off to α = 0.05.7 We can observe that the roll-off reduction improves the SE with
respect to DVB-S2 for all SNR values. On the other hand, as shown in Fig. 5.3, better
results can be obtained by allowing TF packing. The values of T and F are chosen as
those providing the largest SE. This search is carried out by evaluating (5.5) on grid of
values of T and F (coarse search), followed by interpolation of the obtained values
(fine search). We point out that these curves have been obtained without reducing
the roll-off factor, which is still α = 0.2, and employing the same predistorter and

7We properly modify the transmitted signal such that it occupies the same bandwidth as that of the
signal with roll-off 0.2. We verified that, in this particular case, no improvement can be obtained by
resorting to a more sophisticated receiver based on linear or nonlinear equalization in addition to or in
substitution of the predistorter.
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Figure 5.3: Improvements, in terms of spectral efficiency, that can be obtained for
QPSK and 16APSK modulations by reducing of the roll-off (α = 0.05) or by adopt-
ing the TF packing technique. In all cases, predistortion at the transmitter and mem-
oryless detection at the receiver are employed.

symbol-by-symbol receiver adopted in the DVB-S2 system [54, 55].

With the aim of further improving the performance, we now consider TF packing
and a system without predistortion at the transmitter but using the advanced detection
algorithm described in §5.3, joint with CS (Lr = 1, to reduce the receiver complexity,
since in this case the BCJR algorithm has only M states). The assumed order of the
Volterra model (4.2) is v = 5 since, in this case, when considering a single-carrier
transmission (no adjacent users) the minimum mean square error between the model
and the actual signal is very low. The results for QPSK and 16APSK modulations are
reported in Fig. 5.4, where we also show the DVB-S2 benchmark curves discussed
above and the curves related to TF packing when predistortion at the transmitter
and memoryless detection at the receiver are used. These results show the impres-
sive improvement achievable by TF packing combined with the considered advanced
receiver, which, with a memory of only one symbol, can cope with much more inter-
ference than the schemes employing the predistorter and a memoryless detector.
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Figure 5.5: Spectral efficiency of QPSK modulation with TF packing and bandwidth
optimization by adopting the advanced receiver with CS (Lr = 1).

In the previous figures we considered, as mentioned, a bandwidth W = 1.2/TB.
We also considered the possibility of optimizing the bandwidth W , as described
in §5.2. In Fig. 5.5, we consider QPSK modulation and the advanced receiver with
Lr = 1. As expected, the combination of TF packing with the bandwidth optimiza-
tion gives the best results. We also show the results in case only time packing or only
the bandwidth optimization are adopted. Interestingly, the SE of time packing with
bandwidth optimization is quite similar to that achievable by TF packing.

Finally, to summarize the results, Figure 5.6 shows the SE for all DVB-S2 mod-
ulations (QPSK, 8PSK, 16APSK and 32APSK) with TF packing, bandwidth opti-
mization, and the advanced receiver. For clarity, we show only one curve which, for
each abscissa, reports only the largest value of the four curves (the “envelope”). In the
same figure, we also plot three other SE curves obtained by using predistortion and
a memoryless receiver. The lowest one is that corresponding to the DVB-S2 scenario
(one curve which is the “envelope” of all four curves in Fig. 5.2), the SE curve for the
64APSK modulation, and the SE curve in case of roll-off α = 0.05 reduction. In this
latter case, we considered all modulations with cardinality up to 64, and hence this
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Figure 5.6: Spectral efficiency of TF packing with bandwidth optimization (TF pack.,
W opt.). Comparison with DVB-S2, 64APSK and roll-off reduction.

curve represents the effect of both roll-off reduction and cardinality increase with
respect to DVB-S2. The figure shows that TF packing and advanced receiver pro-
cessing allows a SE improvement of around 40% w.r.t. DVB-S2 at high SNR. This
gain is partly due to the fact that current DVB-S2 standard does not support higher
order modulations or lower roll-off values. However, there is still considerable SE
improvements at lower SNR values.

Modulation and coding formats

What information theory promises can be approached by using proper coding schemes.
All the considered modulation and coding formats (MODCODs) use the low-density
parity-check (LDPC) codes with length 64800 bits of the DVB-S2 standard. We adopt
the optimized values for T , F , and W and the advanced detector described in §5.3.
Due to the soft-input soft-output nature of the considered detection algorithm, we
can adopt iterative detection and decoding. We distinguish between local iterations,
within the LDPC decoder, and global iterations, between the detector and the decoder.
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Figure 5.7: Modulation and coding formats of the DVB-S2 standard and comparison
with those designed for the proposed TF packing technique with optimized band-
width.

Here, we allow a maximum of 5 global iterations and 20 local iterations.
BER results have been computed by means of Monte Carlo simulations and are

reported in the SE plane in Figure 5.7 using, as reference, a BER of 10−6. In the same
figure, the performance of the DVB-S2 MODCODs is also shown for comparison. We
recall that for them predistortion at the transmitter and symbol-by-symbol detection
at the receiver are adopted. Moreover, for them we have τ = 1 and ν = 1. The details
of the considered MODCODs are reported in Tables 5.1 and 5.2. These results are
in perfect agreement with the theoretical analysis and confirm that the TF packing
technique can provide an impressive performance improvement w.r.t. the DVB-S2
standard.

5.5 Conclusions

We have investigated the TF packing technique, jointly with an advanced process-
ing at the receiver, to improve the spectral efficiency of a nonlinear satellite sys-
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Table 5.1: Details of the MODCODs based on TF packing.
rate τ ν Wopt P/N0F η

[dB] [b/s/Hz]

QPSK
1/3 0.833 1.00 +20% -1.7 0.53
1/2 0.750 0.90 +20% 2.2 0.98
3/5 0.750 0.90 +20% 3.6 1.18

8PSK
1/2 0.731 0.95 +30% 5.3 1.43
3/5 0.731 0.95 +30% 7.4 1.72
2/3 0.731 0.95 +30% 8.5 1.91

16APSK
2/3 0.792 0.90 +20% 11.1 2.48
3/4 0.750 0.90 +20% 14.1 2.94

32APSK

2/3 0.731 0.95 +30% 15.3 3.18
3/4 0.731 0.95 +30% 17.5 3.58
5/6 0.731 0.95 +30% 19.5 3.98
8/9 0.731 0.95 +30% 21.2 4.24

tem employing linear modulations with finite constellations. As a first step, through
an information-theoretic analysis, we computed the spectral efficiency achievable
through this technique showing, with reference to the DVB-S2 specifications, that
without an advanced processing at the receiver, the potential gains are very limited.
On the other hand, a detector which takes into account a memory of only one symbol,
and thus with a very limited complexity increase, it is possible to obtain a gain up to
40% in terms of spectral efficiency with respect to the conventional use of the current
standard. This impressive gain is partly due to optimized carrier spacing of adjacent
transponders. Although this assumption may not be applicable to all satellite com-
munication systems, the results of this chapter indicates possible new system design
directions to further improve the spectral efficiency. All these considerations can be
extended to other channels and scenarios.
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Table 5.2: Details of the DVB-S2 MODCODs. In this case, τ = 1 and ν = 1.
rate P/N0F [dB] η [b/s/Hz]

QPSK
1/2 0.1 0.66
3/5 1.4 0.79
3/4 3.2 0.99

8PSK
3/5 4.6 1.19
3/4 7.3 1.49
8/9 10.0 1.77

16APSK
3/4 10.9 1.99
4/5 12.0 2.12
5/6 12.7 2.21
8/9 14.6 2.35

32APSK

3/4 14.3 2.48
4/5 15.6 2.65
5/6 16.5 2.76
8/9 19.2 2.94
9/10 19.9 2.98



Appendix A

Toeplitz matrix, circulant matrix
and Szegö theorem

Toeplitz matrix and circulant matrix are both useful structure to represent channels
with memory. In this section we denote a N×N Toeplitz matrix by TTT N , where the
subscript denotes explicitly its dimension. A Toeplitz matrix has elements (TTT N)i j =

ti− j, being {ti} a sequence, and reads

TTT N =




t0 t−1 . . . t−(N−1)

t1 t0 . . . t−(N−2)
...

. . .
...

tN−1 tN−2 . . . t0




. (A.1)

The most common application of Toeplitz matrix in this thesis, is to represent a fil-
tering. Namely, if we consider a sequence {xi} filtered by {ti}, the sequence at the
output of the filter reads

yk = ∑
i

tixk−i . (A.2)

The convolution (A.2) can be also written by means of the following matrix notation

yyy = TTT Nxxx (A.3)

where xxx = [x0, . . . ,xN−1]
T .
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A circulant matrix CCCN is a special case of Toeplitz matrix constructed on a se-
quence such that t−k = tN−k. With such sequence, the matrix reads

CCCN =




t0 tN−1 tN−2 . . . t1
t1 t0 tN−1 . . . t2
t2 t1 t0 t3
...

. . .
...

tN−1 tN−2 . . . . . . t0




. (A.4)

In other words, in a circulant matrix all rows are cyclic shift of the first row. One im-
portant property of a circulant matrix is related to its eigenvalue decomposition [36].
Said FFF the N×N Fourier matrix, with elements (FFF)ik = e− j2πik/N , it can be shown
that any circulant matrix can be decomposed as

CCCN = FFF†
ΛΛΛFFF (A.5)

where ΛΛΛ is the diagonal matrix containing the eigenvalues (ΛΛΛ)ii = Ci, being Ci the
eigenvalues of CCCN . It can be shown that these eigenvalues are given by the discrete
fourier trasform (DFT)1

Ci =
N−1

∑
k=0

tke− j2πki/N . (A.6)

From the two definitions of Toeplitz matrix (A.1) and circulant matrix (A.4) it can
be expected that Toeplitz matrix and circulant matrix can have similar properties. In
particular, by using naïve words, we can expect that a Toeplitz matrix TTT N , for N→∞

behaves like a circulant matrix, and thus also its eigenvalues are related to the Fourier
transform of {ti}. More formally this relation is given by the Szegö theorem.

Theorem 3 (Szegö theorem). Let {TTT N} be a sequence of N×N Toeplitz matrix such
that {ti} is absolutely summable. Let {τN,i}N−1

i=0 be the eigenvalues of TTT N and s any
positive definite integer. Then

lim
N→∞

1
N

N−1

∑
i=0

τ
s
N,i =

1
2π

∫ 2π

0
T s(ω)dω (A.7)

1The DFT must not be confused with the discrete time Fourier transform (DTFT).
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where T (ω) is the discrete time Fourier transform (DTFT)

T (ω) =
N−1

∑
i=0

tie− jωi . (A.8)

Furthermore, if T (ω) is real, with essential infimum m and essential supremum
M, then for any continuous function f : [m,M]→ [0,∞)

lim
N→∞

1
N

N−1

∑
i=0

f (τN,i) =
1

2π

∫ 2π

0
f (T (ω))dω. (A.9)

A simple application of the theorem, is given by setting f as the logarithm. This
gives the identity

lim
N→∞

1
N

logdetTTT N =
1

2π

∫ 2π

0
log(T (ω))dω. (A.10)

If we now consider as example the matrix channel (1.8), its capacity is given by
log2 det(III +GGG/N0), which for N→ ∞ tends to

lim
N→∞

1
N

log2 det
(

III +
GGG
N0

)
=

1
2π

∫ 2π

0
log
(

1+
G(ω)

N0

)
dω (A.11)

as shown in [35].
For further details with a very clean explation, further consequences and applica-

tions, the reader can see [60].





Appendix B

CS for channels represented by a
block Toeplitz matrix

In this appendix we derive the CS solution when the channel model reads

r = Hc+w , (B.1)

where H is block lower triangular and Toeplitz matrix with size KN×KN built from
a sequence of matrices {HHH i}i≥0 with size K×K. Namely it reads

H =




HHH0 000 . . . 000
HHH1 HHH0 . . . 000
...

. . .
...

HHHN−1 HHHN−2 . . . HHH0




. (B.2)

c is assumed to be a block vector of complex Gaussian random variables, with mean
zero and autocorrelation matrix V = E{cc†}. We constrain the autocorrelation matrix
V to be block diagonal as

V =




VVV 000 . . . 000
000 VVV . . . 000
...

. . .
...

000 000 . . . VVV




, (B.3)
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where VVV is a positive definite matrix. The CS detector considers a mismatched chan-
nel law

q(r|c) ∝ exp
{

ℜ
(
c†(Hr)†r

)
− c†Grc

}
. (B.4)

where the channel shortener Hr and the target response Gr are block Toeplitz matrices
such that the AIR is maximized for a given memory L taken into account at the
detector. The target response has constraint

(Gr)i j = 000 ∀|i− j|> L (B.5)

where with (Gr)i j we mean the (i, j) block, and 000 is K×K matrix of all zeros.
To derive the optimal channel shortener and target response, as first step we need

a closed formula for the AIR

IR = h(rrr)−h(rrr|ccc) (B.6)

= E
{

log2
q(rrr|ccc)
q(rrr)

}
. (B.7)

q(rrr) is found to be

q(r) =
1

πKN det(V)

∫
q(r|c)exp

{
−c†V−1c

}
dc (B.8)

=
1

det(GrV+ I)
exp{d† (Gr +V−1)−1 d} (B.9)

where d = Hrr. Therefore,

h(rrr) = logdet(GrV+ I)−Tr
(
(Hr)† [HVH† +N0I

]
Hr(Gr +V−1)−1) (B.10)

and
h(rrr|ccc) = Tr(GrV)−2ℜ

(
Tr
(
(Hr)†HV

))
. (B.11)

The derivative of IR w.r.t. (Hr)† is

∂ IR

∂ (Hr)† = (HV)T −
([

HVH† +N0I
]

Hr(Gr +V−1)−1)T
. (B.12)

By setting the derivative to zero, we obtain that the optimal filter Hr is

Hr =
[
HVH† +N0I

]−1 HV
(
Gr +V−1) . (B.13)
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Using (B.13), the IR is

IR =
1
N

(
log(det(U†UV))−Tr

(
UBU†)+KN

)
(B.14)

where U is obtained from the Cholesky decomposition Gr +V−1 = U†U and

B = V−VH† [HVH† +N0I
]−1 HV . (B.15)

The (m,n) entries of U and B will be denoted by UUUmn and BBBmn, respectively. Since
det(U†UV) depends only on the diagonal elements of U, we can optimize IR over the
diagonal of U and the off-diagonal elements separately. We define Un = [UUUnn+1, ..,UUUn min(n+L,N)],
Bn = [BBBnn+1, ..,BBBn min(n+L,N)],

Bn =




BBB(n+1)(n+1) · · · BBBmin(n+1,L)(n+L)
...

. . .
...

BBBmin(n+L,N)(n+1) · · · BBBmin(n+1,L) min(n+1,L)


 (B.16)

and finally

Cn = BBBnn−BnB−1
n (Bn)

† . (B.17)

Now the trace Tr
(
UBU†

)
can be rewritten as

∑
n

Tr

(
[UUUnn Un]

[
BBBnn Bn

B†
n Bn

][
UUU†

nn

U†
n

])
. (B.18)

Setting its derivative w.r.t. U†
n to zero gives

∂

∂U†
n

Tr
(
UBU†)= (UUUnnBn)

T +(UnBn)
T = 000 (B.19)

which gives

Un =−UUUnnBnB−1
n . (B.20)

Replacing (B.20) in (B.14) we find

IR =
1
N

logdet(V)+K +
1
N ∑

n
log(det(UUU†

nnUUUnn))−Tr
(
UUUnnCnUUU†

nn
)

(B.21)



96 Appendix B. CS for channels represented by a block Toeplitz matrix

that can be maximized by setting its derivative w.r.t. UUU†
nn equal to zero. This gives

that
∂ IR

∂UUU†
nn

= (UUU∗nn)
−1− (UUUnnCn)

T = 000 (B.22)

and the optimal UUUnn is given by the Cholesky decomposition

C−1
n =UUU†

nnUUUnn (B.23)

Inserting (B.23) into (B.21), the AIR for Gaussian symbols is

IR =
1
N

logdet(V)+
1
N ∑

n
log(det(C−1

n )) . (B.24)

When N→ ∞, all C−1
n are the same, and we obtain the stationary solution

IR = logdet(VVV )+ logdet(C−1) (B.25)

and (B.13), (B.15) become stationary as

HHHr(ω) =
[
HHH(ω)VVV HHH†(ω)+N0III

]−1
HHH(ω)VVV

(
GGGr(ω)+VVV−1) (B.26)

BBB(ω) = VVV −VVV HHH†(ω)
[
HHH(ω)VVV HHH†(ω)+N0III

]−1
HHH(ω)VVV . (B.27)



Appendix C

Proof of Theorem 1

We first note that P(ω) only enters the optimization through its square magnitude,
and we therefore make the variable substitution Sp(ω) = |P(ω)|2 and optimize over
Sp(ω) instead.

The proof will consist of three steps

• A formula for stationary points.

• The observation that some of these do not have strictly positive spectrum.

• Fixing the problem identified in the previous bullets.

Let us now start with the first bullet. From Cramer’s rule [36], we get that

BBB−1 =
1

det(BBB)
[Ci j],

where Ci j is the cofactor of entry (i, j) in BBB. This implies that in (2.8) we can express
bbbBBB−1bbb† as

∑
M
m=1 αmbφm,0

0 bφm,1
1 (b∗1)

φm,2 · · ·bφm,2L−1
L (b∗L)

φm,2L

∑
N
n=1 βnbψn,0

0 bψn,1
1 (b∗1)

φm,2 · · ·bψn,2L−3
L−1 (b∗L−1)

ψn,2L−2
,

where M and N are finite constants that depend on L, αm,βm ∈ {±1}, and both φm,`

and ψn,` are non-negative integers which satisfy

2L

∑
`=0

φm,` = L+1 and
2L−2

∑
`=0

ψn,` = L .
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We next introduce the variable substitution

y(ω) =
N0

|H(ω)|2Sp(ω)+N0
, Sp(ω) =

N0

|H(ω)|2
[

1
y(ω)

−1
]
.

The constraint
∫

Sp(ω)dω = 2π translates into

e[y(ω)],
∫

π

−π

1
y(ω)|H(ω)|2 dω =

∫
π

−π

1
|H(ω)|2 dω +

2π

N0
.

Furthermore, we have

bi =
1

2π

∫
π

−π

y(ω)e jωidω.

The constrained Euler-Lagrange equation [61] becomes

δC

δy
= λ

δe
δy

=− λ

|H(ω)|2y2(ω)
.

The functional derivative δbs
k/δy equals

δbs
i

δy
=

δ
[∫

π

−π
y(ω)e jωidω

]s

δy

= s
[∫

π

−π

y(ω)e jωidω

]s−1

e jωi

= sbs−1
i e jωi.

We now note that bi, raised to any power, is a constant that depends explicitly on y.
Therefore, by an application on the quotient rule for the derivative and the chain rule
to (2.8), we obtain an expression of the form

δC

δy
= 1− ∑

L
`=−L A`[y(ω)]e j`ω

C[y(ω)]
,

where the constants A`[y(ω)] and C[y(ω)] explicitly depend on y(ω), e.g.,

C[y(ω)] =

[
N

∑
n=1

βnbψn,0
0 bψn,1

1 · · ·bψn,2L−3
L−1 (b∗L−1)

ψn,2L−2

]2

.
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By manipulation of the Euler-Lagrange equation and by introducing a new set of
constants {B`[y(ω)]}, we obtain

y(ω) =
1√

|H(ω)|2[∑L
`=−L B`[y(ω)]e j`ω ]

.

This translates into a general form of the optimal Sp(ω) which reads

Sopt
p (ω) =

N0√
|H(ω)|2

√√√√ L

∑
`=−L

A`e j`ω − N0

|H(ω)|2 (C.1)

where coefficients A` must have a Hermitian symmetry.
We have now found a general form for any stationary point. Unfortunately, for

a given H(ω), this stationary point may lie outside the domain of the optimization.
The optimal spectrum Sp(ω) must therefore lie on the boundary of the optimization
domain, which in this case implies that Sp(ω) = 0 for ω ∈ I0 ⊂ [−π,π]. Let us
define I+ as the subset [−π,π] where Sp(ω) > 0 except for the endpoints of I+

where Sp(ω) = 0 due to the assumption of a continuous spectrum. Note that I+

may be the union of several disjoint sub-intervals of [−π,π]. We can now rewrite the
constraint and the expressions of bk as

e[y(ω)] =
∫

I+

1
|H(ω)|2 dω +

2π

N0

and
bi =

1
2π

∫

I+

y(ω)e jωidω.

From the first part of the proof, i.e., identifying a necessary condition for station-
ary points, we have that (C.1) must hold within the interval I+, and the constants
{A`} must be such that Sopt

p (ω) = 0 at the end-points of each sub-interval within I+.
Hence, no matter what I+ is, we can express the optimal Sopt

p (ω) as in (2.27).
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Proof of theorem 2

The waterfilling algorithm provides a transmit filter that satisfies [35]

|P(ω)|2 = max
(

0,θ − N0

|H(ω)|2
)

(D.1)

for some power constant θ . In view of Theorem 1, |P(ω)|2 in (D.1) must also satisfy
(2.27). Equating (D.1) and (2.27) yields

θ − N0

|H(ω)|2 =
N0√
|H(ω)|2

√√√√
νC

∑
`=−νC

A`e j`ω − N0

|H(ω)|2 . (D.2)

From (D.2), it can be seen that we must have

νC

∑
`=−νC

A`e j`ω = γ|H(ω)|2 , (D.3)

for some constant γ . However,

|H(ω)|2 =
∣∣∣∣∣

ν

∑
`=0

h`e− j`ω

∣∣∣∣∣

2

=
ν

∑
`=−ν

g`e− j`ω , (D.4)

where
g` = ∑

k
hkh∗k−` . (D.5)
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Clearly, to satisfy
νC

∑
`=−νC

A`e j`ω = γ

[
ν

∑
`=−ν

g`e− j`ω

]
,

νC must at least equal ν .
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