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Abstract— We consider a differentially encodedM -PSK signal
transmitted over a channel affected by phase noise. For this prob-
lem, we derive the exact maximum a posteriori (MAP) symbol
detection algorithm. By analyzing its properties, we demonstrate
that it can be implemented by a forward-backward estimator of
the phase probability density function, followed by a symbol-by-
symbol completion to produce the a posteriori probabilities of
the information symbols. To practically implement the forward-
backward phase estimator, we propose a couple of schemes with
different complexity. The resulting algorithms exhibit an excellent
performance and, in one case, only a slight complexity increase
with respect to the algorithm which perfectly knows the channel
phase. The application of the proposed algorithms to repeat and
accumulate codes is assessed in the numerical results.

I. I NTRODUCTION

In the last few years, several iterative detection algorithms
have been designed to decode powerful channel codes, such
as turbo codes or low-density parity-check codes, transmitted
over channels affected by a time-varying phase [1]–[8]. In
particular, in [8] the authors developed an algorithm with a
very low complexity and a practically optimal performance.
Some of these algorithms require the insertion of pilot symbols
to solve the phase ambiguity problem which arises in phase-
uncertain channels and to make the iterative decoder bootstrap,
especially in the case of strong phase noise and long codeword
lengths [8].

A classical alternative to pilot symbols, that avoids the
decrease of the effective information rate due to pilot insertion,
is represented by the use of an inner differential encoding [9].
An inner differential encoder, or by using an equivalent
terminology, an inner accumulator, is also a component of
repeat and accumulate (RA) codes [10].

In principle, the algorithms described in [4]–[8] can be
used for differentially encoded signals. However, they have
a main drawback: they perform separate detection and phase
tracking, that is, at every iteration an instance of a soft-input
soft-output (SISO) algorithm for the differential code, for
example implemented by means of a BCJR algorithm [11], the
execution of the code-aware phase tracking algorithm (which
takes advantage from the a posteriori probabilities coming
from the BCJR), and finally another execution of the BCJR,
are performed. Hence, they are characterized by an higher
latency and do not exploit the code structure but only the soft-
outputs produced by the decoder, thus possibly requiring the
insertion of (a minimal amount of) pilot symbols to bootstrap
or speed-up the convergence process.

On the contrary, the algorithms in [1]–[3] can be designed
to jointly perform the decoding of the differential code and
the detection in the presence of the unknown time-varying
phase. In [1], after a proper discretization of the phase space,
a super-trellis, taking into account the differential code and
the phase model, is built and the BCJR algorithm is run
over it. In [2], the channel phase is a priori averaged out,
but the resulting algorithm still works on an expanded trellis.
Finally, the algorithm in [3] can work on the trellis of the
differential encoder or on an expanded trellis andmultiple
non-Bayesian phase estimators are used in the forward and
backward recursions of the algorithm.

In this paper, we consider the problem of a differentially en-
codedM -ary phase shift keying (PSK) signal transmitted over
a channel affected by phase noise. The approach is Bayesian,
i.e., the channel phase is modeled as a stochastic process with
known statistics. Although the implementation of the exact
maximum a posteriori (MAP) symbol detection algorithm is
impractical, we analyze its properties, finding that it can be
implemented by using asingleforward-backward estimator of
the phase probability density function, followed by a symbol-
by-symbol completion to produce the a posteriori probabilities
of the information symbols. This algorithm obviously works
in a joint decoding/phase tracking fashion and does not require
the insertion of pilot symbols. Then, by using the canonical
distribution approach [12] we develop a couple of practical
schemes to implement the forward-backward estimator. The
resulting algorithms may be used as SISO blocks for iterative
detection/decoding in concatenated schemes.

II. SYSTEM MODEL

We consider the transmission of a sequence of complex
modulation symbolsd = {dk}K

k=0, belonging to anM -PSK

alphabet
{

ej 2π
M i, i = 0, 1, . . . , M − 1

}
, over an additive white

Gaussian noise (AWGN) channel affected by an unknown
time-varying phase. Symbols{dk} are obtained from infor-
mation sequencec = {ck}K

k=1, assumed independent, but not
identically nor uniformly distributed, and belonging to the
sameM -PSK alphabet, through differential encoding, i.e.,

dk = dk−1ck . (1)



The initial symbold0 is assumed unknown to the receiver.1

Assuming Nyquist transmitted pulses, matched filtering, phase
variations slow enough so as no intersymbol interference
arises, the discrete-time baseband received signal is given by

rk = dkejθk + wk, k = 0, 1, . . . ,K (2)

where the noise samplesw = {wk}K
k=0 are independent and

identically distributed (i.i.d.), complex, circularly symmetric
Gaussian random variables, each with zero mean and variance
2σ2.

In the derivation of the proposed algorithms, for the time-
varying channel phaseθk we assume a random-walk (Wiener)
model:

θk+1 = θk + ∆k (3)

where {∆k} are real i.i.d. Gaussian random variables with
zero mean and standard deviationσ∆,2 and θ0 is uniformly
distributed in[0, 2π). The value ofσ∆ is assumed known to the
receiver. The sequence of phase increments{∆k} is supposed
unknown to both transmitter and receiver and statistically
independent ofd andw. The assumption on the phase noise
model will be relaxed in the numerical results.

III. MAP SYMBOL DETECTION OFDIFFERENTIALLY

ENCODED PSK SIGNALS

We derive here the exact MAP symbol detection algorithm
for the considered problem by using a properly defined factor
graph (FG) and the sum-product algorithm (SPA) [13].

Let us consider the joint distribution of vectorsc, d, and
θ = {θk}K

k=0 given r = {rk}K
k=0:3

p(c,d, θ|r) ∝ P (c)P (d|c)p(θ)
K∏

k=0

p(rk|dk, θk) (4)

where

p(rk|dk, θk) =
1

2πσ2
exp

{
−|rk − dkejθk |

2σ2

}
. (5)

We can further factor the termsP (c), P (d|c), andp(θ) in (4)
as

P (c) =
K∏

k=1

P (ck) (6)

P (d|c) = P (d0)
K∏

k=1

I(dk, dk−1, ck) (7)

p(θ) = p(θ0)
K∏

k=1

p(θk|θk−1) (8)

where I(dk, dk−1, ck) is an indicator function, equal to 1
if cn and the differential symbolsdk and dk−1 respect the
constraint (1), and to zero otherwise. Since the SPA is defined

1Since the transmission over a channel affected by phase noise will be
considered, we may assume that the initial symbold0 is unknown to the
receiver due to the initial channel phase uncertainty.

2Note that, since the channel phase is defined modulo2π, the probability
density function (pdf)p(θk+1|θk) can be approximated as Gaussian inθk+1,
with meanθk and varianceσ2

∆, only if σ∆ ¿ 2π.
3We still use the symbolp(.) to denote a continuous pdf with some discrete

probability masses.
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p(rk−1|dk−1, θk−1) p(rk|dk, θk)

P (ck)

ck

(dk, θk)(dk−1, θk−1)

p(θk|θk−1)I(dk, dk−1, ck)

Fig. 1. Factor graph for the considered problem.

up to scaling its messages by positive factors, independent
of the variables represented in the graph, from now on we
take the notational liberty of using the equality symbol “=”
instead of the proportionality symbol “∝”. Substituting (6),
(7), and (8) into (4),clustering [13] the variablesdk and
θk, we obtain the FG in Fig. 1. Since this FG does not
contain cycles, the application to it of the SPA, withnon-
iterative forward-backward schedule, produces theexact a
posteriori probabilities of symbols{ck}. Taking into account
the probabilistic meaning of the messages in the graph,
defining rk2

k1
= {rk}k2

k=k1
(hencer = rK

0 ), the forward and
backward recursions and the completion necessary to compute
the a posteriori probabilities of symbolck (or, equivalently, the
extrinsic informationP (ck|r)

P (ck) ) are, respectively

p(dk, θk|rk
0) = p(rk|dk, θk)

∑
ck

P (ck)

·
∫

p(θk|θk−1)p(dk−1 = dkc∗k, θk−1|rk−1
0 )dθk−1 (9)

p(dk−1, θk−1|rK
k−1) = p(rk−1|dk−1, θk−1)

∑
ck

P (ck)

·
∫

p(θk|θk−1)p(dk = dk−1ck, θk|rK
k )dθk (10)

P (ck|r)
P (ck)

=
∑

dk−1

∫∫
p(dk−1, θk−1|rk−1

0 )

· p(dk = dk−1ck, θk|rK
k )p(θk|θk−1)dθkdθk−1 . (11)

The initializations for the forward and backward recur-
sions arep(d0, θ0|r0) = p(r0|d0, θ0) and p(dK , θK |rK) =
p(rK |dK , θK). In the case of a different rotational invariant
code [14], these considerations can be extended to the FG in
which the encoder state and the channel phase are clustered.

Let us now consider (9). We may decompose

p(dk, θk|rk
0) = p(θk|dk, rk

0)P (dk|rk
0) . (12)

The first term of the right hand side considers the distribution
of the unknown phase, at timek, given the past and present
received samples and the state of the differential encoder,
while the second term is the state probability, that is exactly
the same probability mass function (pmf) evaluated in case of



detection in the presence of a constant known phase. In prac-
tice, the algorithm performs aper-state Bayesian estimation
of the channel phase during the forward recursion. A similar
decomposition can be clearly accomplished for the backward
pdf (10).

A proof of the following three properties is omitted for a
lack of space.
Property 1. Despite the values of the a priori information
{P (ck)}, it results thatP (dk|rk

0) = const. and P (dk|rK
k ) =

const., for each value ofk. Hence, it is not necessary to
evaluate them.
Property 2. The pdfsp(θk|dk, rk

0), for different values ofdk,
differ for a shift of a multiple of2π

M , i.e.,

p(θk|dk = ej 2π
M i, rk

0) = p(θk +
2π

M
i|dk = ej0, rk

0) . (13)

An identical result holds for the backward pdfp(θk|dk, rK
k ).

Property 3. The summation overdk−1 in the completion (11)
disappears because all theM terms of the summation are
equal. Hence, only one of them needs to be evaluated.

From these three properties, it follows that, for each time
epochk, only the pdfsp(θk|dk = 1, rk

0) andp(θk|dk = 1, rK
k )

need to be evaluated. By definingαk(θk) = p(θk|dk = 1, rk
0)

and βk(θk) = p(θk|dk = 1, rK
k ), the forward-backward

algorithm described by (9), (10), and (11) simplifies to

αk(θk) = p(rk|dk = 1, θk)
M−1∑

i=0

P
(
ck = ej 2π

M i
)

·
∫

αk−1

(
θk−1 − 2π

M
i

)
p(θk|θk−1)dθk−1 (14)

βk−1(θk−1) = p(rk−1|dk−1 = 1, θk−1)
M−1∑

i=0

P
(
ck = ej 2π

M i
)

·
∫

βk

(
θk +

2π

M
i

)
p(θk|θk−1)dθk (15)

P (ck = ej 2π
M i|r)

P (ck = ej 2π
M i)

=
∫∫

αk−1(θk−1)βk

(
θk +

2π

M
i

)

· p(θk|θk−1)dθkdθk−1 . (16)

Hence, we have a single forward-backward estimator of the
phase probability density function and a final completion.

This exact MAP symbol detection strategy involves inte-
gration and computation of continuous pdfs, and it is not
suited for direct implementation. A solution for this problem
is suggested in [12] and consists of the use ofcanonical
distributions, i.e., the pdfsαk(θk) and βk(θk) computed by
the algorithm are constrained to be in a certain “canonical”
family, characterized by some parameterization. Hence, the
forward and backward recursions reduce to propagating and
updating the parameters of the pdf rather than the pdf itself.
In the next section, two low-complexity algorithms based on
this approach will be described.

IV. L OW-COMPLEXITY ALGORITHMS

A. First Algorithm

A very straightforward solution to implement (14) and (15)
is obtained by discretizing the channel phase [1], [8]. In this
way, the pdfsαk(θk) and βk(θk) become probability mass

functions (pmfs) and the integrals in (14), (15), and (16)
become summations. When the numberL of discretization
levels is large enough, the resulting algorithm becomes optimal
(in the sense that its performance approaches that of the exact
algorithm).4 Hence, it may be used to obtain a performance
benchmark and will be denoted to as “discretized-phase algo-
rithm” (dp-algorithm).

B. Second Algorithm

By observing that the Tikhonov distribution ensures a very
interesting performance with a low complexity when used as a
canonical distribution in detection algorithms for phase noise
channels, as demonstrated in [8], pdfsαk(θk) andβk(θk) are
constrained to have the following expressions

αk(θk) =
M−1∑
m=0

q
(m)
f,k t

(
af,kej 2π

M m; θk

)
(17)

βk(θk) =
M−1∑
m=0

q
(m)
b,k t

(
ab,kej 2π

M m; θk

)
(18)

where, for each time indexk, {q(m)
f,k ,m = 0, 1, . . . , M − 1}

({q(m)
b,k ,m = 0, 1, . . . , M − 1}) and af,k (ab,k) are, respec-

tively, M real coefficients and one complex coefficient, and
t (z; θ) is a Tikhonov distribution with complex parameterz
defined as

t (z; θ) =
eRe[ze−jθ]

2πI0(|z|) (19)

I0(x) being the zero-th order modified Bessel function of the
first kind.

Three approximations are now introduced in order to derive
a low complexity detection algorithm:
i. the convolution of a Tikhonov and a Gaussian pdf is still a
Tikhonov pdf, with a modified complex parameter [15], i.e.,

∫
t(z; x)g(x, ρ2; y)dx ' t

(
z

1 + ρ2|z| ; y
)

(20)

whereg(x, ρ2; y) represents a Gaussian pdf iny with meanx
and varianceρ2;
ii. since, for large arguments,I0(x) ' ex, we approximate

eRe[ze−jθ] ' 2πe|z|t(z; θ) (21)

iii. let z be a complex number,{um,m = 0, 1, . . . , M − 1}
a set of complex numbers, and{qm,m = 0, 1, . . . , M − 1} a
set of real numbers such that

∑
m qm = 1, then the following

approximation holds, especially when|z| is sufficiently larger
than each|um| or when there is am such that qm À
qm, ∀m 6= m:

∑
m

qmt
(
zej 2π

M m + um; θ
)
'

∑
m

qmt
(
wej 2π

M m; θ
)

(22)

wherew = z +
∑

` q`u`e
−j 2π

M `.
We now derive the reduced-complexity forward recursion.

Substituting (5) into (14), assuming thatαk−1(θk−1) has the

4To avoid any performance loss, in [1] the authors proposed the following
rule of thumb: the number of quantization levels has to be at leastL = 8M .



canonical expression (17), and using approximation (20), we
obtain

αk(θk) = e
1

σ2 Re[rke−jθk ]
M−1∑

i=0

M−1∑
m=0

P
(
ck = ej 2π

M i
)

q
(m)
f,k−1

· t
(

a′f,k−1; θk − 2π

M
(m + i)

)
(23)

where a′f,k−1 = af,k−1

1+σ2
∆|a′f,k−1|

. By now changing the first

summation index inn = (i + m)modM , using (19) and (21),
and discarding irrelevant multiplicative factors, we have

αk(θk) =
M−1∑
n=0

[
M−1∑

i=0

P
(
ck = ej 2π

M i
)

q
(n−i)modM

f,k−1

]

· e
ŕŕŕa′f,k−1ej 2π

M
n+

rk
σ2

ŕŕŕ
t
(
a′f,k−1e

j 2π
M n +

rk

σ2
; θk

)
. (24)

This resultingαk(θk) is not in the constrained form (17).
However, by applying the approximation (22), we obtain
the following updating equations for the parameters of the
canonical distribution (17)

q
(m)
f,k ∝

[
M−1∑

i=0

P
(
ck = ej 2π

M i
)

q
(m−i)modM

f,k−1

]

· e
ŕŕŕa′f,k−1ej 2π

M
m+

rk
σ2

ŕŕŕ
, m = 0, . . . ,M − 1 (25)

af,k = a′f,k−1 +
rk

σ2

∑
m

q
(m)
f,k e−j 2π

M m . (26)

It is worth noticing that, before the evaluation of the
coefficient af,k, the M real coefficients q

(m)
f,k evaluated

through (25) have to be normalized so that their sum is
1. Moreover the following initial values of the recursive
coefficients result

q
(m)
f,0 = δm

af,0 =
r0

σ2

(27)

whereδm represents the Kronecker delta.
Similarly, it is also possible to find the backward recursive

equations. Due to the lack of space, we report here only the
final expressions

q
(m)
b,k−1 ∝

[
M−1∑

i=0

P
(
ck = ej 2π

M i
)

q
(m+i)modM

b,k

]

· e
ŕŕŕa′b,kej 2π

M
m+

rk−1
σ2

ŕŕŕ
, m = 0, . . . , M − 1 (28)

ab,k−1 = a′b,k +
rk−1

σ2

∑
m

q
(m)
b,k−1e

−j 2π
M m . (29)

having defineda′b,k = ab,k

1+σ2
∆|ab,k| . The initial values of the

backward coefficients are

q
(m)
b,K = δm

ab,K =
rK

σ2

(30)

Finally, substituting (17) and (18) into (16) and discarding
irrelevant constants, the extrinsic information is evaluated as

P (ck = ej 2π
M i|r)

P (ck = ej 2π
M i)

∝
M−1∑
m=0

M−1∑

`=0

q
(m)
f,k−1q

(`)
b,k

· I0
(∣∣∣a′f,k−1 + a′b,kej 2π

M (`−m−i)
∣∣∣
)

. (31)

In summary, this detection algorithm is based on three
steps: a forward recursion in which, for each time epoch
k, M real and one complex coefficients are evaluated based
on (25) and (26), a backward recursion, based on (28) and
(29), which proceeds similarly, and finally a completion (31),
which consists of the sum ofM2 terms (although only a small
amount of them is numerically significant, particularly from
the second iteration ahead). This algorithm entails a minor
complexity increase with respect to the known-phase MAP
symbol detector [11] and will be denoted to as “algorithm
based on Tikhonov parameterization” (Tikh-algorithm).

V. NUMERICAL RESULTS

In this section, the performance of the proposed algorithms
is assessed by computer simulations in terms of bit error rate
(BER) versusEb/N0, Eb being the received signal energy per
information bit andN0 the one-sided noise power spectral
density. The sequencec is now assumed a codeword, possibly
interleaved, of a channel codeC constructed over theM -PSK
modulation constellation. In particular, in Fig. 2 we consider
a serially concatenated scheme composed by a convolutional
code (CC), an interleaver, and a differentially encoded BPSK.
The CC is a rate-1/2 non-recursive systematic code with 4
states and generators(5, 7). A uniform puncturing of its parity
bits is used to obtain a rate-2/3 code. The codewords are com-
posed of 16200 bits. Iterative detection/decoding is applied
at the receiver using the proposed schemes to perform joint
detection and decoding of the differential code. A maximum
of 15 iterations is allowed and the phase noise affecting the
channel is modeled as a Wiener process withσ∆ = 6 degrees.
From Fig. 2 it can be observed that, despite the presence of
this strong phase noise, the low-complexityTikh-algorithm
exhibits only a negligible performance loss with respect to
the known-phase case. The performance of thedp-algorithm
is practically coincident with that of theTikh-algorithm. For
comparison purposes, we also show (curve labeledTikh-sep-
algorithm) the performance of the algorithm in [8] also based
on Tikhonov parameterization but performing a phase tracking
separate from the decoding of the differential code. In order
for this algorithm to bootstrap, a pilot symbol every 20 code
symbols has been inserted in the frame, thus decreasing the
effective information rate. This results in an increase in the
required signal-to-noise ratio of about0.21 dB.

In Fig. 3 we consider a non-systematic rate-1/2 irregular
repeat and accumulate (RA) code [10] mapped on a QPSK
modulation before the differential encoder. The codewords
have length 16200 symbols. The RA code is defined by the
degree distributions (see [16] for details) reported in Table I
and the code has been designed following the approach in [16].
The differentially encoded QPSK symbols are transmitted over
a channel affected by the DVB-S2 compliant phase noise
model assuming a baud rate of 10 MBaud [8]. Although
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Fig. 2. Performance for BPSK signals
TABLE I

DEGREE DISTRIBUTIONS OF THE EMPLOYEDRA CODE.

dv,1 = 3 av,1 = 0.8126 dc,1 = 1 ac,1 = 0.2000

dv,2 = 4 av,2 = 0.1375 dc,2 = 3 ac,2 = 0.8000

dv,3 = 15 av,3 = 0.0294

dv,4 = 20 av,4 = 0.0204

the Wiener model does not apply to this case, the proposed
algorithms work well with a properly optimized value of
σ∆ = 0.6 degrees. From the figure it can be observed that the
Tikh-algorithmhas about the same performance of the much
more complexdp-algorithmand the two algorithms exhibit a
loss with respect to the known phase case of only0.1 dB.
We would like to point out that this very good result has
been obtained without the insertion of pilot symbols. As in
Fig. 2, a performance curve (labeledTikh-sep-algorithm) for
separate differential decoding and phase tracking based on the
algorithm in [8] is reported, where one pilot every 40 code
symbols has been inserted to allow the algorithm bootstrap.

As a term of comparison, we considered only theTikh-
sep-algorithmsince, as shown in [8], it outperforms those
in [4]–[7]. Computer simulations, not reported here for a lack
of space, also show that our algorithms outperform those in
[2], [3]. Regarding the algorithm in [1], ourdp-algorithm
exhibits, for a same number of quantization levels, the same
performance but a much lower complexity.

VI. CONCLUSIONS

In this paper, the problem of MAP symbol detection for dif-
ferentially encodedM -PSK signals transmitted over a channel
affected by phase noise has been faced. A simplified, although
exact, version of the algorithm has been derived based on a
forward-backward single estimation of the phase probability
density function and a final completion. For the practical
implementation of the forward-backward estimator, two al-
gorithms have been proposed. The first one is based on the
phase discretization and becomes optimal for a large enough
number of discretization levels. To reduce the computational
complexity, some approximations have been introduced in
order to derive a new algorithm which exhibits a very good
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Fig. 3. Performance for QPSK signals

performance and a very low complexity, with only a minor
increase with respect to the case of a perfectly-known phase.
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