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Abstract. The capacity of a random-phase additive white Gaussian noise (AWGN) channel, referrebte as
coherent channel, is investigated in the case of a transmissiodVofnformation symbols. The non-Gaussianity of the
capacity-achieving distribution is shown and a lower bound on the channel capacity is derived. For increasing values
of the number of transmitted symbal§, the capacity of a noncoherent channel is shown to asymptotically approach
that of a coherent channel, i.e., a known-phase AWGN channel. The asymptotical Gaussianity of the capacity-achieving
distribution is also shown. Based on the derived lower bound, the inherent capacity loss of a noncoherent channel, as
compared to a coherentone, may be considered very limited for all but very small vahied bfs result may be viewed
as the information theoretic counterpart of a similar conclusion derived by many authors with reference to thiétprobab
of detection error.

1 INTRODUCTION AND MOTIVATIONS tection. In the technical literature, a growing interest has
been recently shown towards improuweshcoherent detec-

In bandpass transmissions, a coherent phase referemies or decoding schemes. Two main classes of algorithms
is normally not available at the receiver. Rare exceptions tgave been proposeMultiplesymbol differential detection
this situation may be conceived, such as in cases wherg\SDD) [1], [2] is based on maximum likelihood detec-
strong pilottone is used. Therefore, a noncoherent channgbn of a block of information symbols based on a corre-
i.e., an AWGN channel which introduces a random phasgponding finite signal observatiohoncoherent sequence
rotation, is a very general model for bandpass transmissi@tection (NSD) [3], [4] starts from the optimal noncoher-
channels. Two approaches are commonly adopted to sol¥at maximum likelihood sequence detection strategy and
the problem of the detection of a possibly encoded infolintroduces some approximations in order to realize simple
mation sequence transmitted over an AWGN noncohereggiboptimal detection or decoding schemes based on the
channel. Viterbi algorithm. In both cases, for constant phase and

The first approach is based on an approximate cohesufficiently large receiver complexity, the performance is
ent detection. This approximation is based on the use gfhown to approach that of ideal coherent detection, either
a phase synchronization scheme, which extracts a phaggcomputer simulation or analytically in the case of coded
reference from the incoming signal, in conjunction withi/-ary phase-shift keying\¢ -PSK) systems [1]-[7].

a detection scheme which is optimal under the assump- .
tion of perfect synchronization. We refer to these detec- The fact that the performance of both the approximate

tion schemes apseudocoherent receivers. Different syn- coherent and noncoherent strategies approaches that of op-

chronization schemes are possible, either based on a ntHHal coherent detectlop, as long as the c.ha.nnel phasg IS
stant or slowly varying and the transmission length is

data-aided, a decision-directed or a data-aided strategy, {H

latter if a known preamble is present. Many years of digi§u iciently large, intuitively suggests that the capacity of a

tal communications have shown that, when the phase ro&gqcohergnt chanrl;el te?:is to th.?tt %f a cogelrent channel for

tionintroduced by the channel is constant or slowly varyiné‘n Increasing number ot transmitted Symbols.

and the length of the transmission is sufficiently large, the The described noncoherent schemes, namely MSDD

performance of ideal coherent detection may be practicalpnd NSD, use the channel in a different way. For MSDD,

achieved. the receiver bases its decisions on the observation of a

The second approach is represented by noncoherent tdack of few symbols. As a consequence, the phase is re-
“Thi . . quired to be constant over the block and independent con-
is paper was presented in part at theernational Conference on .
Communications, 1999. This work was supported by Ministero dell'Uni- SECUtIVE noncoherent Chann.els are used. On_the contrary,
versit e della Ricerca Scientifica e Tecnologica (MURST), Italy. NSD is based on an approximation of the optimal nonco-

Vol. 12, No. 4, July-August 2001 289



G. Colavolpe, R. Raheli

herent receiver that exploits a singiencoherent channel, wheref is a phase shiftintroduced by the channel, modeled
on which all the transmitted symbols are sent. It is intuitiveas a continuous random variable with uniform distribution,
that NSD corresponds to a better use of the channel. In thaadw;, are independent and identically distributed (i.i.d.),
paper, this will be justified by means of some considerazero-mean, complex Gaussian random variables with inde-
tions on the channel capacity. pendent real and imaginary componergach with vari-
In the widely used digital cellular systems with burst-ances?. In the following, these random variables are col-
mode transmission, a preamble is oftgn use, in a pseudacted in a vectow = (wy, ws, . .., wy)T.
cohgrent sgheme, for phase synchronization purposes aIgo.EaCh component of vectar may be also expressed
Is this receiver task really necessary? What is the loss, i|f
there is any, in terms of first principles, such as the channtl A
' f6r, rv)T andg = (41,0 on)! defined ac-
capacity, consequent to the use of a noncoherent system {ér, 72, - - -, 'n )" 1,92, -, ON . .
these applications? cordingly. The signal-to-noise ratio (SNR) per information
In recent years, great attention has been devoted $§mbol is defined as
turbo codes. As demonstrated in the case of coherent de-
i i imi o E{|IxIP} _ E{lx|*}
coding, turbo codes achieve a performance limited by the = -
channel capacity [8]. Therefore, the problem of the capac- E{{lw|[*} 2No?
ity of an AWGN noncoherent channel is important in or- )
der to investigate the performance limits of turbo codes iWhere(|x|| denotes the Euclidean normof
common bandpass applications. Moeeently,noncoher-
ent soft-output iterative decoding schemes have also been

proposed [9]-{12]. 3 CAPACITY-ACHIEVING DISTRIBUTION
The capacity of an AWGN noncoherent channel has

been calculated in the case of input symbols belongingto e capacity-achieving distribution of vectoiis char-

an M-PSK alphabet [13]. In this paper, we consider the,terized by a probability density functigr(x) which

case in which no constra_lint. is given on the i.np.Ut SYMmaximizes theverage mutual information (AMI), defined
bols. We show that the distribution which maximizes the,g
P(Y|X)}

. . FAN
polar coordinates as; = r;¢/? and vectorsr =

(2)

average mutual information, and thus achieving capacity, A
is composed of zero-mean and uncorrelated components, Ine = 1(x;y) = E {logz )
with uniformly distributed phases. We further show that, Py
unlike the coherent case, the capacity-achieving distribin which the conditional probability density function
tion is not Gaussian. An asymptotically tight lower bound(y|x) may be expressed as [12], [14]

is provided. The computational complexity of this bound is

independent of the numbé¥ of transmitted symbols. This xII?  |lyl]? lyTx*|
bound shows that the capacity rapidly approaches that of BV %) = (2ron)N P {_ 202 942 } 0( pi )
AWGN coherent channel. This asymptotic result is proved 4

and itis shown that, wheN — oo, the capacity-achieving wherel, is the zero-th order modified Bessel function of
distribution is Gaussian with independent and identicallyhe first kind. The capacity per channel use of this AWGN

3)

distributed zero-mean components. noncoherent channel is defined as

In the next section, we describe the assumed chan-
nel model. Some important properties of the capacity- C.. 2 M (5)
achieving distribution are derived in Section 3. A lower N

bound on the channel capacity is presented in Section I‘h the following we denote by, the capacity of the same
The asymptotic channel capacity and capacity-achievin c

LY A hannel in the case of coherent transmission, i.e., when the
dlstrlbut|c')n,. \{vhen the numbeN .Of chapnel ut|l'|zat|ons receiver perfectly knows the phage As well known, this
tends to infinity, are addressed in Section 5. Finally, con- oo

. . ; capacity isC. = log,(1 + ~) [15].
clusions are drawn in Section 6.

We now prove some important properties of the
capacity-achieving distribution.
2 CHANNEL MODEL
Theorem 1 For a transmission of N symbols over an
The input to the channel is modeled as a vestof ~ AWGN noncoherent channel, the AMI is maximum when

(z1,2,...,2x5)T of N complex symbols and the outputthgrandom vector.qs |S|ndgpeﬂdent of.r and characterized
. A T by independent uniformly distributed (i.u.d.) components.
isavectoty = (y1,92,-..,yn)" , whose components may
be expressed as 1In the case of MSDD with block length df symbols, the capacity
» of the used noncoherent channelis. = % due to the overlap
Y = xpel’ + wy (1)  of one symbol[13].
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S| [ty it oz, BBy g+ il o) |

ylx)p(x) d

Proof. As in [13], we consider theirtual channel, ob- which is a multidimensional version of (33) in [17]. Noting
tained from our channel considering the phases an in- thatH (v,¢) < H(v) + H(+), with equality if and only
put, and whose AMI is if v and« are independent, we have

I, 210, x;y) = 10, ,x;5) = I(0,r;y)  (6)

having definedd 2 (01,04,...,08)7 = (¢1 4+ 0,62 +
0,...,6n + 0)T, whose distribution is determined by that —N log, 2mea? — 1(6;y|r, ¢) . (12)

of ¢ (because the distribution éfis known). The AMI of ) . " ]
the virtual channel may be related to the AMI of the AWGNT he first and third terms depend on the probability density

channel in the case of noncoherent transmission as [13] functionp(v) only, which is independent of the conditional
distributionp(¢|r), as shown in Appendix A, Lemma 1.

Ine =1, = I(0;y|x) = I, = 1(0;y|r,¢) . (7) The termH (v) is maximized whenp has i.u.d. compo-
The term/(¢; y|r, ¢) is the AMI of the diversity channel in N€nts [15]. As shovyn in Appendix A, Lemma # has
which is the inputy the output, and the receiver perfectly!-U-d- components if (and henceg) has i.u.d. com-
knows the channel state information (CSI), represented [Pnents, independently of the distribution wf In this
x. In general, this AMI depends on the joint distribution ofc@S€,(12) holds with equality. Therefore, from (12) we
r ande, i.e., on the two factors(r) andp(¢p|r). However, May conclude that,. is maximum when vectorsand¢
a more in depth analysis reveals that this AMI is indeperf® independent and has i.u.d. components. This distri-
dent ofp(¢|r). The reason is intuitive due to the fact thatPution of¢ achieves capacity and the corresponding com-
the receiver knows perfectly the phases whose realiza- Ponents ok have circular symmetry. =

tions do not affect the receiver performance. This resutorollary 1 The capacity-achieving distribution of x is

ner. In fact, being the phaseg perfectly known by the

receiver, it is possible to transform the vecjousing the

N 400
Ine < H(v)+ H(yp) + Z/ p(vs) log, v; dv;
i=1 70

diagonal unitary matrix Proof. The proof is straightforward considering the inde-
e —id s pendence of and¢ and the circular symmetry of the com-
diag(e ™9t 7792 . eTION). (8) ponents ok. O

Since this transformation is reversible, it does not modify ~This result will be used in the proof of the following
the AMI (data processing theorem [16]). Furthermore, thigheorem.

transformation does not change the statistics of the noi§&,qcorem 2 For a transmission of N symbols over an
vector. Hence, the AMI/(¢;y|r,¢) is independent of AyGN noncoherent channe!, the capacity-achieving distri-
p(@[r). bution is not Gaussian.

Obviously, the AMI of the virtual channel is [15]
Proof. We begin by searching for the probability density
Ly =1(8,r;y) = H(y) - H(y|0,r) ©) functionp(x) which maximizes the AMI,,. under a con-
whereH (y) and H (y|8, r) are the entropy and the condi- stant power constraint
tional entropy ofy, respectively. This conditional entropy

is [15]-[19] / xIPp(x)dx = K (13)

H(y|6,r) = N log, 2mea?”

(v16:7) 082 £TeT (10) whereC denotes the set of complex numbers dnds a
independently of the joint distribution @ andr. With a  constant. The constrairf-~ p(x)dx =1 is also necessary
Change to p0|ar Coordinateﬁ,7 — viej%, and |ett|ngv é due to the fact th@b(x) i.S a prObab”lty denSity function.

(01, v on)s A (41,4 ), itis possible to Using Lagrange multipliers, we have to maximize the ex-

LE2, -0 BN Y = AL ¥ - YN P pression at the top of this page. By means of variational
express . ! ; :

techniques, after some tedious but straightforward manip-
H(y) = H(v,v) ulations we obtain that the capacity-achieving distribution

+oo ptoo N must satisfy the following condition
—1—// p(vl,...,vN)logZHvi dvy ... doy
oo i LéNMﬂ@b&pwwy:A—b&e+MhW

N 400
= H(v,¢) +Z_;/O p(vi)logy vidv;  (11) +/©N p(ylx)log, p(y|x) dy (14)
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or equivalently
p(y)

/C Pyl logs E

Using (4), we have

[ vty o plye) dy

2
0g, 2m0 082 €5 3
log, e
28 L (2N o + |[x][?)

+ /CN p(y|x)log, To (Jy"x"|) dy

where the following relation has been used
ly[I*p(y|x) dy
[ W11

1 27
= o [ I Pstol0) dyas
= (2N0-2+||X||2).

Therefore, (14) becomes

/@N p(y|x)log, p(y) dy = X' + p'||x]|*

+ /@N plylx) log, Iy (ly7x"]) dy .
where
N = X—log,e— Nlog, 2mec?
Wos - log—ie
o

We now consider the left hand side of (18). By con-
tradiction, if x were Gaussian, it would have independent =

dy = A—log, e+ pl[x]|*.

which clearly exhibits a quadratic dependence »n

On the contrary, the right hand side of (18)

not a quadratic form due to presence of the term

fCN p(y]x) log, To (|yTx* |) dy. Thereforex cannot have

a Gaussian distribution. O
The problem of finding the distribution @fwhich max-

imizes the AMI, presents some analytical difficulties which

could not be overcome. In particular, note that the maxi-

mizing distribution depends ol . For this reason, we now

consider an asymptotically tight, fof — oo, lower bound

on channel capacity.

(15)

(16)
4 LOWER BOUND ON CHANNEL CAPACITY

We now provide a lower bound on channel capacity
which is tight for large values o¥, as proved in the next
section. This bound is the AMI,. for a specific probabil-
ity density functiorp(x).

We assume that the vectoiis composed of i.i.d., zero-
mean, complex Gaussian random variables with indepen-
dent real and imaginary componenégch with variance
o2. Therefore, the probability density functionofs given
by (21) and the SNR (2) is

(17)

v = (24)

qm | &qm

(18)

Under this assumption op(x), the probability density
function ofy is obviously given by (22). In this case, the
AMI per channel use is

:N/N/N S

(19)

(20)  Inc PO Gy

p(y)

x) log,

« P(y)logs p(y) dy

components (being uncorrelated, see corollary 1), and its

probability density function would be

(x) = 1 s
PR = re)N P17 202 [

The distribution ofy would be obviously Gaussian with

independent components as well

PY) = g exp i
(271'0'5)1\7 20’5

wheres; = o + 0. As a consequence, we would have

[ vl 108 piy) dy

log, e
= —Nlog,(2m02) — =22 2 d
oma(2n}) — 555 [ IWIFplyix) dy
log, e
= —Nlog2(2ﬂ'0'5) - #(2]\70'2 +|1x]]%)
Yy

2Eq.
constrained-power counterpart of theorem 5.4.3 of [18].

292

(15) may be interpreted as the continuous-distribution

N/N/N h)p

= log, 271'60'

N/N/ plykp

Using (4) and (17), we have

x) log, p(y|x) dxdy
(21)

x) log, p(y|x) dxdy .(25)

(22)
]T\Lfc = log, 271'60'5 — log, (2m0?)
log, e

log, e
—2(,§N o[ IR0 iy

ly TX*|
N | Py[x)p(x) logy T dxdy

= log,(14+74) — 2ylog, e
x)1 I<| |)
g> 1o

N/ N/ p(ylx)p
ETT

(23)
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= Ci—Q'ylogze - 10
Ty /CN / L Py |x)p(x) log, 10<|y; |) dxdy . — ﬁgggrent /
(26) —-— N=10 /)
8 f| o N=B /7
Hence, a lower bound on the capacity of the considered '
noncoherent channel is

Che > C.—2vlog, e

J%/ N/ p(yx)p(x) log, 10<|yz;‘*|) dxdy .
(27)

Capacity (bits/symbol)

The integral in (27) may be numerically calculated. In
fact, the argument of the integral dependd|ad|, ||y|| and
lyTx*|, only. Computing first the integral with respect to
x, the value ofy is fixed and we may rotate the coordi-
nate system in such a way that the first axis has the same
direction ofy. Denoting byx’ andy’ the rotated vectors,

we havely”x*| = |y"x™| = |yillzy| = [ly'|l|2}] =
[l¥|||#}]. Therefore, after this rotation the integrand de-
pends ori|x||, ||¥|| and|z}]|. Using the result of appendix

B, equations (4) and (21), and another change to polar co-
ordinates for the integral with respectytowe may express gjg,re 1: Lower bound on channel capacity for different values
the last term in (27) as shown in equation (28) at the top of of N.

the next page, wheré 2 1 + L. This integral may be cal-

culated using the Gauss-Hermite quadrature formula [1%1 )

and its complexity is independent of. roof. The AMI of the virtual channel may be expressed

In Figure 1, the proposed lower bound on channel c&>
pacity is shown for various values &f. For comparison, , _ ;. .o\ — 7(p. L I(x:y|0) = I(0:y) 1. (29
the coherent channel capacity is also shown. It may be ob-* (6,x3y) = 1(6:y)+1(x;y19) (0:y)+1 (29)
served that, for increasing values &f, the lower bound wherer, is the mutual information of the AWGN coherent
rapidly approaches the capacity of a coherent AWGN chaghannel and (¢; y) is the AMI of the diversity channel in
nel. This result was also found in [13] in the caseldfary  which ¢ is the inputy the output, and the receiver operates

PSK input symbols and is in agreement with the experiyithout knowledge of CSI. Substituting (29) in (7), one has
ence which says that the limit represented by the perfor-

mance of an ideal coherent receiver may be reached, for Lne=IL+16;y)—I(0;y|x). (30)
constant or slowly varying channel phase and continuous _ . o _
transmissions, with practical pseudocoherent or noncohdt$ in the previous section, consideringo@x) given by

ent schemes. Moreover, since fr > 10 the capacity (21), we have

30

S\R[dB]

loss is peglgllig{?blg, a'burst-m(.)de_ transmiss?on, evgn if it is o Lne & 1(6;y)  I(6;y]x)
theoretically limited in capacity, it is not so in practice. ne 2 37 = N N
10y)  1(6;y]x)
C. — . 31
+— N (31)

ASYMPTOTIC BEHAVIOR . . L
> S otic © For this choice of(x), the random vectay is independent
We now analyze the asymptotic behavior for— oo ©f ¢ @nd then/(¢;y) = 0, obtaining
of the capacity of the considered noncoherent channel us- 1(6;y|x)

ing some arguments similar to those in [13]. We prove the Cpe 2 Ce — N

following theorem.

Let us now consider the property of the capacity-
Theorem 3 When N — oo, thecapacity of an AWNGN non-  achieving distribution, shown in theorem 1, of having a
coherent channel approaches the capacity of a coherent  phase vectorp with i.u.d. components. This property al-
channel. The capacity-achieving distributionis asymptoti-  lows us to conclude thdt{#; y) = 0 even for the capacity-
cally Gaussian withi.i.d. components. achieving distribution. As a consequence, being the AMI

(32)
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oot tonto (B2 anty = s

T2 . s 2 2
. e P12 52 52 (1 po sin a 2N_3cosalo<—p1p2 cos a) log Io<—p1p2 cos a) dpirdpada (28)
IV 7 o 75

I(9;¥|x) non negative and noting thét/N < C., from by many years of experience in digital communications has
(30) we obtainC,,. < C., as intuitively expected. Using been theoretically proved. Besides noncoherent detection

(32), we finally have schemes, this result applies to commonly used pseudoco-
herent detection schemes as well. It has been also shown
C,— 1(6; y|x) < Cpe < Co. (33) that, in the case of burst-mode transmissions, for practical
N burst lengths, in principle a preamble is not necessary for
We now consider the following diversity channel phase synchronization purposes.
y=2x+4+w (34)
APPENDIX A

wherez is the input andy the output. If the probability
density fgnctiqn ofg has the_expres_sion given by (21), this  In this appendix, we show two important lemmas used
channel is a diversity Rayleigh fading channel. The capagn the proof of theorem 1. Expressing the Gaussian prob-

ity C' of this channel is [20] ability density functionp(y|x, ) in polar coordinates, we
have
C <logy(1+ Nv). (35)
p(v,lr, 0)

Therefore, considering the special case ¢/, we have N .
B H Vi {_vi + 77 — v cos(¢; — 6;) }
1(0;y|x) < log,(1 + N+v) 36)  Llogz P 202 '

(38)

and, from (33)

log, (1 + Nv) The marginal (conditional) probability density functions

C.— I < Che < Ce. (37) are easily obtained
WhenN — o, the lower bound, and thef, ., tends to the p(vlr,6) = p(vir)
limit represented by the capacify. of a coherent channel. B N v; v? + 1} VT
Since the lower bound tendsd6,. and is calculated as- - H 2 & 952 I ( 2 ) (39)
sumingx Gaussian with i.i.d. components, whah— oo ZJ:Vl
this distribution achieves capacity. O r?
Pl 6) = H{—e p [ s
6 CONCLUSIONS Lricos(i—6) [ risin (g — 0:) (i = 0)
2ro 202
In this paper, the capacity of an AWGN channel in the Y cos(Y; — 0;) (40)
case of a noncoherent transmissiombsymbols has been o

considered. It has been proved that the capacity-achievin
distribution is not composed of independent and identicall
distributed zero-mean Gaussian components. An asymp- A +00 42
(z) = / exp{ } dt
V2T

ere)(z) is the Gaussian Q function defined as

totically tight, for N — oo, lower bound has been pro- (41)

vided. This bound shows that the capacity rapidly ap-

proaches that of the AWGN channel in the case of a cd-emmal The probability density function p(v) is inde-

herent transmission. Fa¥ > 10, this limit is practically pendent of the conditional distribution p(¢|r).

reached. Finally, this asymptotic result has been prov

and it has been shown that, whéh — o, the capacity-

achieving distribution is Gaussian with independent and

identically distributed zero-mean components. pvlr) = /®N p(vlr, 6)p(8fr) o (42)
The practical equivalence between coherent and nonco- A

herent channels, in the case of a constant or slowly varyinghere® = [0, 2r). In general,p(v|r) would depend on

phase rotation and continuous transmissions, demonstratg@|r). However, (39) shows tha{v|r) is independent of

qgroof. We begin by noting that
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p(B]r). As a consequence, it is independenp@p|r). Of
course, this property holds fe(v) also. |

Lemma 2 If vector 8 hasi.u.d. e ements, ) hasalsoi.u.d.
components, independently of the distribution of r. Fur-
thermore, v and 45 are independent.

Proof. From (40), we obtain
sl = [ sl ol de. (43
@N
Assumingp(6]r) = [TL, p(6:) = (&)" = p(8), for0 <

8; < 2m, due to the dependence ¢n— 6, of the integrand
in (43), the integrals with respect band+ are equal. We
then obtainp(|r) = [T, p(es) = (5=)" = p(w), for
0 < < 2m.

From (38) and (39), ip(8) = p(y) = (&), itis
straightforward to verify thap(v,|r) = p(v|r)p(ep).
As a consequence, averaging with respect,tave have

p(v, ) = p(v)p(ep). 0

APPENDIX B

Letx = (z1,22,...,2n)T be a vector ofV complex
variables and denote its norm Hx||. We now show that
the integral overC™ of a generic functionf(|z:[, ||x||)
may be expressed as

47N

(Jza], [|x[[) dx = TV =1)

o
C

oo pmw/2
. / / PN (sin )N "3 cos af(pcos a, p)dpda . (44)
0 Jo

In fact, being||x|| non-negative, by definition of the Dirac

delta functiord (z) [21], we have
f(lxll,IIXII)I/ 3(p = Il Szl p) dp. (45)
0

Definingx 2 (...

[ £ il

= [ L Lo 80— b as] st py 02 o

,zn)T, we may express

:/oo{/ g(lxll,p)f(lxll,p)dxl}dp (46)
0 C
having defined
g(|$1|,P)é/N_15(p— l|x[]) dx
= 2 |x|]?) dx
=2 [0 - Ik @

Vol. 12, No. 4, July-August 2001

where the last equality can be easily shown. The function
g(|x1], p) may be computed considering that

ales], p) =20 /CN_I 5(p” — |lxIP) dz

-y /@N—l 5(p? — ||| — |ea?) d%  (48)

and, with a change to polar coordinates

g(|x1|,p)
2aN-1 e _
= 2p7F(N—1)/ 2N 35(p2—r2—|x1|2)dr
0
2aN-1 RN
_ pm/ AV=25(57 Z A — [e1]?) dA
- 0
et WN=2 (2 2
= Pm(ﬂ — e [?)" Culp” — | ])  (49)

whereu(z) is the unit step function. Substituting (49) in
(46) and integrating with respect to the variablein polar
coordinates, we obtain

47N
(N -1)

./Ooo/ooopr(p2 — )N 2 f(r, p)ulp — r) drdp . (50)

CN f(|l‘1|’ ||X||) dX:

Finally, by the change of variabldg, ) = (p, pcos «),
we obtain (44).

Manuscript received on July 9, 1999.
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