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Abstract. The capacity of a random-phase additive white Gaussian noise (AWGN) channel, referred to asnon-
coherent channel, is investigated in the case of a transmission ofN information symbols. The non-Gaussianity of the
capacity-achieving distribution is shown and a lower bound on the channel capacity is derived. For increasing values
of the number of transmitted symbolsN , the capacity of a noncoherent channel is shown to asymptotically approach
that of a coherent channel, i.e., a known-phase AWGN channel. The asymptotical Gaussianity of the capacity-achieving
distribution is also shown. Based on the derived lower bound, the inherent capacity loss of a noncoherent channel, as
compared to a coherent one, may be considered very limited for all but very small values ofN . This result may be viewed
as the information theoretic counterpart of a similar conclusion derived by many authors with reference to the probability
of detection error.

1 INTRODUCTION AND MOTIVATIONS

In bandpass transmissions, a coherent phase reference
is normally not available at the receiver. Rare exceptions to
this situation may be conceived, such as in cases where a
strong pilot tone is used. Therefore, a noncoherent channel,
i.e., an AWGN channel which introduces a random phase
rotation, is a very general model for bandpass transmission
channels. Two approaches are commonly adopted to solve
the problem of the detection of a possibly encoded infor-
mation sequence transmitted over an AWGN noncoherent
channel.

The first approach is based on an approximate coher-
ent detection. This approximation is based on the use of
a phase synchronization scheme, which extracts a phase
reference from the incoming signal, in conjunction with
a detection scheme which is optimal under the assump-
tion of perfect synchronization. We refer to these detec-
tion schemes aspseudocoherent receivers. Different syn-
chronization schemes are possible, either based on a non
data-aided, a decision-directed or a data-aided strategy, the
latter if a known preamble is present. Many years of digi-
tal communications have shown that, when the phase rota-
tion introduced by the channel is constant or slowly varying
and the length of the transmission is sufficiently large, the
performance of ideal coherent detection may be practically
achieved.

The second approach is represented by noncoherent de-

�This paper was presented in part at theInternational Conference on
Communications, 1999. This work was supported by Ministero dell’Uni-
versità e della Ricerca Scientifica e Tecnologica (MURST), Italy.

tection. In the technical literature, a growing interest has
been recently shown towards improvednoncoherent detec-
tion or decoding schemes. Two main classes of algorithms
have been proposed.Multiple symbol differential detection
(MSDD) [1], [2] is based on maximum likelihood detec-
tion of a block of information symbols based on a corre-
sponding finite signal observation.Noncoherent sequence
detection (NSD) [3], [4] starts from the optimal noncoher-
ent maximum likelihood sequence detection strategy and
introduces some approximations in order to realize simple
suboptimal detection or decoding schemes based on the
Viterbi algorithm. In both cases, for constant phase and
sufficiently large receiver complexity, the performance is
shown to approach that of ideal coherent detection, either
by computer simulation or analytically in the case of coded
M -ary phase-shift keying (M -PSK) systems [1]-[7].

The fact that the performance of both the approximate
coherent and noncoherent strategies approaches that of op-
timal coherent detection, as long as the channel phase is
constant or slowly varying and the transmission length is
sufficiently large, intuitively suggests that the capacity of a
noncoherent channel tends to that of a coherent channel for
an increasing number of transmitted symbols.

The described noncoherent schemes, namely MSDD
and NSD, use the channel in a different way. For MSDD,
the receiver bases its decisions on the observation of a
block of few symbols. As a consequence, the phase is re-
quired to be constant over the block and independent con-
secutive noncoherent channels are used. On the contrary,
NSD is based on an approximation of the optimal nonco-
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herent receiver that exploits a singlenoncoherent channel,
on which all the transmitted symbols are sent. It is intuitive
that NSD corresponds to a better use of the channel. In this
paper, this will be justified by means of some considera-
tions on the channel capacity.

In the widely used digital cellular systems with burst-
mode transmission, a preamble is often use, in a pseudo-
coherent scheme, for phase synchronization purposes also.
Is this receiver task really necessary? What is the loss, if
there is any, in terms of first principles, such as the channel
capacity, consequent to the use of a noncoherent system for
these applications?

In recent years, great attention has been devoted to
turbo codes. As demonstrated in the case of coherent de-
coding, turbo codes achieve a performance limited by the
channel capacity [8]. Therefore, the problem of the capac-
ity of an AWGN noncoherent channel is important in or-
der to investigate the performance limits of turbo codes in
common bandpass applications. More recently,noncoher-
ent soft-output iterative decoding schemes have also been
proposed [9]-[12].

The capacity of an AWGN noncoherent channel has
been calculated in the case of input symbols belonging to
anM -PSK alphabet [13]. In this paper, we consider the
case in which no constraint is given on the input sym-
bols. We show that the distribution which maximizes the
average mutual information, and thus achieving capacity,
is composed of zero-mean and uncorrelated components,
with uniformly distributed phases. We further show that,
unlike the coherent case, the capacity-achieving distribu-
tion is not Gaussian. An asymptotically tight lower bound
is provided. The computational complexity of this bound is
independent of the numberN of transmitted symbols. This
bound shows that the capacity rapidly approaches that of an
AWGN coherent channel. This asymptotic result is proved
and it is shown that, whenN !1, the capacity-achieving
distribution is Gaussian with independent and identically
distributed zero-mean components.

In the next section, we describe the assumed chan-
nel model. Some important properties of the capacity-
achieving distribution are derived in Section 3. A lower
bound on the channel capacity is presented in Section 4.
The asymptotic channel capacity and capacity-achieving
distribution, when the numberN of channel utilizations
tends to infinity, are addressed in Section 5. Finally, con-
clusions are drawn in Section 6.

2 CHANNEL MODEL

The input to the channel is modeled as a vectorx
4

=
(x1; x2; : : : ; xN )T of N complex symbols and the output

is a vectory
4

= (y1; y2; : : : ; yN )T , whose components may
be expressed as

yk = xke
j� + wk (1)

where� is a phase shift introduced by the channel, modeled
as a continuous random variable with uniform distribution,
andwk are independent and identically distributed (i.i.d.),
zero-mean, complex Gaussian random variables with inde-
pendent real and imaginary components,each with vari-
ance�2. In the following, these random variables are col-

lected in a vectorw
4

= (w1; w2; : : : ; wN)T .
Each component of vectorx may be also expressed

in polar coordinates asxi = rie
j�i and vectorsr

4

=

(r1; r2; : : : ; rN)
T and�

4

= (�1; �2; : : : ; �N )
T defined ac-

cordingly. The signal-to-noise ratio (SNR) per information
symbol is defined as



4

=
Efjjxjj2g
Efjjwjj2g =

Efjjxjj2g
2N�2

(2)

wherejjxjj denotes the Euclidean norm ofx.

3 CAPACITY-ACHIEVING DISTRIBUTION

The capacity-achieving distribution of vectorx is char-
acterized by a probability density functionp(x) which
maximizes theaverage mutual information (AMI), defined
as

Inc
4

= I(x;y) = E

�
log2

p(yjx)
p(y)

�
(3)

in which the conditional probability density function
p(yjx) may be expressed as [12], [14]

p(yjx) = 1

(2��2)N
exp

�
�jjxjj

2

2�2
� jjyjj2

2�2

�
I0

� jyTx�j
�2

�

(4)
whereI0 is the zero-th order modified Bessel function of
the first kind. The capacity per channel use of this AWGN
noncoherent channel is defined as1

Cnc
4

=
maxfIncg

N
: (5)

In the following we denote byCc the capacity of the same
channel in the case of coherent transmission, i.e., when the
receiver perfectly knows the phase�. As well known, this
capacity isCc = log2(1 + 
) [15].

We now prove some important properties of the
capacity-achieving distribution.

Theorem 1 For a transmission of N symbols over an
AWGN noncoherent channel, the AMI is maximum when
the random vector � is independent of r and characterized
by independent uniformly distributed (i.u.d.) components.

1In the case of MSDD with block length ofN symbols, the capacity

of the used noncoherent channel isCnc =
maxfIncg
N�1

, due to the overlap
of one symbol [13].
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Z
C
N

�Z
C
N

p(yjx)p(x) log2
p(yjx)R

p(yjx)p(x) dx dy + �p(x) + �jjxjj2p(x)
�
dx

Proof. As in [13], we consider thevirtual channel, ob-
tained from our channel considering the phase� as an in-
put, and whose AMI is

Iv
4
= I(�;x;y) = I(�;�; r;y) = I(�; r;y) (6)

having defined�
4

= (�1; �2; : : : ; �N )T = (�1 + �; �2 +
�; : : : ; �N + �)T , whose distribution is determined by that
of � (because the distribution of� is known). The AMI of
the virtual channel may be related to the AMI of the AWGN
channel in the case of noncoherent transmission as [13]

Inc = Iv � I(�;yjx) = Iv � I(�;yjr;�) : (7)

The termI(�;yjr;�) is the AMI of the diversity channel in
which� is the input,y the output, and the receiver perfectly
knows the channel state information (CSI), represented by
x. In general, this AMI depends on the joint distribution of
r and�, i.e., on the two factorsp(r) andp(�jr). However,
a more in depth analysis reveals that this AMI is indepen-
dent ofp(�jr). The reason is intuitive due to the fact that
the receiver knows perfectly the phases�k, whose realiza-
tions do not affect the receiver performance. This result
may also be proved in the following more rigorous man-
ner. In fact, being the phases�k perfectly known by the
receiver, it is possible to transform the vectory using the
diagonal unitary matrix

diag(e�j�1 ; e�j�2; : : : ; e�j�N ) : (8)

Since this transformation is reversible, it does not modify
the AMI (data processing theorem [16]). Furthermore, this
transformation does not change the statistics of the noise
vector. Hence, the AMII(�;yjr;�) is independent of
p(�jr).

Obviously, the AMI of the virtual channel is [15]

Iv = I(�; r;y) = H(y)�H(yj�; r) (9)

whereH(y) andH(yj�; r) are the entropy and the condi-
tional entropy ofy, respectively. This conditional entropy
is [15]-[19]

H(yj�; r) = N log2 2�e�
2 (10)

independently of the joint distribution of� andr. With a

change to polar coordinates,yi = vie
j i , and lettingv

4

=

(v1; v2; : : : ; vN ),  
4

= ( 1;  2; : : : ;  N ), it is possible to
express

H(y) = H(v; )

+

Z +1

0

: : :

Z +1

0

p(v1; : : : ; vN ) log2

NY
i=1

vi dv1 : : : dvN

= H(v; ) +
NX
i=1

Z +1

0

p(vi) log2 vi dvi (11)

which is a multidimensional version of (33) in [17]. Noting
thatH(v; ) � H(v) + H( ), with equality if and only
if v and are independent, we have

Inc � H(v) +H( ) +
NX
i=1

Z +1

0

p(vi) log2 vi dvi

�N log2 2�e�
2 � I(�;yjr;�) : (12)

The first and third terms depend on the probability density
functionp(v) only, which is independent of the conditional
distributionp(�jr), as shown in Appendix A, Lemma 1.
The termH( ) is maximized when has i.u.d. compo-
nents [15]. As shown in Appendix A, Lemma 2, has
i.u.d. components if� (and hence�) has i.u.d. com-
ponents, independently of the distribution ofr. In this
case,(12) holds with equality. Therefore, from (12) we
may conclude thatInc is maximum when vectorsr and�
are independent and� has i.u.d. components. This distri-
bution of� achieves capacity and the corresponding com-
ponents ofx have circular symmetry. 2

Corollary 1 The capacity-achieving distribution of x is
characterized by zero mean and uncorrelated components.

Proof. The proof is straightforward considering the inde-
pendence ofr and� and the circular symmetry of the com-
ponents ofx. 2

This result will be used in the proof of the following
theorem.

Theorem 2 For a transmission of N symbols over an
AWGN noncoherent channel, the capacity-achieving distri-
bution is not Gaussian.

Proof. We begin by searching for the probability density
functionp(x) which maximizes the AMIInc under a con-
stant power constraintZ

C
N

jjxjj2p(x)dx = K (13)

whereC denotes the set of complex numbers andK is a
constant. The constraint

R
C
N p(x)dx=1 is also necessary

due to the fact thatp(x) is a probability density function.
Using Lagrange multipliers, we have to maximize the ex-
pression at the top of this page. By means of variational
techniques, after some tedious but straightforward manip-
ulations we obtain that the capacity-achieving distribution
must satisfy the following conditionZ

C
N

p(yjx) log2 p(y) dy = �� log2 e+ �jjxjj2

+

Z
C
N

p(yjx) log2 p(yjx) dy (14)
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or equivalently2Z
C
N

p(yjx) log2
p(y)

p(yjx) dy = �� log2 e+�jjxjj2 : (15)

Using (4), we haveZ
C
N

p(yjx) log2 p(yjx) dy

= �N log2 2��
2 � log2 e

jjxjj2
2�2

� log2 e

2�2
(2N�2 + jjxjj2)

+

Z
C
N

p(yjx) log2 I0
�jyTx�j�dy (16)

where the following relation has been usedZ
C
N

jjyjj2p(yjx) dy

=
1

2�

Z 2�

0

Z
C
N

jjyjj2p(yjx; �) dyd�

= (2N�2 + jjxjj2) : (17)

Therefore, (14) becomesZ
C
N

p(yjx) log2 p(y) dy = �0 + �0jjxjj2

+

Z
C
N

p(yjx) log2 I0
�jyTx�j� dy : (18)

where

�0
4

= �� log2 e� N log2 2�e�
2 (19)

�0
4
= �� log2 e

�2
: (20)

We now consider the left hand side of (18). By con-
tradiction, ifx were Gaussian, it would have independent
components (being uncorrelated, see corollary 1), and its
probability density function would be

p(x) =
1

(2��2x)
N

exp

�
�jjxjj

2

2�2x

�
: (21)

The distribution ofy would be obviously Gaussian with
independent components as well

p(y) =
1

(2��2y)
N

exp

�
�jjyjj

2

2�2y

�
(22)

where�2y = �2x + �2. As a consequence, we would haveZ
C
N

p(yjx) log2 p(y) dy

= �N log2(2��
2
y)�

log2 e

2�2y

Z
C
N

jjyjj2p(yjx) dy

= �N log2(2��
2
y)�

log2 e

2�2y
(2N�2 + jjxjj2) (23)

2Eq. (15) may be interpreted as the continuous-distribution
constrained-power counterpart of theorem 5.4.3 of [18].

which clearly exhibits a quadratic dependence onx.
On the contrary, the right hand side of (18) is
not a quadratic form due to presence of the termR
C
N p(yjx) log2 I0

�jyTx�j� dy. Therefore,x cannot have
a Gaussian distribution. 2

The problem of finding the distributionofrwhich max-
imizes the AMI, presents some analytical difficulties which
could not be overcome. In particular, note that the maxi-
mizing distribution depends onN . For this reason, we now
consider an asymptotically tight, forN !1, lower bound
on channel capacity.

4 LOWER BOUND ON CHANNEL CAPACITY

We now provide a lower bound on channel capacity
which is tight for large values ofN , as proved in the next
section. This bound is the AMIInc for a specific probabil-
ity density functionp(x).

We assume that the vectorx is composed of i.i.d., zero-
mean, complex Gaussian random variables with indepen-
dent real and imaginary components,each with variance
�2x. Therefore, the probabilitydensity function ofx is given
by (21) and the SNR (2) is


 =
�2x
�2

: (24)

Under this assumption onp(x), the probability density
function ofy is obviously given by (22). In this case, the
AMI per channel use is

Inc
N

=
1

N

Z
C
N

Z
C
N

p(yjx)p(x) log2
p(yjx)
p(y)

dxdy

= � 1

N

Z
C
N

p(y) log2 p(y) dy

+
1

N

Z
C
N

Z
C
N

p(yjx)p(x) log2 p(yjx) dxdy

= log2 2�e�
2
y

+
1

N

Z
C
N

Z
C
N

p(yjx)p(x) log2 p(yjx) dxdy :(25)

Using (4) and (17), we have

Inc
N

= log2 2�e�
2
y � log2(2��

2)

� log2 e

2�2N

Z
C
N

jjxjj2p(x) dx

� log2 e

2�2N

Z
C
N

Z
C
N

jjyjj2p(yjx)p(x) dxdy

+
1

N

Z
C
N

Z
C
N

p(yjx)p(x) log2 I0
� jyTx�j

�2

�
dxdy

= log2(1 + 
) � 2
 log2 e

+
1

N

Z
C
N

Z
C
N

p(yjx)p(x) log2 I0
� jyTx�j

�2

�
dxdy
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= Cc � 2
 log2 e

+
1

N

Z
C
N

Z
C
N

p(yjx)p(x) log2 I0
� jyTx�j

�2

�
dxdy :

(26)

Hence, a lower bound on the capacity of the considered
noncoherent channel is

Cnc � Cc � 2
 log2 e

+
1

N

Z
C
N

Z
C
N

p(yjx)p(x) log2 I0
� jyTx�j

�2

�
dxdy :

(27)

The integral in (27) may be numerically calculated. In
fact, the argument of the integral depends onjjxjj, jjyjj and
jyTx�j, only. Computing first the integral with respect to
x, the value ofy is fixed and we may rotate the coordi-
nate system in such a way that the first axis has the same
direction ofy. Denoting byx0 andy0 the rotated vectors,
we havejyTx�j = jy0Tx0�j = jy01jjx01j = jjy0jjjx01j =
jjyjjjx01j. Therefore, after this rotation the integrand de-
pends onjjxjj, jjyjj andjx01j. Using the result of appendix
B, equations (4) and (21), and another change to polar co-
ordinates for the integral with respect toy, we may express
the last term in (27) as shown in equation (28) at the top of

the next page, where�
4
= 1 + 1



. This integral may be cal-

culated using the Gauss-Hermite quadrature formula [19]
and its complexity is independent ofN .

In Figure 1, the proposed lower bound on channel ca-
pacity is shown for various values ofN . For comparison,
the coherent channel capacity is also shown. It may be ob-
served that, for increasing values ofN , the lower bound
rapidly approaches the capacity of a coherent AWGN chan-
nel. This result was also found in [13] in the case ofM -ary
PSK input symbols and is in agreement with the experi-
ence which says that the limit represented by the perfor-
mance of an ideal coherent receiver may be reached, for
constant or slowly varying channel phase and continuous
transmissions, with practical pseudocoherent or noncoher-
ent schemes. Moreover, since forN � 10 the capacity
loss is negligible, a burst-mode transmission, even if it is
theoretically limited in capacity, it is not so in practice.

5 ASYMPTOTIC BEHAVIOR

We now analyze the asymptotic behavior forN ! 1
of the capacity of the considered noncoherent channel us-
ing some arguments similar to those in [13]. We prove the
following theorem.

Theorem 3 WhenN !1, the capacity of an AWGN non-
coherent channel approaches the capacity of a coherent
channel. The capacity-achieving distribution is asymptoti-
cally Gaussian with i.i.d. components.
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Figure 1: Lower bound on channel capacity for different values
ofN .

Proof. The AMI of the virtual channel may be expressed
as

Iv = I(�;x;y) = I(�;y)+I(x;yj�) = I(�;y)+Ic (29)

whereIc is the mutual information of the AWGN coherent
channel andI(�;y) is the AMI of the diversity channel in
which� is the input,y the output, and the receiver operates
without knowledge of CSI. Substituting (29) in (7), one has

Inc = Ic + I(�;y) � I(�;yjx) : (30)

As in the previous section, considering ap(x) given by
(21), we have

Cnc � Inc
N

=
Ic
N

+
I(�;y)

N
� I(�;yjx)

N

= Cc +
I(�;y)

N
� I(�;yjx)

N
: (31)

For this choice ofp(x), the random vectory is independent
of � and thenI(�;y) = 0, obtaining

Cnc � Cc � I(�;yjx)
N

: (32)

Let us now consider the property of the capacity-
achieving distribution, shown in theorem 1, of having a
phase vector� with i.u.d. components. This property al-
lows us to conclude thatI(�;y) = 0 even for the capacity-
achieving distribution. As a consequence, being the AMI
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1

N

Z
C
N

Z
C
N

p(yjx)p(x) log2 I0
� jyTx�j

�2

�
dxdy =

8

N�(N � 1)�(N )(
 + 1)N

�
Z
1

0

Z
1

0

Z �=2

0

e��
2

1
��2

2�21�
2
2(�1�2 sin�)

2N�3cos� I0

�
2p
�
�1�2 cos�

�
log2I0

�
2p
�
�1�2 cos�

�
d�1d�2d� (28)

I(�;yjx) non negative and noting thatIc=N � Cc, from
(30) we obtainCnc � Cc, as intuitively expected. Using
(32), we finally have

Cc � I(�;yjx)
N

� Cnc � Cc : (33)

We now consider the following diversity channel

y = zx+w (34)

wherez is the input andy the output. If the probability
density function ofx has the expression given by (21), this
channel is a diversity Rayleigh fading channel. The capac-
ity C of this channel is [20]

C � log2(1 +N
) : (35)

Therefore, considering the special casez = ej�, we have

I(�;yjx) � log2(1 + N
) (36)

and, from (33)

Cc � log2(1 + N
)

N
� Cnc � Cc : (37)

WhenN !1, the lower bound, and thenCnc, tends to the
limit represented by the capacityCc of a coherent channel.

Since the lower bound tends toCnc and is calculated as-
sumingx Gaussian with i.i.d. components, whenN !1
this distribution achieves capacity. 2

6 CONCLUSIONS

In this paper, the capacity of an AWGN channel in the
case of a noncoherent transmission ofN symbols has been
considered. It has been proved that the capacity-achieving
distribution is not composed of independent and identically
distributed zero-mean Gaussian components. An asymp-
totically tight, forN ! 1, lower bound has been pro-
vided. This bound shows that the capacity rapidly ap-
proaches that of the AWGN channel in the case of a co-
herent transmission. ForN � 10, this limit is practically
reached. Finally, this asymptotic result has been proved
and it has been shown that, whenN ! 1, the capacity-
achieving distribution is Gaussian with independent and
identically distributed zero-mean components.

The practical equivalence between coherent and nonco-
herent channels, in the case of a constant or slowly varying
phase rotation and continuous transmissions, demonstrated

by many years of experience in digital communications has
been theoretically proved. Besides noncoherent detection
schemes, this result applies to commonly used pseudoco-
herent detection schemes as well. It has been also shown
that, in the case of burst-mode transmissions, for practical
burst lengths, in principle a preamble is not necessary for
phase synchronization purposes.

APPENDIX A

In this appendix, we show two important lemmas used
in the proof of theorem 1. Expressing the Gaussian prob-
ability density functionp(yjx; �) in polar coordinates, we
have

p(v; jr; �)

=
NY
i=1

vi
2��2

exp

�
�v

2
i + r2i � 2viri cos( i � �i)

2�2

�
:

(38)

The marginal (conditional) probability density functions
are easily obtained

p(vjr; �) = p(vjr)

=
NY
i=1

vi
�2

exp

�
�v

2
i + r2i
2�2

�
I0
�viri
�2

�
(39)

p( jr; �) =
NY
i=1

�
1

2�
exp

�
� r2i
2�2

�

+
ri cos( i � �i)p

2��
exp

�
�r

2
i sin

2( i � �i)

2�2

�

� Q
�
�ri cos( i � �i)

�

��
(40)

whereQ(x) is the Gaussian Q function defined as

Q(x)
4

=
1p
2�

Z +1

x

exp

�
� t

2

2

�
dt : (41)

Lemma 1 The probability density function p(v) is inde-
pendent of the conditional distribution p(�jr).
Proof. We begin by noting that

p(vjr) =
Z
�N

p(vjr; �)p(�jr) d� (42)

where�
4

= [0; 2�). In general,p(vjr) would depend on
p(�jr). However, (39) shows thatp(vjr) is independent of
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p(�jr). As a consequence, it is independent ofp(�jr). Of
course, this property holds forp(v) also. 2

Lemma 2 If vector � has i.u.d. elements,  has also i.u.d.
components, independently of the distribution of r. Fur-
thermore, v and are independent.

Proof. From (40), we obtain

p( jr) =
Z
�N

p( jr; �)p(�jr) d� : (43)

Assumingp(�jr) =QN
i=1 p(�i) =

�
1

2�

�N
= p(�), for0 �

�i < 2�, due to the dependence on i� �i of the integrand
in (43), the integrals with respect to� and are equal. We

then obtainp( jr) = QN
i=1 p( i) =

�
1

2�

�N
= p( ), for

0 �  i < 2�.

From (38) and (39), ifp(�) = p( ) =
�
1

2�

�N
, it is

straightforward to verify thatp(v; jr) = p(vjr)p( ).
As a consequence, averaging with respect tor, we have
p(v; ) = p(v)p( ). 2

APPENDIX B

Let x
4

= (x1; x2; : : : ; xN )T be a vector ofN complex
variables and denote its norm byjjxjj. We now show that
the integral overC N of a generic functionf(jx1j; jjxjj)
may be expressed as

Z
C
N

f(jx1j; jjxjj) dx=
4�N

�(N � 1)

�
Z 1

0

Z �=2

0

�2N�1(sin�)2N�3 cos�f(� cos�; �)d�d� : (44)

In fact, beingjjxjj non-negative, by definition of the Dirac
delta function�(x) [21], we have

f(jx1j; jjxjj) =
Z 1

0

�(� � jjxjj)f(jx1j; �) d� : (45)

Defining~x
4

= (x2; : : : ; xN )T , we may express

Z
C
N

f(jx1j; jjxjj) dx

=

Z
1

0

�Z
C

�Z
C
N�1

�(� � jjxjj) d~x
�
f(jx1j; �) dx1

�
d�

=

Z
1

0

�Z
C

g(jx1j; �)f(jx1j; �) dx1
�
d� (46)

having defined

g(jx1j; �)4=
Z
C
N�1

�(� � jjxjj) d~x

=2�

Z
C
N�1

�(�2 � jjxjj2) d~x (47)

where the last equality can be easily shown. The function
g(jx1j; �) may be computed considering that

g(jx1j; �)= 2�

Z
C
N�1

�(�2 � jjxjj2) d~x

=2�

Z
C
N�1

�(�2 � jj~xjj2 � jx1j2) d~x (48)

and, with a change to polar coordinates

g(jx1j; �)

= 2�
2�N�1

�(N � 1)

Z
1

0

r2N�3�(�2 � r2 � jx1j2) dr

= �
2�N�1

�(N � 1)

Z 1

0

�N�2�(�2 � �� jx1j2) d�

= �
2�N�1

�(N � 1)
(�2 � jx1j2)N�2u(�2 � jx1j2) (49)

whereu(x) is the unit step function. Substituting (49) in
(46) and integrating with respect to the variablex1 in polar
coordinates, we obtain
Z
C
N

f(jx1j; jjxjj) dx=
4�N

�(N � 1)

�
Z
1

0

Z
1

0

�r(�2 � r2)N�2f(r; �)u(� � r) drd� : (50)

Finally, by the change of variables(�; r) = (�; � cos�),
we obtain (44).

Manuscript received on July 9, 1999.
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