
1

Robust Detection of Binary CPMs with Unknown
Modulation Index

Malek Messai, Member, IEEE, Giulio Colavolpe, Senior Member, IEEE, Karine Amis, Member, IEEE,
and Frédéric Guilloud, Member, IEEE,

Abstract—We consider soft-output detection of a binary con-
tinuous phase modulation (CPM) generated through a low-cost
transmitter, thus characterized by a significant modulation index
uncertainty, and sent over a channel affected by phase noise.
The proposed detector is designed by adopting a simplified
representation of a binary CPM signal with the principal com-
ponent of its Laurent decomposition and is obtained by using
the framework based on factor graphs and the sum-product
algorithm. It does not require an explicit estimation of the
modulation index nor of the channel phase and is very robust
to large uncertainties of the nominal value of the modulation
index. Being soft-output in nature, this detector can be employed
for iterative detection/decoding of practical coded schemes based
on a serial concatenation, possibly through a pseudo-random
interleaver, of an outer encoder and a CPM modulation format.

Keywords—Continuous phase modulation, modulation index mis-
match, phase noise, factor graph, sum product, iterative detection
and decoding.

I. INTRODUCTION

Continuous-phase modulations (CPMs) [1] are very inter-
esting modulation formats which combine a constant signal
envelope and excellent spectral efficiency properties [2]. In
particular, the constant envelope makes these modulations
insensitive to nonlinear distortions and thus very attractive
for an employ in satellite communications and in low-cost
and low-power consumption transmitter standards. An analog
implementation of the CPM modulator allows to further reduce
the transmitter cost, at the expense of possible variations of the
CPM waveform parameters around their nominal values. In
particular, the modulation index will vary since it depends on
the not well calibrated gain of the employed voltage-controlled
oscillator (VCO). As an example, in Bluetooth operating in
Basic Rate (BR) and Low Energy (LE) modes, the modulation
index is specified to be in the intervals [0.28, 0.35] and
[0.45, 0.55], respectively [3]. The interval of the modulation
index for the Digital Enhanced Cordless Telecommunication
Ultra Low Energy (DECT ULE) is [0.35, 0.7] [4]. In the
Automatic Identification System (AIS), the modulation index
is nominally equal to 0.5 but due to the imperfections of the
AIS equipments, a variation of ±10% is typically admitted [5].
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On the other hand, the optimal maximum a-posteriori
(MAP) sequence or symbol detectors for CPMs described in
the literature require a perfect knowledge of the modulation
index at the receiver. In addition, they can be implemented
through the Viterbi or the BCJR algorithm, respectively, only
when the CPM signal can be described through a finite-state
model, and thus when the modulation index is rational [6].
When the modulation index is unknown at the receiver or
irrational, the implementation of the optimal detector is still an
open problem although many suboptimal detectors have been
proposed.

One possible solution can be the adoption of a noncoherent
detector (e.g., see [7], [8] and references therein), due to its
robustness to the phase uncertainty induced by the imperfect
knowledge on the modulation index. As an example, in [9], a
noncoherent receiver for the Gaussian frequency shift keying
(GFSK) signal adopted in the Bluetooth standard is proposed.
This receiver can tolerate only a relatively small modulation
index deviation. Another alternative can be represented by the
adoption at the receiver of an algorithm for the estimation
of the modulation index [10] coupled with the low-complexity
algorithms described in [11] or in [12] which is built for a value
of the modulation index different from that used at the receiver
and properly compensated by using a per-survivor processing.

We here consider the very general problem of soft-input
soft-output (SISO) detection of a binary CPM signal with
an unknown modulation index transmitted over a channel
with phase noise. We adopt a simplified representation of
the CPM signal based on the principal component of its
Laurent decomposition [13] and describe the joint a-posteriori
probability of the transmitted symbols, the channel phase, and
the modulation index through a factor graph (FG) [14]. The
sum-product algorithm (SPA) is then advocated to compute the
a-posteriori probabilities of the transmitted symbols [14]. Due
to the recursive nature of the modulator which also makes the
CPM well suited for a concatenation with an outer error code,
no pilots are required to bootstrap detection. Being soft-output
in nature, the proposed algorithm is a good candidate to be
employed in iterative detection and decoding schemes.

The letter is organized as follows. The signal model is
described in Section II. The proposed algorithm is derived in
Section III. Simulations results are discussed in Section IV,
whereas conclusions are drawn in Section V.

II. SYSTEM MODEL

The complex envelope of a binary CPM signal can be
expressed as [1]

s(t,a, h) =

√
2Eb
T

exp{j2πh
∑
n

anq(t− nT )}, (1)
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where Eb is the energy per information bit, T the bit interval, h
the modulation index, the function q(t) is the phase-smoothing
response, and its derivative is the frequency pulse, assumed
of duration LT . The information bits a = {an}, assumed
independent, belong to the alphabet {±1}.

Based on Laurent representation, the complex envelope of
the CPM signal may be exactly expressed as [13]

s(t,a, h) =

K−1∑
k=0

∑
n

αk,npk(t− nT ) (2)

where K = 2(L−1) and the expressions of pulses {pk(t)}
and those of symbols {αk,n} as a function of the information
symbol sequence {an} may be found in [13]. By truncating
the summation in (2) considering only the first K < 2(L−1)

terms, we obtain an approximation of s(t,a, h). Most of the
signal power is concentrated in the first component, i.e., that
associated with the pulse {p0(t)}, which is called principal
component [13]. As a consequence, the principal component
may be used in (2) to attain a very good trade-off between
approximation quality and number of signal components [15],
[16]. In this case, it holds

α0,n = α0,n−1e
jπhan (3)

When the modulation index is rational, i.e., it can be expressed
as h = r/p, where r and p are relatively prime integers,
symbols {α0,n} take on p values [13].

An important feature of the Laurent decomposition is that
the pulse of the principal component weakly depends on the
value of the modulation index [10]. This observation will
be used for the derivation of the algorithm in Section III.
In low cost transmitters, the value of the modulation index
is often different from its nominal value which is instead
assumed at the receiver. In the following, we will denote by
htx the value of the modulation index at the transmitter and
by hrx its nominal value known at the receiver. We also define
he = htx − hrx as the modulation index mismatch between
transmitter and receiver. It is thus htx = hrx + he and we
will assume that hrx = r/p, where r and p are relatively
prime integers. On the contrary, he is assumed unknown
and modeled as a random variable with known distribution.
We consider transmission over an additive white Gaussian
noise (AWGN) channel possibly affected by phase noise. The
complex envelope of the received signal thus reads

r(t) = ejθ(t)s(t,a, hrx + he) + w(t) (4)

where w(t) is a complex-valued white Gaussian noise process
with independent components, each with two-sided power
spectral density N0, and θ(t) is the phase noise introduced
by the channel, modeled as a continuous-time Wiener process
with incremental variance over a signaling interval equal to σ2

∆.

III. PROPOSED RECEIVER

Approximating the useful signal through its principal com-
ponent only and exploiting the feature that the pulse of the
principal component weakly depends on the modulation index,
we can express the received signal as

r(t) w ejθ(t)
∑
n

α
(hrx)
0,n α

(he)
0,n p̂0(t− nT ) + w(t), (5)

where we denoted by p̂0(t) the pulse of the principal com-
ponent for the nominal value of the modulation index (hrx)
and having exploited the property, easily derived from (3), that
symbol α0,n related to the transmitted signal can be expressed
as the product of symbol α(hrx)

0,n corresponding to the nominal
CPM signal and symbol α(he)

0,n corresponding to a CPM signal
with modulation index he.

Under the assumption that the channel phase θ(t) is slowly
varying such that it can be considered constant over the
duration of pulse p̂0(t), an approximate sufficient statistic may
be obtained through a filter matched to pulse p̂0(t). We will
define

xn =

∫ +∞

−∞
r(t)p̂0(t− nT ) dt (6)

as the output, sampled at time nT , of the filter matched
to p̂0(t). Defining also θn = θ(nT ), φn = arg[α

(hrx)
0,n ],

δn = arg[α
(he)
0,n ], and ψn = θn + φn + δn, collecting

the samples of ψn into a vector ψ, and representing the
received signal onto an orthonormal basis and denoting by r its
vector representation, we can express, exploiting the constant
envelope property of any CPM signal, [16]

p(r|ψ)
∼∝
∏
n

Gn(ψn) (7)

with
Gn(ψn) = exp

{
1

N0
Re[xne

−ψn ]

}
. (8)

Samples θn satisfy the discrete-time Wiener model

θn = θn−1 + ∆n (9)

where {∆n} are real, independent, and identically distributed
Gaussian random variables, with mean zero and variance σ2

∆,
and θ0 is assumed uniformly distributed in [0, 2π). As far as the
stochastic model for he, it depends on the considered standard.
As an example, in the case of Bluetooth BR [17] he follows
a uniform distribution in the interval [0.28− hrx, 0.35− hrx],
whereas in the case of the AIS standard [5], it follows a
Gaussian distribution with mean 0.5− hrx and variance σ2

he
.

It is thus

ψn = θn + φn + δn
= θn−1 + ∆n + φn−1 + πhrxan + δn−1 + πhean
= ψn−1 + ∆n + πhrxan + πhean . (10)

Assuming that he has mean zero (this is always possible
by properly choosing hrx) and an even probability density
function (pdf), given an the random variable πhean is statisti-
cally equivalent to πhe. We will also assume that the random
variables yn = ∆n + πhe are independent,1 although this is
clearly not true. Thus, we may approximate

p(ψ|a) '
∏
n

p(ψn|ψn−1, an)

=
∏
n

Hn(an, ψn−1, ψn) (11)

1This assumption corresponds to the case when he can assume independent
values in different symbol intervals.
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Fig. 1. Portion of the FG corresponding to equation (14).

where

Hn(an, ψn−1, ψn) = f(ψn − ψn−1 − πhrxan) (12)

being f(yn) the pdf of the random variable yn that can be
easily computed from the a-priori information available at the
receiver (i.e., the distributions of ∆n and he and the fact that
they are independent). As an example, when he has uniform
distribution in [−ε, ε], we have

f(yn) =
1

2πε

[
Q
(yn − πε

σ∆

)
−Q

(yn + πε

σ∆

)]
(13)

where Q(x) = 1√
2π

∫ +∞
x

e−
u2

2 du.
We are now ready to derive the optimal MAP symbol

detection strategy. The a-posteriori joint distribution of vectors
a and ψ can be expressed as

p(a,ψ|r) ∝ p(r|ψ)p(ψ|a)P (a)

'
∏
n

Gn(ψn)Hn(an, ψn−1, ψn)P (an) . (14)

This joint distribution can be represented through a FG. One
section of it is shown in Fig. 1.

We can observe that it is cycle-free. Hence, the application to
it of the SPA with a non-iterative forward-backward schedule,
produces the exact marginal a-posteriori probabilities (APPs)
of bits an (except for the approximation related to the use of
the principal components only). With reference to the messages
in the figure, by applying the updating rules of the SPA,
messages µf,n(ψn) and µb,n(ψn) can be recursively computed
by means of the following forward and backward recursions:

µf,n(ψn) =
∑
an

P (an)

∫
µf,n−1(ψn−1)Hn(an, ψn−1, ψn)

·Gn(ψn) dψn−1 (15)

µb,n−1(ψn−1) =
∑
an

P (an)

∫
µb,n(ψn)Hn(an, ψn−1, ψn)

·Gn(ψn) dψn (16)

The extrinsic APPs of bits {an}, i.e., Pe(an) =
P (anr)/P (an) can be finally computed as

Pe(an) =

∫∫
µf,n−1(ψn−1)µb,n(ψn)

·Hn(an, ψn−1, ψn)Gn(ψn) dψn−1dψn (17)

This strategy involves integration and computation of con-
tinuous pdfs, and it is not suited for direct implementation.

A solution for this problem consists of the use of canonical
distributions, i.e., the pdfs µf,n(ψn) and µb,n(ψn) computed
by the algorithm are constrained to be in a certain “canon-
ical” family, characterized by some parameterization. Hence,
the forward and backward recursions reduce to propagating
and updating the parameters of the pdf rather than the pdf
itself. A very straightforward solution to implement (15)-(17)
is obtained by discretizing the channel phase [16]. In this
way, the pdfs µf,n(ψn) and µb,n(ψn) become probability
mass functions (pmfs) and the integrals in (15)-(17) become
summations. When the number D of discretization levels is
large enough, the resulting algorithm becomes optimal (in
the sense that its performance approaches that of the exact
algorithm). Other parameterizations are possible to reduce the
receiver complexity but they will not be considered here for a
lack of space.

IV. SIMULATION RESULTS

The performance of the proposed detector is assessed by
computer simulations in terms of bit error rate (BER) versus
Eb/N0, Eb being the received signal energy per information
bit. In all cases we used a value D = 20. No performance
improvement has been observed with a larger value of D.

We first consider an uncoded binary transmission using
the GFSK format described in the Bluetooth standard in BR
mode. In this case, the modulation index can take its value
in the interval [0.28, 0.35], randomly, but we will assume that
htx = 0.28. At the receiver side, for the proposed detector we
considered both cases of hrx = 0.3 and hrx = 1/3. In Fig. 2,
we compare the performance of the proposed algorithm with
that of the noncoherent detector in [9]. In this latter case, the
modulation index is estimated using an estimation period of
Ne = 50 symbols and parameters α and β described in [9]
have been optimized by simulations. The BER performance is
compared for different values of phase noise standard deviation
σ∆. We can observe that the proposed algorithm performs
better than that in [9] and, when the value of σ∆ is low, it
performs quite close to the receiver which perfectly knows the
modulation index and the channel phase (also shown in the
figure).

We now consider the serial concatenation, through a pseudo-
random interleaver of length 2048 bits, of a binary convo-
lutional encoder with generators (7, 5) (octal notation), and
a binary CPFSK modulation with an irrational transmission
modulation index of htx = π

5 . In this case, we compare,
for different values of the phase noise standard deviation, the
performance of the detection algorithm here proposed when
assuming hrx = 5/8, with that of the algorithm [12] which
assumes a perfect knowledge of the channel phase and the
modulation index. When the modulation index is irrational,
a trellis description is not possible and thus we have no
performance reference. For this reason, we also considered the
performance of the optimal detector when htx = hrx = 5

8 (a
value very close to the considered irrational modulation index)
and the channel phase is perfectly known at the receiver. For
all considered receivers, a number of 12 iterations between
detector and decoder is allowed. One may observe that the
performance of the proposed algorithm is very close to that in
[12] although this latter receiver has a perfect knowledge of htx
and the channel phase. The proposed algorithm is thus able to
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Fig. 2. Bluetooth (BR) detection in the presence of phase noise with standard
deviation equal to 2 and 5 degrees.

perform detection even when the modulation index is irrational
and not perfectly known and when there is a significant phase
noise.

V. CONCLUSION

In this paper, we have derived a robust soft-output detector
for binary CPM signals generated through a low-cost transmit-
ter, which leads to a modulation index error, and transmitted
over a channel affected by phase noise. The proposed algo-
rithm has been derived based on the Laurent representation of
a CPM signal where only the principal component has been
considered. Detection in the presence of an unknown modula-
tion index and a time-varying phase noise is performed based
on the sum-product algorithm working on a properly defined
factor graph. Being soft-output in nature, this detector can be
employed for iterative detection/decoding of practical coded
schemes based on a serial concatenation, possibly through a
pseudo-random interleaver, of an outer encoder and a CPM
modulation format.
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