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Theoretical Analysis and Performance Limits of
Noncoherent Sequence Detection of Coded PSK
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Abstract—in this paper, a theoretical performance analysis of in the presence of a random phase rotation of the received
noncoherent sequence detection schemes recently proposed by thgignal, modeled as constant during the entire transmission,
authors for combined detection and decoding of codedV/-ary 54 additive white Gaussian noise (AWGN). Since optimal

phase-shift keying (M -PSK) is presented. A method for the . . . .
numerical evaluation of the pairwise error probability—for which sequence detection requires a search of a path in a tree dia-

no closed-form expressions exist—is described, the classical uniondram, the required complexity increases exponentially with
bound is computed, and results are compared with computer the duration of the transmission. Proper approximations are
simulations. An upper bound on this pairwise error probability  proposed in [12] in order to reduce the problem to a search of a
is also presented. This upper bound may be effectively used for a4, i 5 trellis diagram and realize simple suboptimal schemes
the definition of an equivalent distance, which may be useful in based on the Viterbi algorithm. Besides being realizable, these
exhaustive searches for optimal codes. Using this bound, it is o . '

proven that, in the general coded case, the considered noncoherentschemes have the convenient feature of allowing us to remove
decoding schemes perform as close as desired to an optimaltthe constant phase assumption and encompassing time-varying
coherent receiver when a phase memory parameter is sufficiently phase models. For increasing complexity, the performance of
large. In the case of differentially encodedM-PSK, a simple hage receivers is shown to approach that of optimal coherent
expression of the asymptotic bit-error probabilty is derived, receivers by means of computer simulation [12]. A performance
whlch is in agreement with simulations for high as well as low - be obtained with e : h h
S|gna|-to_no|se ratio (SNR) ga|n may e obtaine -W|t reSpeCt to eX|St|ng SC eme-S, such as
those in [6] and [9], with acceptable levels of complexity—the
tradeoff between complexity and performance being simply
controlled by a parameter referred toiamplicit phase memory

and the number of trellis states [12]. As an example, assuming a
. INTRODUCTION value of implicit phase memory equal to the block length in [6],

N the technical literature, a growing interest has been rdoncoherent sequence detection outperforms multiple-symbol
I cently shown toward improved noncoherent detection or déifferential detection [6], as shown in [12] by means of com-
coding schemes [1]-[11]. As a general result of most of tHa!ter simulations. Moreover, noncoherent sequence detection
above bibliographical references, the performance of nond#s better performance with respect to the algorithm proposed
herent schemes based on extended windows of observatiof'dP], whenever the decoding complexity is constrained to an
the received signal improves, for increasing observation lengtffordable number of trellis states [12].
and receiver complexity, and rapidly approaches that of optimalln this paper, we theoretically analyze the performance of a
coherent receivers. Although this result has been mainly badi@ficoherent sequence detection scheme proposed in [12] for
on computer simulations, it has been analytically proven in tg@ded M -PSK. We first resort to a numerical evaluation of the
case of differentially encodeld -PSK [6], and, more recently, in pairwise error probability, which admits a closed-form expres-
the case of coded binary phase-shift keying (BPSK) [10], [llf_ion_ in very _special cases only. In fact, in tr_\is case, a suitgple

In [12], new noncoherent sequence detection schemes @scision variable may be expressed as an indefinite Hermitian
combined detection and decoding of coded linear modulatioidadratic form in a Gaussian nonzero mean vector, sometimes
have been proposed, which compare favorably with previou§[§‘/f6”9d to asoncentral Therefore, the method based on the
proposed solutions. This approach “moves beyond the cru@sidue theorem used in [13] foentralquadratic forms cannot
block detection found in this area, to more natural, logical ark$ useéd. Similar numerical methods are proposed in [14]-[16].
optimal trellis-based detection schemésThe starting point Based on the numerical evaluation of the pairwise error prob-

in [12] is the optimal noncoherent receiver which operaté®ility, we easily compute the classical union upper bound on
the bit-error probability. This bound is found to be in excellent
agreement with the simulation results presented in [12].
Manuscript received July 20, 1998; revised February 17, 2000. Thisworkwas! [9], it was noted that optimal codes under coherent de-
supported by Ministero dell’'Universita e della Ricerca Scientifica e Tecnologi€0ding are not necessarily optimal under noncoherent decoding.
(MURST), Italy. The material in this paper was presented in part at the IEEfhjs phenomenon also occurs in the considered noncoherent
International Conference on Communications (ICC’98), Atlanta, GA. h h in Section IV. | inciol . he derived
The authors are with the Dipartimento di Ingegneria dell’Informazione, Un§cl emes, as shown in Section IV. In princip e_, using the derive
versita di Parma, 43100 Parma, Italy. _ _ . union bound, we could perform an exhaustive search for op-
Communicated by E. Soljanin, Associate Editor for Coding Techniques. timal codes. However, the required computational effort would
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be heavy because possible codes should be compared in terms

1Quoted from an anonymous review of [12]. of the entire curve of bit-error probability versus signal-to-noise
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ratio (SNR), instead of a single parameter, such as the Euclide¢g,_, d,_,
distance which is sufficient in the case of coherent decodir | 1
For this reason, we introduce an upper bound on the pairw
error probability that allows us to define a parameter, referred
asequivalent distancavhich plays a role similar to that of the
Euclidean distance in the case of coherent decoding. The
imum equivalent distance provides a comprehensive desct 1 -1
tion of the performance of a specific code on a random-phsg
AWGN channel. The concept of equivalent distance has be
previously proposed in the case of full respogeary contin- 1ol
uous phase modulations in [17], where the error probability, ex- , , , i
pressed in terms of the time-continuous waveform by meanSFaﬁ' 1. Decoder trellis for differentially encoded BPSK aNd= 4.
the Marcum function, is approximated as a Gaussiafunc-
tion.

Using this equivalent distance we prove that, for any giv
code, the considered noncoherent receivers have a performa{ﬂ
which approaches that of the optimal coherent receiver when i
implicit phase memory parameter increases (in the foIIowinga
we denote withV the implicit phase memory). Although when : y
N — oo a code which is optimal under coherent decoding @‘/’[

also optimal under noncoherent decoding, this is not necessaffiyions such as tre!lls—coded_ modulaﬂo_ns (TCM)' .
true for finite values ofN. In this case, a search for optimal he branch metrics of a Viterbi algorithm which realizes the

codes may be performed using the proposed minimum equi g_nsidered noncoherent sequence detection or decoding scheme

lent distance. are [12]

For noncoherent sequence detection of differentially en- N—1
coded) -PSK, we derive a simple expression of the asymptotic A = Re{ Z xkxz_iézék_i} (2)
high-SNR bit-error probability which is in very good agreement i=1
with simulations for low SNR as well. Using this expression, wg, which, the parameteN plays the role of an implicit phase
explici.tly confirm the propert.y of these noncoherent recei\{efﬁemory and{é,} is a hypothetical code sequence. Given the
of having a performance which approaches that of the optimajging rule, these branch metrics may be expressed in terms of
poherent receiver when the implicit phase memory paramefgg hypothetical information sequenéé; }, uniquely associ-
INCreases. ated to the code sequen{@,}. As an example, in the case of

differential encoding, the branch metrics (2) become

-1 1

coder structures which consist of only one shift register with
eque ratel /n, wherer is the number of code symbols per in-
ation symbol, are consideredlhe number of code states
. = M¥~1, in which denotes the code constraint length.
In the numerical examples, only the described codes are con-
dered. However, for generality, this paper addresses the case
# M—the casel!’ < M being of interest in some appli-

Il. SIGNAL MODEL AND NONCOHERENTSEQUENCEDETECTION

N-1 1—1
Assuming absence of intersymbol interference, the samples A\ = Re Z i H al_ (3)
xy, at the output of a filter matched to the transmitted pulse may )

be expressed as [12]

m=0

Even using small values df (a few units) a performance very
o = ened® + g, (1) close to that of coherent detection or decoding may be obtained
[12].
in which, the code symbols:;, } belong to am/-PSK alphabet  According to (2), a trellis state may be properly defined in

terms of~ information symbols as
2rm

A i
AS{% i pp="F;m=0,1,---,M -1} A
M Ok = (Ar—1, G2, Gr—vy)
and are assumed to be derived from an information sequence . . _ N s for differential encodin and = N/n+r—2
{ax}, composed of independent and identically distribut = g A

svmbols belonaing to at/’-arv alohabet. by means of someor convolutional encoding, and the resulting number of states
ym ging yap - Y is S = M7 [12]. In fact, in the case of differential encoding,
coding rule,f is a constant phase shift introduced by th

channel, andn; are independent, identically distributedﬁ may be observed that the branch metrics (3) depend on the

. . . turrent symboé;, and the previousv/ — 2 information symbols.
zero-mean, complex, Gaussian random variables with inde- : . . .
) : . . e trellis structure in the case of differentially encoded BPSK
pendent real and imaginary components, each with varian

- e e T UONTY L A
02 = (Ny/2Es), where N, is the one-sided power spectral’_ 2) andN =4 is shown in Fig. 1§ = 2 =4in th|s_

. . ) case). We remark that the noncoherent nature of the considered
density of the bandpass noise alid is symbol energy.

I [12], 0 cading rles or which symbols, ande, belong - IR S0 T BIERREE T BN 0L M R i
to the samé\/-ary alphabetd (M’ = M) are explicitly con- i q ' P

sidered in the simulations: differential encoding, specified be does not affect the receiver performance—in the following

. . . alerivations = 0 is assumed.
the recursiony, = cx_1ax, andM -ary convolutional encoding, b
with encoder structure described in [9]. In the latter case, en20ther rates are possible using multiple shift registers.



COLAVOLPE AND RAHELI: THEORETICAL ANALYSIS AND PERFORMANCE LIMITS OF NONCOHERENT SEQUENCE DETECTION OF CODED PSK 1485

k-1 k k+1 k+2 k+3 k+4 k+5 In this case, the classical union bound (4) on the probability of
{a} 1 1 1 i 1 1 bit error P, simplifies to
k
. 1 . .
{iu} S S S S R B < —— Y Wa.d)Pla—a) (5)
{a} 1 1 1 1 1 1 1 082 M 2
@ 1 -t 1 -1 1 1 1 in which the transmitted information sequeneés arbitrarily

selected. For example, for both the described differential and
O convolutional encoding rules, we may assume that the trans-
mitted information sequence is given by = 1, V¢, and the
o corresponding code sequence is such¢hat 1, Vi. The theo-
retical results presented in this paper are relative to the general
case (4); however, examples and numerical results are given for

o\ o0 o o} o "
© ' codes satisfying these symmetry conditions.
N The pairwise error probability’(a — a) is the probability
o o O-=-O=-- o that the sum of the branch metrigs relative to the erroneous
\ y / path exceeds the sum of the metrigson the correct path. An
D=4 y=2 error event beginning at timé and involving D information
symbols ends at timé + D + v. Hence,P(a — a) may be
Fig. 2. An error event for differentially encoded BPSK aNd= 4. expressed in terms of the decision variable
e
I1l. NUMERICAL EVALUATION OF THE UNION BOUND y 2 Z = N
The classical union bouadn the probability of bit erroi, i=k
has expression [18] In the steady state, the statistics of this decision variable are

1 X X independent of.. Without loss of generality, we may select a
b, < Tog, M > P(a)) b(a,a)P(a— a) (4)  suitable value ok in order to simplify the notation. Specifically,
2 a a#a we use a value such that the decision variatdaly depends on
. . A A ' ' signal samples; with index: > 0 (for examplek = N — 1
in whicha = {a;} anda = {a,} denote the information se- for differential encoding ané& = N/» — 1 for convolutional
quences corresponding to the correct and erroneous pathsefroding). With this assumptiopmay be expressed in terms of
spectively,b(a, a) is the number of bit errors entailed by the,,o saussian vectar 2 (z0, 21, -+, xp_1)7 of P successive

error event(a, a), P(a — @) is the pairwise error probability, ,a4ched filter outputs. The actual value Bfdepends on code

and P(a) is thea priori probability of sequence. ASSUMING o4 4 cteristics, such as rate and constraint length. For example,
a duration of the error event dd + v symbol intervals, the . (6) at the bottom of this page.

correct and erroneous paths differ at mostlysymbols. As —cqpgitionally on a specific transmitted sequence, the
an example, in the case of a differentially encoded BPSK Wi, \ssian vector has independent complex Gaussian com-
N = 4 whose trellis diagram is shown in Fig. 1, an error eve’btonentSar — ¢ + n, with meanc; and variance2o2. Its

T - T T T .

of duration six symbolintervald{ = 4andy = N =2 =2)is  ongitional mean vector and covariance matrix are
shown in Fig. 2, along with the information and code sequences

associated with the correct and erroneous paths. Ny ﬁE{z} = (co,c1,7 7+, cp_1)” (7
If proper symmetry conditions on the considered code, re- A H 9

ceivr—lzor rrl?etric)s/, and git labeling are verified, the inner sum in Co =E{(z —mp)(z —1,)" } = 20°1 (8)

(4) may be independent of the transmitted sequende the \here denotes the identity matrix arfd is the transpose

case of Gray labeling, the differential and convolutional codegnjugate operator.

considered in the examples satisfy these conditions under thggr a4 given error everfu, &), the random variablg may be

general class of noncoherent decoders which maximize an adipressed as a quadratic form and the pairwise error probability

trary likelihood function expressed in terms of the output of @ given by

correlator front-end [19]. The considered noncoherent schemes

belong to this class. This implies that, in the performance evalu- P(a— a) = P{y > 0} = P{z" Az > 0} 9)

ation, we may assume that a specific sequenisgransmitted. " . .
y P q where the Hermitia® x P matrix A has entries

3The terminology “union bound” is used here, though more appropriate for

the error-even probability. Ai,j = @@j - CiC;'

(10)

_[2N+D -3, for differentially encoded\/-PSK (6)
T\ n(D+2N/n+v—3), for convolutionally encoded/-PSK
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in which ¢; is the:th code symbol associated with the considdistribution with two degrees of freedom [20], [21]. Letting
ered erroneous sequence. Despite the factahatd A indi- , 2 1|2, its mean, variance, and bilateral Laplace transform

vidually depend on the transmitted sequence, for the consideggghe probability density function are, respectively, for# 0
codes the quadratic form (9) does not, in agreement with tf], [21]

mentioned symmetry conditions.

In order to describe the structure of matdxit is necessary to g, =By} = pi(20% + [n2, ) (14)
introduce another parameter, denotedIby which represents 03_ =u3(40'4 4 452 |7, 2) (15)
the maximum number of erroneous code symbols entailed by ' ) 55
an error event of lengt® + ~. With this definition, matrixA, v, (s) =— P ox { iPi } (16)
being Hermitian, is uniquely defined by’ columns only. As ST h ST h

an example, in the special case of an error event such as %%res Jay .. ]2 andp; Jay —1/2u;02. Due to the indepen-
shown in Fig. 2, for whichD = 4, D' = 3, and forNV =4 . éf%:;a%aom vaﬁélb_le,s thegizlatéral Laplace transﬁ)‘orm
(hencet = 3 andP = 9), noting that¢; = ¢; for ¢ < & and - P

i > k+ D' — 1, the matrixA may be expressed as of the probability density function af may be expressed as

2F
O B O —Di SSip;
v, = . 17
A=|B" ¢ D (11) os) Es—piexp{s—pi} "
O D O

Since a closed-form expression of the probability density
whereB, C, andD are defined at the bottom of this page anlinction of y does not exist, for the evaluation éfla — &)

Ois a3 x 3 zero-entry matrix. one could use¥,(s) and the residue theorem as in [13]
This matrix may be diagonalized ab = QMQ ™", where

N . . . . . 1 [ W, (s)
M = diag (p;) is the diagonal eigenvalue matrix df (1; de- Pla—a)=1-P{y<0l=1- _/ it ASZAD 8

notes theith eigenvalue) is unitary (i.e..Q™' = Q") and 2 Jemjoo 8
its columns are the elgenvectorsA)fSlnceA is H_erm|t|an, its 14 Z Res 4(8) (18)
eigenvalues are real. As shown in Appendix Ay is a nonzero s RHD

eigenvalue ofd, —. is also an eigenvalue; hence, the number ) I dth id fth
of nonzero eigenvalues is even. The quadratic form may be d{1€réc > 0is a proper small constant and the residues of the

pressed as singularities in the right half-plane (RHP) are considered, with
the exception of the pole for = 0. The property of the eigen-
25 values of matrixA, shown in Appendix A, of being in equal
-1
y=z"Az = 2"QMQ 'z = 2" Mz = Z pilzil*  (12)  and opposite real pairs allows us to conclude that singulari-
i=1 ties p; of the function¥,,(s) share the same property. Unfor-

. . A nately, th ingulariti r ntial and their resi m
in whichz = Q@ 'z = Q" z and2E denotes the even numbertu ately, these s guia ties are essential and the €S dues may
. not be expressed in a closed form. Several numerical methods
of nonzero eigenvalues. . . : i
; . . .___are known in the literature for the computation of these residues
The random vectog is Gaussian with mean and covarianc

?see [14]-[16], and references therein). Among the various op-

given by tions, we calculated directly the sum of the residues by numer-
n A E{z} =Q 'y ical integration on a sufficiently large square path including all
i ", * T T singularities in the right half-plane.
= Q" (cosex,mep1)” = (e w55 M) In the case of the considered codes for which the described
c, 2 E{(z—n,)(z—n,)"} symmetry conditions for the validity of (5) hold, it is possible
_ QHE{(:,: )@ —n,)71Q = 2021 (13) to truncate the union bound considering only error events with

D < Dy, possibly selectind)q in such a way that the contri-
Therefore; are complex, Gaussian, independent random vahution of error events witlh > Dy is negligible. In the case of
ables with nonzero mean aid|? have a noncentral chi-squaredifferentially encoded QPSK, Fig. 3 shows the truncated upper

A

(6 = c)  co(hyr = Gg1)  co(Cqo — Ciga)

Ay Ak * ke * ke *
B=|calG-cq) a (Ck+1 - Ck+1) Cl(ck+2 - Ck+2)
~k * Ak * Ak *
(85, — ;) C2(¢k+1 - Ck+1) C2(¢k+2 - Ck+2)
JU N PR .
A 0 Cry1Ck — Chy1Ck Cry2Ck — ChyaCk
C=| &éy1 —cie 0 & LGyl — G C
- kCh+1 kCk+1 k4+2Ck+1 k+2Ck+1
JNODN & Ak S *
CrCh+2 = CpCh42  Cpy1Ch42 — Cpy1Ch42
Aok sk A%k * Aok sk
A cp—3(&, — ¢;) CP—3(Ck+1 - Ck+1) CP—3(Ck+2 - Ck+2)
o= A~k * Ak * Ak *
D= CP—Q(Ck - Ck) CP—Q(ck_H - Ck+1) CP—2(0k+2 — Crt2

cp—1(8; — ¢&)  ep—1(Gq1 — Chy1)  cr—1(Ghyo — Ciga)
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Fig. 3. Upper bound for differentially encoded QPSK (receiver with= 4), Fig. 4. Upper bound for QPSK with the convolutional code of rgteé and
for various values ofD, and comparison with simulation results. Thecqnstraint lengthy = 3 considered in [12], for various values &,, and
asymptotic high-SNR performance derived in Section V is also shown. comparison with simulation results (receiver with= 8).

bound for the receiver witt. = 4 and compares it with the By proper|y Ordering the eigenva'ues Af we may express
results of computer simulations. We may observe that the an@lz) as

ysis is in very good agreement with simulation. In the figure,

various values of parametél, are considered. The asymptotic 2F E E

behavior for high SNR is not affected by the valuelaf, con- 4 =" p;[z]* = > pai1(|z2im1 | —|22i?) = >_ w; (20)
firming a good convergence of the union bound. In the figure, =1 i=1 i=1

the asymptotic high-SNR performance based on the most prob-

able error events, analytically derived in closed form in Seg; \vhich w; A pizie1(|z2i1|? — |#24]2). Using (14) and (15),
tion V, is also shown. Fig. 4 shows the truncated upper boupg have

for QPSK with the convolutional code of ratg2, constraint
lengthr = 3, and generatofsl33, 231 considered in [12] and
compares it with computer simulations. This figure confirms the
validity of the conclusions previously derived in the absence of ;2 _g;4/2. 4 4522 | (|77ZZ7-71 |2 + 7z
coding and shows that the analysis is again in good agreement !

with simulation.

) (21)
2) . (22)

2
Tho; :E{wz} = M2i—1 (|77Z27'_1| - |77Z27'

The moment generating functiali{c*¥} [20], after some
IV. UPPERBOUND ON THE PAIRWISE ERROR PROBABILITY straightforward manipulations, may be written as

The described method for the computation of the truncated cy ey
union bound cannot be efficiently used in the search for 0@-{‘3 b= /_OOC py(y) dy = ¥y(=C)

timal codes for noncoherent decoding because, for each possible o §2

code, the entire curve of bit-error probability versus SNR has to H 1 Nw: C + =5 ¢

be derived. In this section, we introduce an upper bound on the el Apz, 104C? 1—4p3, ;042
i

pairwise error probability, in order to define a parameter which
could play a role similar to that of the Euclidean distance in tr}ﬁ

case of coherent detection.
The Chernoff bound on the pairwise error probability is A 9 5
Sfui = a%uz- - 8“37‘,—104 = 402“37‘,—1 (|77Z2i—1| + |7722i ) .

P(a—a) = P{y > 0} < E{c*} (19) (24)

which

for each value of > 0 [20]. The tightest upper bound may be etting 15, £ max;{|u|}, the integral which defines the mo-
(19).

1 1
4Base4 representation. C < [_ 2uA402 ’ 2#/\402}
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only. In order to minimize{c%¥}, we note that for values @f  to the modified Chernoff bound [23], although the derivation is
such thatiy3,0%¢? < 1,i.e.,¢ < (1/2up0?), the following  here different. The bound reads

approximation holds: 1 2

E &2 $2 P(“ﬁ&)zp{yzo}ﬁmexp{—ﬁ}

B{et?} 2 [T expq nu ¢ + =22 b = expg myC + 21¢ .
=1 7 2 2 1 dgq deq
(25) = P s T2 ) GO
20
wheren, = > n,, ands2 £ S°F 52 . The minimum of where
approximation (25) is achieved fgs = —(#,/s2) and equals A 1 o,
exp{—(nZ/2s2)}. This result may be considered an approxi- Qz) = \/7/ e T dt
w Jz

mate minimum ofE{c¢¥} if the inequality(y < (1/2ppr0?)
is verified, i.e., recalling (21), (22), and the definitiongjf , if is the Gaussiad function and we used the property that, for

o z >3
2 2
5 202, Z; fait (|77Z2"’1| 7 ) Q(x) = Lefl‘7 <e T, (31)
20%Co = — 52 =—"% ) xN/ 27
y 2 2
2 El Hai—1 (|77Z2f—1 "+ Im-e, ) The bound (30) is evidently tighter than (27) because they differ
for a multiplying factor only, which is less than 1 g > 3/%
W- (26)  This condition is always met for pairwise error probabilities less

than0.35. In addition, if ‘é; > 3, the bound may be approxi-

This condition i_s_independent _ofthe_Sl_\IR and depends on matghgted by the Gaussia@ function as suggested by (31). This
A only. We verified that (26) is satisfied for every error evergongition is verified for pairwise error probabilities less then
we considered. The validity of this condition will be explicitly19—3, |n the following, we denote this approximate bound as

addressed in a following paragraph. Gaussian bound
Based on the above result, the approximate Chernoff uppefye now prove an important property of the considered non-
bound on the pairwise error probability is coherent receivers. We begin with a property of the equivalent
n distance and one of the proposed bounds.
P a)=P{y>0} < E - , . "
(a—a) {y=0} < {eXp{ s2 y} } Lemma 1: The equivalent distance of any error evésmta)

2 2 satisfies
~ expy — 55 ¢ = €Xps ——= 27) _
2sy 8o Allm deq = dp (32)

in which in which dg is the Euclidean distance of the error event in co-
E 2 5 herent decoding.
A 2nylo El H2i—1 (|77Z2f—1| =112 ) Proof: In Appendix B, it is shown that the equivalent dis-
deq = P - - (28) tance of any error event may be expressed as
Yy 2 2
E /“Lgifl (|77227'71 | + |77227'| ) D’ 1
P— 2 2 2
This parameter can be calculated without explicitly diagonal- hich
izing matrix A. In fact, expressing: as a sum of,, and noise in-whic
terms, it may be shown that ([22, Appendix A]) ~ k4D’—1i—1
it An| A2=2 3 Y Re[(1-cieiae))]. (34)
dog = ——=——21 (29) i=k  j=k
eq 5
Ve A, WhenN — oo, alsoP — oo andd?, — d,. O

Parametedi., determines the asymptotic high-SNR behavior of Lemma 2: When N — oo, the approximate Chernoff and
the pairwise error probability and plays a role similar to thabaussian upper bounds are asymptotically exact. The Gaussian
of the Euclidean distance in coherent decoding; for this reastmound is also asymptotically tight.

it is referred to agequivalent distancef the error event. We

remark that this approach may be applied whenever the decision efrzgznigeaﬁgpaesndrz( ?o]':?craelll prg)?;(t:fgatsl?r?(t:r; iﬂgroégzg?an
variable is a quadratic form in a nonzero mean Gaussian vec ODrp ymp y '

As an example, an equivalent distance may be similarly defin aund asymptotically coincides with the pairwise error proba-
; p'e. qu : y y i ity in coherent decoding (Lemma 1), it is also asymptotically
in the case of the receiver proposed in [9].

A tighter upper bound may be obtained in a more involvettlaght' H
manner (see [22, Appendix C] for details), under the same asSince these lemmas hold for every error event, the following

sumption (26) (i.e.du3,0%¢2 < 1). This bound is identical theorems are easily proven.
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TABLE |

Gk—18k—-20k—3
LIST OF ERROR EVENTS WITH INCREASING EQUIVALENT DISTANCE, FOR

1 11 DIFFERENTIALLY ENCODED QPSK WITH N = 5. THE CONSTELLATION
jo1 1 PoiNTs {1, 7, —1,—j} AREDENOTED BY {0, 1,2, 3}, RESPECTIVELY
{éx} Equivalent distance
G031
13 1.33333
31
15 103 1.78885
301
1 1 -j 1313 1.80907
_ _ _ _ 3131
Fig. 5. Most probable error evetiy, for differentially encoded QPSK with
N = 5. 13013 1.82574
31031
Theorem 1:The union bound for coherent decoding and 130013 1.83973
that for the considered noncoherent decoding schemes coincide )
whenN — oo. 310031
Theorem 2: WhenN — oo, a code which is optimal under 22 1.88562
coherent decoding is also optimal under noncoherent decoding. 121 1.89737
For finite values ofV, this is not necessarily true. 393
Based on Theorems 1 and 2, we may conclude that any coded 069
scheme may be decoded noncoherently with performance as 1331 1.90693
close as desired to that of an optimal coherent receiver. How- 3113
ever, for finite complexity a search for optimal codes may be 13031 1.91485
useful. Since for high SNR, the performance is determined by ’
the error events with minimum equivalent distance, this param- 31013
eter may be used in the search for optimal codes. 130031 1.92154
In order to give examples, we now consider differentially en-
codedM -PSK. In this case the mentioned symmetry conditions 310013
hold; hence, we may assume the symbol sequeneel, Vi, is
transmitted. By direct computation of the equivalent distance or
L L . - . . 332 2.23607
pairwise error probability, as described in Section I, it is easy
to verify that forV > 4, the most probable error events starting
H ! H N
at timek are&, and&y, characterized by 0> 1,1—7j,2— —1,3— —j

~ j(2w /M) o —j(2mn/M
i = aped @M G g =i (2/M)

and &y is considered, along with one of the two second most prob-
ar = ape M) Gy 1 = ape? @M able error events (denoted By), and the least probable error
events listed in Table | (denoted By). This figure confirms that
respectively D = 2 and P = 2N — 1, according to (6)). In the Gaussian bound is more accurate than the derived Chernoff
the special case af/ = 2 (BPSK), the error event§, and bound, as predicted.
&} coincide. The error everdly is shown in Fig. 5 forM = 4 Alist similar to thatin Table | is shown in Table Il for convolu-
(QPSK) andV = 5, along with the relevant trellis states. tionally encoded QPSK withV = 8. We note that the minimum
The complete list of principal error events for differentiallyequivalent distance is increased, with respect to differentially
encoded QPSK witlvV = 5 is shown in Table | along with the encoded QPSK, due to the effect of the convolutional code.
relative equivalent distances. A minimum distancd 63333 As a final remark, we note that Theorems 1 and 2, derived in
is exhibited by error event&, and&/. There exist two second this section using the asymptotic property of the equivalent dis-
most probable error events with distarices885. Atthe bottom tance (Lemma 1) and tightness of the modified Chernoff bound
of the table, we show a less frequent error event which is cdit-emma 2), may be also derived using an asymptotic property
sidered in the following figure. of the eigenvalues of matrid. This is shown in Appendix C,
In Fig. 6, the exact pairwise error probability, the Gaussiamhere the Marcungd) function and its asymptotic behavior de-
and the Chernoff bound are shown for three typical error evestsribed in Section V are also used. This appendix may be viewed
listed in Table I. In this figure, the minimum-distance error everas an alternative simplified proof of the theorems. We decided to
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10" _ TABLE I
S DRSS LIST OF ERROREVENTS WITH INCREASING EQUIVALENT DISTANCE, FOR QPSK
1 0'2 e WITH THE CONVOLUTIONAL CODE OF RATE 1/2 AND CONSTRAINT LENGTH
v = 3 CONSIDERED IN[12] (N = 8). THE CONSTELLATION POINTS
10° {1,j,—1,—j} ARE DENOTED BY {0, 1, 2, 3}, RESPECTIVELY
= 4
= 10
8 4o° ax} | Equivalent dist
§ 10 {aw} quivalent distance
a 10° 1 3.51978
S .,
a—) 10 3
% 10° 21 3.57071
£ 10” 23
& o
11 3.70809
=11
10" Gaussian bound 29 3.73497
107 — — — - Chernoff bound )
2 4 6 8 213 3.75983
Ey/Ng [dB
»/No [dB] 931
Fig. 6. Exact expression, Gaussian and Chernoff bound on the pairwise error 2 3.90868
probability of three typical error events for differentially encoded QPSK with
N = 5.&, is one of the two most probable error eveils, = 1.33333), &; 2133 3.93170
is one of the two second most probable error evéiits = 1.78885), and€&,
is the least probable error event listed in Tab{dJ, = 2.23607). 2201
2203
emphasize the approach based on the modified Chernoff bound 2311
because it allows us to introduce the important tool referred to
as equivalent distance. 13 3.96862
31
V. EXPRESSION OFF, FORDIFFERENTIALLY ENCODED M -PSK 101 3.07148
In this section, we derive a closed-form expression of the 203
asymptotic bit-error probability for noncoherent sequence de-
tection of differentially encoded/-PSK. Since in this case the 1123 3.97387
mentioned symmetry conditions hold, we may assume the sym- 2131
bolsc; = 1, Vi, are transmitted.
As already mentioned in Section IV, the most probable error 2313
events starting at timg are &, and;‘(), with &, characterized 3321
by &k — akeJ(Qﬂ'/J\l)’ &k-l—l _ ake—](Qﬂ'/J\l) (D — 2andP =
2N —1). Assuming Gray mapping, the number of corresponding
errored bits is 2. The asymptotic bit-error probability depends 0-1,1—5452—--1,3——j

on the pairwise error probability of these error events only. In
the following, we consider onlg, because the pairwise error
probabilities corresponding  and&; are equal for symmetry. iy which

In the case of error everfly, D’ = 1 and matrixA has .
nonzero elements in the middle row and column only (i.e., those pe & 1
with index N — 1). This row is(a,---,a,0,a,---,a), where la| VP —1

a 2 e3@/M) _1 and the zero element is in the middle position 4., is a normalizing factor such that|? =
(obviously, elements of the middle column are determined be- 24 1o o

: . ; - From (20),y = pu1fz1 2? = p(Jz1]? = |22f*) = wi.
caused is Hermitian). In this case, there are two nonzero €igeNrance, using the results in [20, Appendix 4.B], the pairwise

values error probability corresponding ), is
paz = £VE —1al @5 pe) = Ply > 0} = P{laf* > |=*)
) . o . y Lo (Inalns]
with the following corresponding eigenvectors: = 721 M — I | ===
g p g g Q]W <\/ﬁ’ \/ﬁ 2 0 202

q :(bog’---,bOé,Oé,bOé,"',bOé)T (36) - exp _|7721|2 + |7722|2
gy =(—ba, -, —ba, a, —bex, - -, —ba) " (37) 452
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1 1 |77z | |77z | 10"
=-+:Qum <—17 = e
2 2 V202 /202 s
1 |77z | |77z |
- QM < =, - (38) 2
2 V202 /202 10
where =
= 10°
a1l [ e
Io(z) = — / exp{xzcos a} da B9 s .
27 0 i ! :‘_C:; \Q\&
. . . 5 107 AR
is the zeroth-order modified Bessel function of the first kind, =, \\\
=t Coherent receiver \t‘
a [T z? + 22 8 10° A N=4, simulation R
Qu(x1,x2) = / exp| — 5 Io(z1z)xdx  (40) n".é <« N=5, simulation W
xr2 X = /| T N=4 ‘
10° | T N=
is the Marcumy function, and we have used the property [24 T fos
Qu(xy,x2) + Qp(w2, 21) 107
24l 2 4 Es st 10
=1-+exp <— 5 ) Io(z122). (41) o/ No [dB]

Fig. 7. Asymptotic performance for differentially encoded QPSK, various
In (38),7., andn., are the sum of the conjugates of the elemenyslues ofN, and comparison with simulation results.
of g, andg,, respectively,
finite. In fact, substituting in (42) the expression @fand b,
ey = (P — 1)b*a* + o letting (a/|a|) = ¢/, and recalling thate| = (1/+/2), we have

Ne = —(P — 1)V a™ + o™, (42)

T %\/P—i— 2vP —1cosp
The asymptotic bit-error probability for high SNR is

|77::2|=%\/P—2\/P—1cos/3 (44)

(43)

P(&), for M >2 (M-PSK)

2P(&), for M =2 (BPSK)
By~ { and

log, M

. . . . . |77f«/2| _ |77f«/1|
In Fig. 7, this asymptotic bit-error probability for QPSK and V252

various values oV is shown and compared with simulation re-

sults [12]. An excellent agreement with simulation results may — _ 1 4vP —1cosfs )
be noted for low SNR as well, basically because less probable 20 \/P +2vP —1cosB + \/P —2y/P—1cosp
error events have negligible probability. In addition, this figure (45)

explicitly confirms that the performance approaches that of co-
herent detection for increasing values/éf In Section IV, the Taking the limitas” — oo, and recalling that? = (Ny/2Es)

minimum equivalent distance for differentially encoded QPSKndcos 3 = — sin(# /M), we have

with V = 5 is found to bed., = 1.33333. This value must be

compared to the Euclidean distante = /2 which character- Nz = 72 [2Es . w

izes the coherent detection performance. This difference exactly I}E}C{o NG =\ sing (46)
matches the asymptotic high-SNR loss of 0.5 dB shown in Fig.

7,for N = 5. In this situation {5, | — +00, |12, | — 400, |12, | — |7., | finite),

Using this approach, we may explicitly verify, for differen-the following approximation holds [24]:
tial encoding, that the high-SNR performance of these nonco-
herent detection schemes approaches that of coherent detec-1 4 Q,, (1, z2) — Qur(w2, 21) ~ 2Q(z2 — z1).  (47)
tion for increasing implicit phase memory. As mentioned in
the Introduction, this result was previously obtained in [6] foence, forv — o, (43) becomes
asymptotically increasing block length and differentially en-

codedM-PSK. This result has been generalized to any coded <\/E>
2Q AT 3
No

PSK in Theorem 1. We now rederive this result on the basis of for M =2 (BPSK)

(43) by an alternative more explicit method which is also used, ~
in Appendix C. 4 < 2Fs

For N — +oo, we haveP — +oo, |1.,| — +oo, and logy M No

sin %) , for M >2 (M-PSK)
|7, | — 4oo. Nevertheless, the differenge,, | — |7., | remains (48)
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This result may be recognized as the bit-error probability for cime k (¢ = N — 1 for differential encoding anét = N/n — 1
herent detection of differentially encodéd-PSK signals and, for convolutional encoding) and is characterized by at nig/st
as expected, coincides with the asymptotic result given in [6]errored code symboks, = éy. + j3x. It is well known that the
Euclidean distance of this error event is
VI. CONCLUSION

k+D'—1 k+D'—1
A theoretical performance analysis of new noncoherent ;2 — Z & — > =2 Z (1 — o — 3f3)
combined sequence detection and decoding schemes for coded —r
M-PSK [12] has been presented. Starting from the classical k4D —1
union bound, a method to numerically evaluate the pairwise —9 Z Re[(1 — &¢))] (B.1)

error probability has been proposed and an upper bound on

this probability derived. Based on this bound, it is possible to

define an equivalent distance which plays a role similar to thiaaving exploited the property;|? = o3 + 33 = 1. From (29)
of the Euclidean distance in coherent decoding and is use#uid (10), we have

in the performance analysis. An efficient search for optimal

. . . . 2
codes may be based on the minimum equivalent distance. This P—1P-1
i i H Y .
equivalent distance allows us to prove, in the general case of ZO L G (Czcj Czcj)cg
= ]:

coded PSK, that the performance of the considered noncoherent dzq =
schemes approaches that of coherent schemes when the phase

memory parameter increases. The theoretical analysis has been i=0 j=0 =0
shown to be in excellent agreement with computer simulation
results. A simple expression of the asymptotic high-SNR

bit-error probability of differentially encoded/-PSK signals _ [#=0 j=0
has been obtained, which is in very good agreement with T DP=1D-1 .
simulations for low SNR as well. r i;) ]20(1 - ¢ ¢iiE)
r—-1r-1
APPENDIX A >, 2 (I =ceees)
If Pis odd, the determinant| of matrix A defined in (10) === 2 (B.2)

is zero. In fact, if we consider matri® with B;; = é;¢; — é;¢;,
obtained from matrix4 multiplying its first column byéyco, its  The right-hand side of (B.2) equdig, |/ P. Recalling the defi-

second by ¢;, and so on, we have nition of d., given by (28) we may conclude that
|B| = 60606161 et ép_lcp_1|A|. (Al) |77y| - 1
s2 T 402P°

Since¢;,¢; # 0 (¢; and¢; belong to theM -PSK alphabet),
|A| = 0if and only if | B| = 0. Matrix B is such that Due to the fact that the maximum eigenvaluekihcreases with
VP (see Appendix C), the condition

Bﬁ, = éjci — Cjéi = —(67‘,6]' — éjci) = —Bij
— M — L 1 B.3

ie., B = —B". Using the propertyB”| = |B|, we have ©="2 =32p < 2inso? (B.3)
|B| = (=1)7|B|. If P is odd this equality is verified only if !
|B| = 0. is certainly verified whenV — oo and the approximate Cher-

In the characteristic polynomial of a matrix noff bound (27) is asymptotically correct.

Equation (B.2) may be expressed as
p(w) = (=D"w” + ()" tp" o (A2)
o e
the coefficientp; is the sum of the determinants of the prin- dzq = <1 — F) Z 2Re[(1 — &)
cipal minors of ordek. Since these principal minors have the i=k
same structure of matrid, their determinants are zerodifis o kD —1i-1
odd. Therefore, the characteristic polynomial includes only the +5 Z Z Re[(1 — ¢} c;é:¢5)]
powersy”, =2 =%, ..., Moreover, its roots are real be- =k j=k
causeA is Hermitian. It is straightforward to show that the D 9
nonzero roots of a polynomial with these characteristics are in < B F) Tp d (B.4)
equal and opposite pairs.
in which
APPENDIX B
k+D’—14i—1
In this appendix, we derive (33). We assume that the trans- L9 Z Z Re[(1 — ¢ ¢;&E0)]- (B.5)

mitted code symbols akg, = oy, + 73k, an error event starts at PR
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k+D'—1
Cj Z (éj_c;k)qz:/ﬂbv forj:0717"'7k_17k+D/7"'7P_1
=k D1 (C.1)
ZC%-F Z gl + Z & — ¢ c)g = pgy, forj=kk-+1,---,k+D —1.
i=k+D’
k+D'—1
Cj Z (é* )Qz NQJv forj:()?l?"'vk_17k+D/7"'7P_1
= k—1 r-1 (C.3)
Zc:(h‘i‘ Z C;qu = Hgj, forj:k7k+17"'7k+D/_1~
i=0 i=k+D’
CciQx
+——— forj=0,1,--,k—1,k+D, -, P—1
u=4 LY : (C5)
J G — .
=) ik k1 k4D -1
dp
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