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Theoretical Analysis and Performance Limits of
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Abstract—In this paper, a theoretical performance analysis of
noncoherent sequence detection schemes recently proposed by the
authors for combined detection and decoding of coded -ary
phase-shift keying ( -PSK) is presented. A method for the
numerical evaluation of the pairwise error probability—for which
no closed-form expressions exist—is described, the classical union
bound is computed, and results are compared with computer
simulations. An upper bound on this pairwise error probability
is also presented. This upper bound may be effectively used for
the definition of an equivalent distance, which may be useful in
exhaustive searches for optimal codes. Using this bound, it is
proven that, in the general coded case, the considered noncoherent
decoding schemes perform as close as desired to an optimal
coherent receiver when a phase memory parameter is sufficiently
large. In the case of differentially encoded -PSK, a simple
expression of the asymptotic bit-error probability is derived,
which is in agreement with simulations for high as well as low
signal-to-noise ratio (SNR).

Index Terms—Codecs, maximum-likelihood decoding, nonco-
herent sequence detection, phase-shift keying, Viterbi decoding.

I. INTRODUCTION

I N the technical literature, a growing interest has been re-
cently shown toward improved noncoherent detection or de-

coding schemes [1]–[11]. As a general result of most of the
above bibliographical references, the performance of nonco-
herent schemes based on extended windows of observation of
the received signal improves, for increasing observation length
and receiver complexity, and rapidly approaches that of optimal
coherent receivers. Although this result has been mainly based
on computer simulations, it has been analytically proven in the
case of differentially encoded -PSK [6], and, more recently, in
the case of coded binary phase-shift keying (BPSK) [10], [11].

In [12], new noncoherent sequence detection schemes for
combined detection and decoding of coded linear modulations
have been proposed, which compare favorably with previously
proposed solutions. This approach “moves beyond the crude
block detection found in this area, to more natural, logical and
optimal trellis-based detection schemes.”1 The starting point
in [12] is the optimal noncoherent receiver which operates
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in the presence of a random phase rotation of the received
signal, modeled as constant during the entire transmission,
and additive white Gaussian noise (AWGN). Since optimal
sequence detection requires a search of a path in a tree dia-
gram, the required complexity increases exponentially with
the duration of the transmission. Proper approximations are
proposed in [12] in order to reduce the problem to a search of a
path in a trellis diagram and realize simple suboptimal schemes
based on the Viterbi algorithm. Besides being realizable, these
schemes have the convenient feature of allowing us to remove
the constant phase assumption and encompassing time-varying
phase models. For increasing complexity, the performance of
these receivers is shown to approach that of optimal coherent
receivers by means of computer simulation [12]. A performance
gain may be obtained with respect to existing schemes, such as
those in [6] and [9], with acceptable levels of complexity—the
tradeoff between complexity and performance being simply
controlled by a parameter referred to asimplicit phase memory
and the number of trellis states [12]. As an example, assuming a
value of implicit phase memory equal to the block length in [6],
noncoherent sequence detection outperforms multiple-symbol
differential detection [6], as shown in [12] by means of com-
puter simulations. Moreover, noncoherent sequence detection
has better performance with respect to the algorithm proposed
in [9], whenever the decoding complexity is constrained to an
affordable number of trellis states [12].

In this paper, we theoretically analyze the performance of a
noncoherent sequence detection scheme proposed in [12] for
coded -PSK. We first resort to a numerical evaluation of the
pairwise error probability, which admits a closed-form expres-
sion in very special cases only. In fact, in this case, a suitable
decision variable may be expressed as an indefinite Hermitian
quadratic form in a Gaussian nonzero mean vector, sometimes
referred to asnoncentral. Therefore, the method based on the
residue theorem used in [13] forcentralquadratic forms cannot
be used. Similar numerical methods are proposed in [14]–[16].
Based on the numerical evaluation of the pairwise error prob-
ability, we easily compute the classical union upper bound on
the bit-error probability. This bound is found to be in excellent
agreement with the simulation results presented in [12].

In [9], it was noted that optimal codes under coherent de-
coding are not necessarily optimal under noncoherent decoding.
This phenomenon also occurs in the considered noncoherent
schemes, as shown in Section IV. In principle, using the derived
union bound, we could perform an exhaustive search for op-
timal codes. However, the required computational effort would
be heavy because possible codes should be compared in terms
of the entire curve of bit-error probability versus signal-to-noise
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ratio (SNR), instead of a single parameter, such as the Euclidean
distance which is sufficient in the case of coherent decoding.
For this reason, we introduce an upper bound on the pairwise
error probability that allows us to define a parameter, referred to
asequivalent distance, which plays a role similar to that of the
Euclidean distance in the case of coherent decoding. The min-
imum equivalent distance provides a comprehensive descrip-
tion of the performance of a specific code on a random-phase
AWGN channel. The concept of equivalent distance has been
previously proposed in the case of full response-ary contin-
uous phase modulations in [17], where the error probability, ex-
pressed in terms of the time-continuous waveform by means of
the Marcum function, is approximated as a Gaussianfunc-
tion.

Using this equivalent distance we prove that, for any given
code, the considered noncoherent receivers have a performance
which approaches that of the optimal coherent receiver when the
implicit phase memory parameter increases (in the following,
we denote with the implicit phase memory). Although when

a code which is optimal under coherent decoding is
also optimal under noncoherent decoding, this is not necessarily
true for finite values of . In this case, a search for optimal
codes may be performed using the proposed minimum equiva-
lent distance.

For noncoherent sequence detection of differentially en-
coded -PSK, we derive a simple expression of the asymptotic
high-SNR bit-error probability which is in very good agreement
with simulations for low SNR as well. Using this expression, we
explicitly confirm the property of these noncoherent receivers
of having a performance which approaches that of the optimal
coherent receiver when the implicit phase memory parameter
increases.

II. SIGNAL MODEL AND NONCOHERENTSEQUENCEDETECTION

Assuming absence of intersymbol interference, the samples
at the output of a filter matched to the transmitted pulse may

be expressed as [12]

(1)

in which, the code symbols belong to an -PSK alphabet

and are assumed to be derived from an information sequence
, composed of independent and identically distributed

symbols belonging to an -ary alphabet, by means of some
coding rule, is a constant phase shift introduced by the
channel, and are independent, identically distributed,
zero-mean, complex, Gaussian random variables with inde-
pendent real and imaginary components, each with variance

, where is the one-sided power spectral
density of the bandpass noise and is symbol energy.

In [12], two coding rules for which symbols and belong
to the same -ary alphabet are explicitly con-
sidered in the simulations: differential encoding, specified by
the recursion , and -ary convolutional encoding,
with encoder structure described in [9]. In the latter case, en-

Fig. 1. Decoder trellis for differentially encoded BPSK andN = 4.

coder structures which consist of only one shift register with
code rate , where is the number of code symbols per in-
formation symbol, are considered.2 The number of code states
is , in which denotes the code constraint length.

In the numerical examples, only the described codes are con-
sidered. However, for generality, this paper addresses the case

—the case being of interest in some appli-
cations such as trellis-coded modulations (TCM).

The branch metrics of a Viterbi algorithm which realizes the
considered noncoherent sequence detection or decoding scheme
are [12]

(2)

in which, the parameter plays the role of an implicit phase
memory and is a hypothetical code sequence. Given the
coding rule, these branch metrics may be expressed in terms of
the hypothetical information sequence , uniquely associ-
ated to the code sequence . As an example, in the case of
differential encoding, the branch metrics (2) become

(3)

Even using small values of (a few units) a performance very
close to that of coherent detection or decoding may be obtained
[12].

According to (2), a trellis state may be properly defined in
terms of information symbols as

in which for differential encoding and
for convolutional encoding, and the resulting number of states
is [12]. In fact, in the case of differential encoding,
it may be observed that the branch metrics (3) depend on the
current symbol and the previous information symbols.
The trellis structure in the case of differentially encoded BPSK

and is shown in Fig. 1 ( in this
case). We remark that the noncoherent nature of the considered
schemes is due to the presence of terms of the form in
the branch metrics. As a consequence, a constant phase shift

does not affect the receiver performance—in the following
derivations, is assumed.

2Other rates are possible using multiple shift registers.
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Fig. 2. An error event for differentially encoded BPSK andN = 4.

III. N UMERICAL EVALUATION OF THE UNION BOUND

The classical union bound3 on the probability of bit error
has expression [18]

(4)

in which and denote the information se-
quences corresponding to the correct and erroneous paths, re-
spectively, is the number of bit errors entailed by the
error event , is the pairwise error probability,
and is thea priori probability of sequence. Assuming
a duration of the error event of symbol intervals, the
correct and erroneous paths differ at most bysymbols. As
an example, in the case of a differentially encoded BPSK with

whose trellis diagram is shown in Fig. 1, an error event
of duration six symbol intervals ( and ) is
shown in Fig. 2, along with the information and code sequences
associated with the correct and erroneous paths.

If proper symmetry conditions on the considered code, re-
ceiver metrics, and bit labeling are verified, the inner sum in
(4) may be independent of the transmitted sequence. In the
case of Gray labeling, the differential and convolutional codes
considered in the examples satisfy these conditions under the
general class of noncoherent decoders which maximize an arbi-
trary likelihood function expressed in terms of the output of a
correlator front-end [19]. The considered noncoherent schemes
belong to this class. This implies that, in the performance evalu-
ation, we may assume that a specific sequenceis transmitted.

3The terminology “union bound” is used here, though more appropriate for
the error-even probability.

In this case, the classical union bound (4) on the probability of
bit error simplifies to

(5)

in which the transmitted information sequenceis arbitrarily
selected. For example, for both the described differential and
convolutional encoding rules, we may assume that the trans-
mitted information sequence is given by , , and the
corresponding code sequence is such that , . The theo-
retical results presented in this paper are relative to the general
case (4); however, examples and numerical results are given for
codes satisfying these symmetry conditions.

The pairwise error probability is the probability
that the sum of the branch metrics relative to the erroneous
path exceeds the sum of the metricson the correct path. An
error event beginning at time and involving information
symbols ends at time . Hence, may be
expressed in terms of the decision variable

In the steady state, the statistics of this decision variable are
independent of . Without loss of generality, we may select a
suitable value of in order to simplify the notation. Specifically,
we use a value such that the decision variableonly depends on
signal samples with index (for example,
for differential encoding and for convolutional
encoding). With this assumption,may be expressed in terms of

the Gaussian vector of successive
matched filter outputs. The actual value ofdepends on code
characteristics, such as rate and constraint length. For example,
see (6) at the bottom of this page.

Conditionally on a specific transmitted sequence, the
Gaussian vector has independent complex Gaussian com-
ponents with mean and variance . Its
conditional mean vector and covariance matrix are

(7)

(8)

where denotes the identity matrix and is the transpose
conjugate operator.

For a given error event , the random variable may be
expressed as a quadratic form and the pairwise error probability
is given by

(9)

where the Hermitian matrix has entries

(10)

for differentially encoded -PSK
for convolutionally encoded -PSK

(6)
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in which is the th code symbol associated with the consid-
ered erroneous sequence. Despite the fact thatand indi-
vidually depend on the transmitted sequence, for the considered
codes the quadratic form (9) does not, in agreement with the
mentioned symmetry conditions.

In order to describe the structure of matrix, it is necessary to
introduce another parameter, denoted by, which represents
the maximum number of erroneous code symbols entailed by
an error event of length . With this definition, matrix ,
being Hermitian, is uniquely defined by columns only. As
an example, in the special case of an error event such as that
shown in Fig. 2, for which , , and for
(hence, and ), noting that for and

, the matrix may be expressed as

(11)

where , , and are defined at the bottom of this page and
is a zero-entry matrix.
This matrix may be diagonalized as , where

is the diagonal eigenvalue matrix of ( de-
notes the th eigenvalue), is unitary (i.e., ) and
its columns are the eigenvectors of. Since is Hermitian, its
eigenvalues are real. As shown in Appendix A, ifis a nonzero
eigenvalue of , is also an eigenvalue; hence, the number
of nonzero eigenvalues is even. The quadratic form may be ex-
pressed as

(12)

in which and denotes the even number
of nonzero eigenvalues.

The random vector is Gaussian with mean and covariance
given by

(13)

Therefore, are complex, Gaussian, independent random vari-
ables with nonzero mean and have a noncentral chi-square

distribution with two degrees of freedom [20], [21]. Letting

, its mean, variance, and bilateral Laplace transform
of the probability density function are, respectively, for
[20], [21]

(14)

(15)

(16)

where and . Due to the indepen-
dence of the random variables, the bilateral Laplace transform
of the probability density function of may be expressed as

(17)

Since a closed-form expression of the probability density
function of does not exist, for the evaluation of
one could use and the residue theorem as in [13]

(18)

where is a proper small constant and the residues of the
singularities in the right half-plane (RHP) are considered, with
the exception of the pole for . The property of the eigen-
values of matrix , shown in Appendix A, of being in equal
and opposite real pairs allows us to conclude that singulari-
ties of the function share the same property. Unfor-
tunately, these singularities are essential and their residues may
not be expressed in a closed form. Several numerical methods
are known in the literature for the computation of these residues
(see [14]–[16], and references therein). Among the various op-
tions, we calculated directly the sum of the residues by numer-
ical integration on a sufficiently large square path including all
singularities in the right half-plane.

In the case of the considered codes for which the described
symmetry conditions for the validity of (5) hold, it is possible
to truncate the union bound considering only error events with

, possibly selecting in such a way that the contri-
bution of error events with is negligible. In the case of
differentially encoded QPSK, Fig. 3 shows the truncated upper
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Fig. 3. Upper bound for differentially encoded QPSK (receiver withN = 4),
for various values ofD and comparison with simulation results. The
asymptotic high-SNR performance derived in Section V is also shown.

bound for the receiver with and compares it with the
results of computer simulations. We may observe that the anal-
ysis is in very good agreement with simulation. In the figure,
various values of parameter are considered. The asymptotic
behavior for high SNR is not affected by the value of, con-
firming a good convergence of the union bound. In the figure,
the asymptotic high-SNR performance based on the most prob-
able error events, analytically derived in closed form in Sec-
tion V, is also shown. Fig. 4 shows the truncated upper bound
for QPSK with the convolutional code of rate , constraint
length , and generators4 133, 231 considered in [12] and
compares it with computer simulations. This figure confirms the
validity of the conclusions previously derived in the absence of
coding and shows that the analysis is again in good agreement
with simulation.

IV. UPPERBOUND ON THEPAIRWISE ERRORPROBABILITY

The described method for the computation of the truncated
union bound cannot be efficiently used in the search for op-
timal codes for noncoherent decoding because, for each possible
code, the entire curve of bit-error probability versus SNR has to
be derived. In this section, we introduce an upper bound on the
pairwise error probability, in order to define a parameter which
could play a role similar to that of the Euclidean distance in the
case of coherent detection.

The Chernoff bound on the pairwise error probability is

(19)

for each value of [20]. The tightest upper bound may be
obtained selecting , where minimizes the right side of
(19).

4Base-4 representation.

Fig. 4. Upper bound for QPSK with the convolutional code of rate1=2 and
constraint length� = 3 considered in [12], for various values ofD , and
comparison with simulation results (receiver withN = 8).

By properly ordering the eigenvalues of, we may express
(12) as

(20)

in which . Using (14) and (15),
we have

(21)

(22)

The moment generating function [20], after some
straightforward manipulations, may be written as

(23)

in which

(24)

Letting , the integral which defines the mo-
ment generating function converges in the interval
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only. In order to minimize , we note that for values of
such that , i.e., , the following
approximation holds:

(25)

where and . The minimum of
approximation (25) is achieved for and equals

. This result may be considered an approxi-
mate minimum of if the inequality
is verified, i.e., recalling (21), (22), and the definition of , if

(26)

This condition is independent of the SNR and depends on matrix
only. We verified that (26) is satisfied for every error event

we considered. The validity of this condition will be explicitly
addressed in a following paragraph.

Based on the above result, the approximate Chernoff upper
bound on the pairwise error probability is

(27)

in which

(28)

This parameter can be calculated without explicitly diagonal-
izing matrix . In fact, expressing as a sum of and noise
terms, it may be shown that ([22, Appendix A])

(29)

Parameter determines the asymptotic high-SNR behavior of
the pairwise error probability and plays a role similar to that
of the Euclidean distance in coherent decoding; for this reason,
it is referred to asequivalent distanceof the error event. We
remark that this approach may be applied whenever the decision
variable is a quadratic form in a nonzero mean Gaussian vector.
As an example, an equivalent distance may be similarly defined
in the case of the receiver proposed in [9].

A tighter upper bound may be obtained in a more involved
manner (see [22, Appendix C] for details), under the same as-
sumption (26) (i.e., ). This bound is identical

to the modified Chernoff bound [23], although the derivation is
here different. The bound reads

(30)

where

is the Gaussian function and we used the property that, for

(31)

The bound (30) is evidently tighter than (27) because they differ
for a multiplying factor only, which is less than 1 for .
This condition is always met for pairwise error probabilities less
than . In addition, if , the bound may be approxi-
mated by the Gaussian function as suggested by (31). This
condition is verified for pairwise error probabilities less then

. In the following, we denote this approximate bound as
Gaussian bound.

We now prove an important property of the considered non-
coherent receivers. We begin with a property of the equivalent
distance and one of the proposed bounds.

Lemma 1: The equivalent distance of any error event
satisfies

(32)

in which is the Euclidean distance of the error event in co-
herent decoding.

Proof: In Appendix B, it is shown that the equivalent dis-
tance of any error event may be expressed as

(33)

in which

(34)

When , also and .

Lemma 2: When , the approximate Chernoff and
Gaussian upper bounds are asymptotically exact. The Gaussian
bound is also asymptotically tight.

Proof: See Appendix B for a proof that both approximate
upper bounds are asymptotically exact. Since the Gaussian
bound asymptotically coincides with the pairwise error proba-
bility in coherent decoding (Lemma 1), it is also asymptotically
tight.

Since these lemmas hold for every error event, the following
theorems are easily proven.
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Fig. 5. Most probable error eventE for differentially encoded QPSK with
N = 5.

Theorem 1: The union bound for coherent decoding and
that for the considered noncoherent decoding schemes coincide
when .

Theorem 2: When , a code which is optimal under
coherent decoding is also optimal under noncoherent decoding.
For finite values of , this is not necessarily true.

Based on Theorems 1 and 2, we may conclude that any coded
scheme may be decoded noncoherently with performance as
close as desired to that of an optimal coherent receiver. How-
ever, for finite complexity a search for optimal codes may be
useful. Since for high SNR, the performance is determined by
the error events with minimum equivalent distance, this param-
eter may be used in the search for optimal codes.

In order to give examples, we now consider differentially en-
coded -PSK. In this case the mentioned symmetry conditions
hold; hence, we may assume the symbol sequence , , is
transmitted. By direct computation of the equivalent distance or
pairwise error probability, as described in Section III, it is easy
to verify that for , the most probable error events starting
at time are and , characterized by

and

respectively ( and , according to (6)). In
the special case of (BPSK), the error events and

coincide. The error event is shown in Fig. 5 for
(QPSK) and , along with the relevant trellis states.

The complete list of principal error events for differentially
encoded QPSK with is shown in Table I along with the
relative equivalent distances. A minimum distance of
is exhibited by error events and . There exist two second
most probable error events with distance . At the bottom
of the table, we show a less frequent error event which is con-
sidered in the following figure.

In Fig. 6, the exact pairwise error probability, the Gaussian,
and the Chernoff bound are shown for three typical error events
listed in Table I. In this figure, the minimum-distance error event

TABLE I
LIST OF ERROREVENTS WITH INCREASINGEQUIVALENT DISTANCE, FOR

DIFFERENTIALLY ENCODED QPSK WITH N = 5. THE CONSTELLATION

POINTS f1; j;�1;�jg ARE DENOTED BY f0; 1; 2; 3g, RESPECTIVELY

is considered, along with one of the two second most prob-
able error events (denoted by), and the least probable error
events listed in Table I (denoted by). This figure confirms that
the Gaussian bound is more accurate than the derived Chernoff
bound, as predicted.

A list similar to that in Table I is shown in Table II for convolu-
tionally encoded QPSK with . We note that the minimum
equivalent distance is increased, with respect to differentially
encoded QPSK, due to the effect of the convolutional code.

As a final remark, we note that Theorems 1 and 2, derived in
this section using the asymptotic property of the equivalent dis-
tance (Lemma 1) and tightness of the modified Chernoff bound
(Lemma 2), may be also derived using an asymptotic property
of the eigenvalues of matrix . This is shown in Appendix C,
where the Marcum function and its asymptotic behavior de-
scribed in Section V are also used. This appendix may be viewed
as an alternative simplified proof of the theorems. We decided to
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Fig. 6. Exact expression, Gaussian and Chernoff bound on the pairwise error
probability of three typical error events for differentially encoded QPSK with
N = 5. E is one of the two most probable error events(d = 1:33333), E
is one of the two second most probable error events(d = 1:78885), andE
is the least probable error event listed in Table I(d = 2:23607).

emphasize the approach based on the modified Chernoff bound
because it allows us to introduce the important tool referred to
as equivalent distance.

V. EXPRESSION OF FORDIFFERENTIALLY ENCODED -PSK

In this section, we derive a closed-form expression of the
asymptotic bit-error probability for noncoherent sequence de-
tection of differentially encoded -PSK. Since in this case the
mentioned symmetry conditions hold, we may assume the sym-
bols , , are transmitted.

As already mentioned in Section IV, the most probable error
events starting at time are and , with characterized
by ( and

). Assuming Gray mapping, the number of corresponding
errored bits is 2. The asymptotic bit-error probability depends
on the pairwise error probability of these error events only. In
the following, we consider only because the pairwise error
probabilities corresponding to and are equal for symmetry.

In the case of error event , and matrix has
nonzero elements in the middle row and column only (i.e., those
with index ). This row is , where

, and the zero element is in the middle position
(obviously, elements of the middle column are determined be-
cause is Hermitian). In this case, there are two nonzero eigen-
values

(35)

with the following corresponding eigenvectors:

(36)

(37)

TABLE II
LIST OFERROREVENTS WITH INCREASINGEQUIVALENT DISTANCE, FORQPSK

WITH THE CONVOLUTIONAL CODE OFRATE 1=2 AND CONSTRAINT LENGTH

� = 3 CONSIDERED IN [12] (N = 8). THE CONSTELLATION POINTS

f1; j;�1;�jg ARE DENOTED BY f0;1; 2; 3g, RESPECTIVELY

in which

and is a normalizing factor such that .
From (20), .

Hence, using the results in [20, Appendix 4.B], the pairwise
error probability corresponding to is
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(38)

where

(39)

is the zeroth-order modified Bessel function of the first kind,

(40)

is the Marcum function, and we have used the property [24]

(41)

In (38), and are the sum of the conjugates of the elements
of and , respectively,

(42)

The asymptotic bit-error probability for high SNR is

for (BPSK)

for ( -PSK) (43)

In Fig. 7, this asymptotic bit-error probability for QPSK and
various values of is shown and compared with simulation re-
sults [12]. An excellent agreement with simulation results may
be noted for low SNR as well, basically because less probable
error events have negligible probability. In addition, this figure
explicitly confirms that the performance approaches that of co-
herent detection for increasing values of. In Section IV, the
minimum equivalent distance for differentially encoded QPSK
with is found to be . This value must be
compared to the Euclidean distance which character-
izes the coherent detection performance. This difference exactly
matches the asymptotic high-SNR loss of 0.5 dB shown in Fig.
7, for .

Using this approach, we may explicitly verify, for differen-
tial encoding, that the high-SNR performance of these nonco-
herent detection schemes approaches that of coherent detec-
tion for increasing implicit phase memory. As mentioned in
the Introduction, this result was previously obtained in [6] for
asymptotically increasing block length and differentially en-
coded -PSK. This result has been generalized to any coded
PSK in Theorem 1. We now rederive this result on the basis of
(43) by an alternative more explicit method which is also used
in Appendix C.

For , we have , , and
. Nevertheless, the difference remains

Fig. 7. Asymptotic performance for differentially encoded QPSK, various
values ofN , and comparison with simulation results.

finite. In fact, substituting in (42) the expression ofand ,
letting , and recalling that , we have

(44)

and

(45)

Taking the limit as , and recalling that
and , we have

(46)

In this situation ( finite),
the following approximation holds [24]:

(47)

Hence, for , (43) becomes

for (BPSK)

for ( -PSK)

(48)
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This result may be recognized as the bit-error probability for co-
herent detection of differentially encoded-PSK signals and,
as expected, coincides with the asymptotic result given in [6].

VI. CONCLUSION

A theoretical performance analysis of new noncoherent
combined sequence detection and decoding schemes for coded

-PSK [12] has been presented. Starting from the classical
union bound, a method to numerically evaluate the pairwise
error probability has been proposed and an upper bound on
this probability derived. Based on this bound, it is possible to
define an equivalent distance which plays a role similar to that
of the Euclidean distance in coherent decoding and is useful
in the performance analysis. An efficient search for optimal
codes may be based on the minimum equivalent distance. This
equivalent distance allows us to prove, in the general case of
coded PSK, that the performance of the considered noncoherent
schemes approaches that of coherent schemes when the phase
memory parameter increases. The theoretical analysis has been
shown to be in excellent agreement with computer simulation
results. A simple expression of the asymptotic high-SNR
bit-error probability of differentially encoded -PSK signals
has been obtained, which is in very good agreement with
simulations for low SNR as well.

APPENDIX A

If is odd, the determinant of matrix defined in (10)
is zero. In fact, if we consider matrix with ,
obtained from matrix multiplying its first column by , its
second by , and so on, we have

(A.1)

Since ( and belong to the -PSK alphabet),
if and only if . Matrix is such that

i.e., . Using the property , we have
. If is odd this equality is verified only if

.
In the characteristic polynomial of a matrix

(A.2)

the coefficient is the sum of the determinants of the prin-
cipal minors of order . Since these principal minors have the
same structure of matrix , their determinants are zero ifis
odd. Therefore, the characteristic polynomial includes only the
powers . Moreover, its roots are real be-
cause is Hermitian. It is straightforward to show that the
nonzero roots of a polynomial with these characteristics are in
equal and opposite pairs.

APPENDIX B

In this appendix, we derive (33). We assume that the trans-
mitted code symbols are , an error event starts at

time ( for differential encoding and
for convolutional encoding) and is characterized by at most
errored code symbols . It is well known that the
Euclidean distance of this error event is

(B.1)

having exploited the property . From (29)
and (10), we have

(B.2)

The right-hand side of (B.2) equals . Recalling the defi-
nition of given by (28) we may conclude that

Due to the fact that the maximum eigenvalue ofincreases with
(see Appendix C), the condition

(B.3)

is certainly verified when and the approximate Cher-
noff bound (27) is asymptotically correct.

Equation (B.2) may be expressed as

(B.4)

in which

(B.5)
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for

for

(C.1)

for

for

(C.3)

for

for
(C.5)

APPENDIX C

In this appendix, we prove an asymptotic property of the
eigenvalues of matrix for . This result provides an al-
ternative proof that, in the considered noncoherent schemes, the
pairwise error probability of a generic error event tends to the
corresponding pairwise error probability in coherent schemes.

Writing explicitly the equation in order to find the
eigenvalues and eigenvectors of, we obtain (C.1), shown at
the top of this page. If and the condition

(C.2)

is verified for any value of such that , (C.1)
becomes (C.3), shown at the top of this page. The solutions of
(C.3) are

(C.4)

and (C.5), also at the top of this page, where . With
these solutions, condition (C.2) becomes

(C.6)

which is verified when is large enough. We may conclude
that, when , matrix has only two eigenvalues and the
corresponding eigenvectors are given by (C.5). Following the
derivation in Section V, the pairwise error probability satisfies

(C.7)
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