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Abstract. The Internet of Things (IoT) will consist of billions of inter-
connected heterogeneous devices denoted as “smart objects.” Smart
objects are generally sensor/actuator-equipped and have constrained
resources in terms of: (i) processing capabilities; (ii) available ROM/RAM;
and (iii) communication reliability. To meet low-latency requirements,
real-time IoT applications must rely on specific architectures designed in
order to handle and process gigantic (in terms of number of sources of
information and rate of received data) streams of data coming from smart
objects. We refer to this smart object-generated data stream as “Big
Stream,” in contrast to traditional “Big Data” scenarios, where real-time
constraints are not considered. In this paper, we propose a novel Cloud
architecture for Big Stream applications that can efficiently handle data
coming from deployed smart objects through a graph-based processing
platform and deliver processed data to consumer applications with low-
est latency.

Keywords: Internet of Things · Cloud · Real-time applications ·
Processing graph

1 Introduction

The actors involved in IoT scenarios will have extremely heterogeneous charac-
teristics, (in terms of processing and communication capabilities, energy sup-
ply and consumption, availability, and mobility), spanning from constrained
devices, also denoted as “smart objects,” to smartphones and other personal
devices, Internet hosts, and the Cloud. Smart objects are typically equipped
with sensors and/or actuators and are thus capable to perceive and act on the
environment where they are deployed. Billions of smart objects are expected
to be deployed in urban, home, industrial, and rural scenarios, in order to col-
lect relevant information, which may be used to build new applications. Shared
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and interoperable communication mechanisms and protocols are currently being
defined and standardized, allowing heterogeneous nodes to efficiently commu-
nicate with each other and with existing Internet actors. The most prominent
driver for interoperability in the IoT is the adoption of the Internet Protocol
(IP), namely IPv6 [1,2]. An IP-based IoT will be able to extend and interoper-
ate seamlessly with the existing Internet. Standardization institutions, such as
the Internet Engineering Task Force (IETF) [3], and several research projects [4]
are in the process of defining mechanisms to bring IP to smart objects, due
to the need to adapt higher-layer protocols to constrained environments. How-
ever, not all objects will be supporting IP, as there will always be tiny devices
that will be organized in closed/proprietary networks and rely on very simple
and application-specific communication protocols. These networks will eventu-
ally connect to the Internet through a gateway/border router.

Sensed data are typically collected and sent uplink, namely from IoT net-
works, where smart objects are deployed, to collection environments (server or
cloud), possibly through an intermediate local network element, which may per-
form some processing tasks, such as data aggregation and protocol translation.
Processing and storing data at the edge of networks (e.g., on set-top-boxes or
access points) is the basis for the evolution of Fog Computing [5] in IoT scenar-
ios. Fog Computing is a novel paradigm that aims at extending Cloud computing
and services to the edge of the network and, therefore, leverages on its proximity
to end-users, its dense geographical distribution, and its support for mobility.
The wide geographical distribution makes the Fog Computing paradigm partic-
ularly suited to real-time big data analytics. Densely distributed data collection
points allow to add a fourth axis, low-latency, to the typical Big Data dimensions
(volume, variety, and velocity). Figure 1 shows the hierarchy of layers involved
in data collection, processing, and distribution in IoT scenarios.

Fig. 1. The hierarchy of layers involved in IoT scenarios: the Fog works as an extension
of the Cloud to the network edge to support data collection, processing, and distribution.

With billions of nodes capable of gathering data and generating information,
the availability of efficient and scalable mechanisms for collecting, processing,
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and storing data is crucial. Big Data techniques, which were developed in the last
few years (and became popular due to the evolution of online and social/crowd
services), address the need to process extremely large amounts of heterogeneous
data for multiple purposes. These techniques have been designed mainly to
deal with huge volumes (focusing on the amount of data itself), rather than
to provide real-time processing and dispatching. Cloud computing has found
a direct application with Big Data analysis due to its scalability, robustness,
and cost-effectiveness. The number of data sources, on one side, and the sub-
sequent frequency of incoming data, on the other side, create a new need for
Cloud architectures to handle such massive flows of information, thus shifting
the Big Data paradigm to the Big Stream paradigm. Moreover, the process-
ing and storage functions implemented by remote Cloud-based collectors are
the enablers for their core business, which involves providing services based on
the collected/processed data to external consumers. Several relevant IoT sce-
narios, (such as industrial automation, transportation, networks of sensors and
actuators), require real-time/predictable latency and could even change their
requirements (e.g., in terms of data sources) dynamically and abruptly. Big
Stream-oriented systems could react effectively to changes and provide smart
behavior for allocating resources, thus implementing scalable and cost-effective
Cloud services. Dynamism and real-time requirements are another reason why
Big Data approaches, due to their intrinsic inertia (i.e., Big Data typically works
with batch-based processing), are not suitable for many IoT scenarios.

The main differences between Big Data and Big Stream paradigms are (i) the
nature of data sources and (ii) the real-time/latency requirements of consumers.
The Big Stream paradigm allows to perform real-time and ad-hoc processing
in order to link incoming streams of data to consumers, with a high degree of
scalability, fine-grained and dynamic configuration, and management of hetero-
geneous data formats. In brief, while both Big Data and Big Stream deal with
massive amounts of data, the former focuses on the analysis of data, while the
latter focuses on the management of flows of data, as shown in Fig. 2.

(a) (b)

Fig. 2. (a) Data sources in Big Data systems. (b) The multiple data sources and
listeners management in Big Stream system.

The difference is in the meaning of the term “Big,” which refers to volume of
data for Big Data and to global information generation rate of the data sources
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for Big Stream. This has an impact also on the data that are considered rele-
vant to consumer applications. For instance, while for Big Data applications it
is important to keep all sensed data in order to be able to perform any required
computation, Big Stream applications might decide to perform data aggregation
or pruning in order to minimize the latency in conveying the results of computa-
tion to consumers, with no need for persistence. Note that, as a generalization,
Big Data applications might be consumers of Big Stream data flows.

For these reasons, in this paper we propose an architecture targeting Cloud-
based applications with real-time constraints, i.e., Big Stream applications, for
IoT scenarios. The proposed architecture relies on the concepts of data listener
and data-oriented processing graph in order to implement a scalable, highly con-
figurable, and dynamic chain of computations on incoming Big Streams and
to dispatch data with a push-based approach, thus providing the lowest delay
between the generation of information and its consumption.

The rest of this work is organized as follows. In Sect. 2, an overview of related
works is presented. In Sect. 3, the proposed architecture is presented and detailed.
Finally, in Sect. 4 we draw our conclusions and discuss future research directions.

2 Related Work

The IoT paradigm consists of a huge number of different and heterogeneous
smart objects connected in a “Network of Networks.” These nodes are envisioned
as collectors of information from the environment in order to provide useful
services to users. This ubiquitous sensing, enabled by the IoT in most areas
of modern living, has led to information and communication systems invisibly
embedded in the environment, thus making the technology disappear from the
consciousness of the users. The outcome of this trend is the generation of a
huge amount of data that, depending on the application scenario, should be
aggregated, processed, stored, transformed, and delivered to the final users of
the system, in an efficient and effective way, with traditional commodity services.

2.1 IoT Architectures

A large number of architectures for IoT scenarios have been proposed in the
literature. Among these, many consider Cloud computing as the infrastructure
for data and service management for IoT client applications. For instance, most
of the outgoing projects on IoT architecture address relevant challenges, partic-
ularly from a Wireless Sensor Networks (WSN) perspective. Some examples are
given by a few European Union (EU) 7th Framework Program (FP7) projects
such as SENSEI [6] and Internet of Things-Architecture (IoT-A) [7].

The purpose of the SENSEI project is to create an open and business-driven
architecture that addresses the scalability problems for a large number of glob-
ally distributed Wireless Sensor and Actuator (WS&A) networks devices. It
provides necessary network and information management services to enable reli-
able and accurate context information retrieval and interaction with the physical
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A Graph-Based Cloud Architecture for Big Stream Real-Time Applications 5

environment. By adding mechanisms for accounting, security, privacy, and trust,
SENSEI aims at enabling an open and secure market space for context-awareness
and real world interaction.

The IoT-A project team has focused on the design of a IoT architecture, cre-
ating an Architectural Reference Model (ARM) with the definition of an initial
set of key building blocks. The IoT-A ARM’s aim is to connect vertically closed
systems, architectures, and application areas in order to create open interoper-
able systems and integrated environments or platforms. It constitutes a founda-
tion from which software companies can capitalize on the benefits of developing
consumer-oriented platforms including hardware, software, and services.

“Connect All IP-based Smart Objects!” (CALIPSO) [4] is another EU FP7
project with relevant implications on the design of an IoT architecture. The
main purpose of CALIPSO is to build IoT systems with IPv6-connected smart
objects and to look for novel methods to achieve very low power consumption,
thus providing both high interoperability and long lifetime. CALIPSO leans on
the significant body of work on sensor networks to integrate radio duty cycling
and data-centric mechanisms with the IPv6 [2]. The project entails three layers
(network, routing, and application) using Contiki [8] open source Operating
System (OS), Europe’s leading OS for smart objects, as the target development
environment for prototyping and experimental evaluation. CALIPSO focuses on
three main use cases to drive its research activities: (i) Smart Infrastructures;
(ii) Smart Cities; and (iii) Smart Toys applications.

In the work of Gubbi et al. [9], the success of IoT is attributed to three
factors:

– shared understanding of the situation of its users and their appliances;
– software architectures and pervasive communication networks to process and

convey the contextual information where it is relevant;
– IoT analytics tools aiming at autonomous and smart behaviors.

For the above reasons, the IoT architecture proposed therein is not based on
WSNs and the focus is instead on the user and the Cloud. The consumer is the
“center” and drives the use of data and infrastructure to develop new appli-
cations. The rest of the work discusses the key enabling technologies and the
different future applications domains, describes a Cloud-centric architecture for
IoT, and presents an implementation based on Aneka [10], a .NET-based appli-
cation development Platform-as-a-Service (PaaS), which can utilize storage and
computing resources of both public and private clouds.

Another framework for (IoT-based) Cloud systems is OpenStack [11], a global
collaboration of developers producing an ubiquitous open source cloud comput-
ing platform for public and private clouds. The project aims to deliver solutions
for all types of clouds by being simple to implement, massively scalable, and
feature-rich. The technology consists of a series of interrelated projects deliv-
ering various components for a cloud infrastructure solution. The result is an
open cloud OS that controls large pools of computing, storage, and networking
resources. OpenStack can be used as a background to build other platforms.
An example of this approach is given by the FI-WARE project [12], an open
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6 L. Belli et al.

cloud-based infrastructure for the cost-effective creation and delivery of Internet
applications and services. FI-WARE API specifications are public, royalty-free,
and OCCI-compliant, driven by the development of an open source reference
implementation which allows developers, service providers, enterprises, and other
organizations to develop innovative products based on FI-WARE technologies.

While OpenStack can be seen as a framework with a vendor-driven model,
OpenNebula [13] is an open-source Cloud platform that focuses efforts on the
user. This project aims at delivering a simple feature-rich and flexible solution
to build and manage enterprise clouds and virtualized data centers.

2.2 Big Data Processing Pattern

Big Data architectures generally use traditional processing patterns with a pipe-
line approach [14]. These architectures are typically based on a processing app-
roach where the data flow goes downstream from input to output, to perform
specific tasks or reach the target goal. Typically, the information follows a
pipeline where data are sequentially handled, with tightly coupled pre-defined
processing sub-units (static data routing). The described paradigm can be defined
as “process-oriented:” a central coordination point manages the execution of sub-
units in a certain order and each sub-unit provides a specific processing output,
which is created to be used only within the scope of its own process without the
possibility to be shared among different processes. This approach represents a
major deviation from traditional Service Oriented Architectures (SOAs), where
the sub-units are external web services invoked by a coordinator process rather
than internal services [15].

2.3 Fog Computing

In the area of user-driven and Cloud IoT architectures, in [5] Fog computing is
proposed as the novel and appropriate paradigm for a variety of IoT services and
applications that require mobility support, low latency, and location awareness.
The Fog can be described as a highly virtualized platform that provides comput-
ing, storage, and networking services between end-devices and traditional Cloud
Computing. In other words, the Fog is meant to act as an extension of the Cloud,
operating at the edge of the network to support endpoints by providing rich ser-
vices that can fulfill real-time and low-latency consumers requirements. The Fog
paradigm has specific characteristics, which can be summarized as follows:

– geographical distribution, in contrast with the centralization envisioned by
the Cloud;

– subscriber model employed by the players in the Fog;
– support for mobility.

The architecture described by Bonomi et al. [5] is based on the Fog and Cloud
interplay: the former provides localization, low latency, and context awareness
to endpoints; the latter provides global centralization functionalities. In the pre-
sented IoT Fog scenario, collectors at the edge of the network ingest the data
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A Graph-Based Cloud Architecture for Big Stream Real-Time Applications 7

generated by sensors and devices: the portion of these data that require real-time
processing (from milliseconds to tenths of seconds) are consumed locally by the
first tier of the Fog. The rest is sent to the higher tiers for operations with less
stringent time constraints (from seconds to minutes). The higher the tier, the
wider is the geographical coverage and the longer the time scale. As a result,
the Fog must support several types of storage: from ephemeral, at the lowest
tier, to semi-permanent, at the highest tier. The ultimate and global coverage
is provided by the Cloud, which is used as repository for data for a duration of
months or years.

2.4 IoT Protocols and Models

As previously stated in Sect. 1, the most prominent driver to provide interop-
erability in the IoT is IPv6. Referring to the IP stack, at the application layer,
the IoT scenario brings a variety of possible protocols that can be employed
according to the specific applications requirements. The following are relevant
options:

– HyperText Transfer Protocol (HTTP) [16]: mainly used for the communica-
tion with the consumer’s devices;

– Constrained Application Protocol (CoAP) [17]: explicitly designed to work
with a large number of constrained devices operating in LLNs. CoAP is built
on the top of User Datagram Protocol (UDP) and follows a request-response
paradigm;

– Extensible Messaging and Presence Protocol (XMPP) [18];
– MQ Telemetry Transport (MQTT) protocol [19]: a lightweight publish/sub-

scribe protocol flowing over TCP/IP for remote sensors and control devices
through low bandwidth, unreliable, or intermittent communications;

– Constrained Session Initiation Protocol (CoSIP) [20,21]: a version of the Ses-
sion Initiation Protocol (SIP) [22] aiming at allowing constrained devices to
instantiate communication sessions in a lightweight and standard fashion. Ses-
sion instantiation can include a negotiation phase of some parameters which
will be used for all subsequent communication.

Regardless of the selected application-layer protocol, most IoT/M2M applica-
tions will follow the REpresentational State Transfer Protocol (REST) architec-
tural model [23], because (i) it provides simple and uniform interfaces and (ii) it
is designed to build long-lasting and robust applications, resilient to changes
that might occur over time.

3 Architecture

As stated in Sect. 1, a major difference between Big Data and Big Stream
approaches resides in the real-time/low-latency requirements of consumers. The
gigantic amount of data sources in IoT applications has mistakenly made Cloud-
service implementors believe that re-using Big Data-driven architectures would
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8 L. Belli et al.

be the right solution for all applications, rather than designing new paradigms
specific for IoT scenarios. IoT application scenarios are characterized by a huge
number of data sources sending small amounts of information to a collector ser-
vice at a typically limited rate. Many services can be built upon these data, such
as: environmental monitoring, building automation, and smart cities applica-
tions. These applications typically have real-time or low-latency requirements in
order to provide efficient reactive/proactive behaviors, which could effectively be
implemented especially in an IP-based IoT, where smart objects can be directly
addressed.

3.1 Big Stream-Oriented Architecture

Applying a traditional Big Data approach for IoT application scenarios might
bring to higher or even unpredictable latencies between data generation and
its availability to a consumer, since this was not among the main objectives
behind the design of Big Data systems. Figure 3 illustrates the time contributions
introduced when data pushed by smart objects need to be processed, stored, and
then polled by consumers. The total time required by any data to be delivered
to a consumer can be expressed as T = t0 + t1 + t2, where:

1. t0 is the time elapsed from the moment a data source sends information,
through an available API, to the Cloud service (1) and the service dispatches
the data to an appropriate queue, where it can wait for an unpredictable time
(2), in order to decouple data acquisition from processing;

2. t1 is the time needed for data, extracted by the queue, to be pre-processed and
stored into a Data Warehouse (DW) (3); this time depends on the number
of concurrent processes that need to be executed and get access the common
DW and the current size of the DW;

3. t2 is the data consumption time, which depends on the remaining time that
a polling consumer needs to wait before performing the next fetch (4), the
time for a request to be sent to the Cloud service (5), the time required for
lookup in the DW and post-process the fetched data (6), and the time for the
response to be delivered back to the consumer (7).

It can be observed that the architecture described is not optimized to min-
imize the latency and, therefore, to feed (possibly a large number of) real-time
applications, but, rather, to perform data collection and batch processing. More-
over, it is important to understand that data significant for Big Stream appli-
cations might be short-lived, since they are to be consumed immediately, while
Big Data applications tend to collect and store massive amounts of data for an
unpredictable time.

In this work, we propose a novel architecture explicitly designed for the man-
agement of Big Stream applications targeting IoT scenarios. The main design
criteria of the proposed architecture are: (i) the minimization of the latency
in data dispatching to consumers and (ii) the optimization of resource alloca-
tion. The main novelty in the proposed architecture is that the data flow is
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A Graph-Based Cloud Architecture for Big Stream Real-Time Applications 9

Fig. 3. Traditional Big Data architecture for IoT and delay contributions from data
generation to applications information delivery.

“consumer-oriented”, rather than being based on the knowledge of collection
points (repositories) where data can be retrieved. The data being generated by
a deployed smart object might be of interest for some consumer application,
denoted as listener. A listener registers its interest in receiving updates (either
in the form of raw or processed data) coming from a streaming endpoint (i.e.,
Cloud service). On the basis of application-specific needs, each listener defines a
set of rules, which specify what type of data should be selected and the associ-
ated filtering operations. For example, in a smart parking application, a mobile
app might be interested in receiving contents related only to specific events (e.g.,
parking sensors status updates, the positions of other cars, weather conditions,
etc.) that occur in a given geographical area, in order to accomplish relevant
tasks (e.g., find a covered free parking spot). The pseudo-code that can be used
to express the set of rules for the smart parking application is shown in the
following listing:

when

$temperatureEvent = {@type:http://schema.org/Weather#temperature}

$humidityEvent = {@type:http://schema.org/Weather#humidity}

$carPositionEvent = {@type:http://schema.org/SmartCar#travelPosition}

$parkingStatusEvent = {@type:http://schema.org/SmartParking#status}

@filter: {

location: { @type:"http://schema.org/GeoShape#polygon",

coordinates: [ [

[41.3983, 2.1729], [41.3986, 2.1729], [41.3986, 2.1734],

[41.3983, 2.1734], [41.3983, 2.1729]

] ]

}

then

<application logic>

[Pseudo-code to express the set of rules for a smart parking application.]
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10 L. Belli et al.

The set of rules specifies (i) which kinds of events are of interest for the
application and (ii) a geography-based filter to apply in order to receive only
events related to a specific area. Besides the final listener (end-user), at the
same time, the Cloud service might act as a listener and process the same event
data stream, but with different rules, in order to provide a new stream (e.g.,
providing real-time traffic information), which can be consumed by other listen-
ers. An illustrative pseudo-code for a real-time traffic information application is
presented in the following listing:

when

$cityZone = {@type:http://schema.org/SmartCity#zone}

$carPositionEvents = collect({

@type: http://schema.org/SmartCar#travelPosition,

@filter: {

location: cityZone.coordinates

}

}) over window:time(30s)

then

emit {

@type: http://schema.org/SmartCity#trafficDensity,

city_zone: $cityZone,

density: $carPositionEvents.size,

}

[Pseudo-code to express the set of rules for a real-time traffic information
application.]

The proposed Big Stream architecture guarantees that, as soon as data are
available, they will be dispatched to the listener, which is thus no longer responsi-
ble to poll data, thus minimizing latencies and possibly avoiding network traffic.

The information flow in a listener-based Cloud architecture is shown in Fig. 4.
With the new paradigm, the total time required by any data to be delivered to
a consumer can be expressed as:

T = t0 + t1 (1)

where:

1. t0 is the time elapsed from the moment a data source sends information,
through an available API, to the Cloud service (1) and the service dispatches
the data to an appropriate queue, where it can wait for an unpredictable time
(2), in order to decouple the data acquisition from processing;

2. t1 is the time needed to process data extracted from the queue and be
processed (according to the needs of the listener, e.g., to perform format
translation) and then deliver it to registered listeners.

It is clear that the inverse of perspective introduced by a listener-oriented com-
munication is optimal in terms of minimization of the time that a listener must
wait before it receives data of interest. In order to highlight the benefits brought
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A Graph-Based Cloud Architecture for Big Stream Real-Time Applications 11

by the Big Stream approach, with respect to a Big Data approach, consider an
alerting application, where an event should be notified to one or more consumers
in the shortest possible time. The traditional Big Data approach would require an
unnecessary pre-processing/storage/post-processing cycle to be executed before
the event could be made available to consumers, which would be responsible to
retrieve data by polling. The listener-oriented approach, instead, guarantees that
only the needed processing will be performed before data are being delivered
directly to the listener, thus providing an effective real-time solution.

This general discussion proves that a consumer-oriented paradigm may be
better suited to real-time Big Stream applications, rather than simply reusing
existing Big Data architectures, which fit best applications that do not have
critical real-time requirements.

Fig. 4. The proposed listener-based architecture for IoT delay contributions from data
generation to consumers information delivery are explicitly indicated.

3.2 Graph-Based Processing

In order to overcome the limitations of the “process-oriented” approach described
in Sect. 2, and fit the proposed Big Stream Architecture, we have envisioned and
designed a new Cloud Graph-based architecture built on top of basic building
blocks that are self-consistent and perform “atomic” processing on data, but
that are not directly linked to a specific task. In such systems, the data flows
are based on dynamic graph-routing rules determined only by the nature of the
data itself and not by a centralized coordination unit. This new approach allows
the platform to be “consumer-oriented” and to implement an optimal resource
allocation. Without the need of a coordination process, the data streams can
be dynamically routed in the network by following the edges of the graph and
allowing the possibility to automatically switch-off nodes when some processing
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12 L. Belli et al.

units are not required at a certain point and transparently replicate nodes if some
processing entities is consumed by a significant amount of concurrent consumers.

Fig. 5. The proposed listener-based Graph architecture: the nodes of the graph are
listeners; the edges refer to the dynamic flow of information data streams.

Figure 5 illustrates the proposed directed graph-based processing architecture
and the concept of listener. A listener is an entity (e.g., a processing unit in
the graph or an external consumer) interested in the raw data stream or in the
output provided by a different node in the graph. Each listener represents a
node in the topology and the presence and combination of multiple listeners,
across all processing units, defines the routing of data streams from producers
to consumers. In this architectural approach:

– nodes are processing units (processes), performing some kind of computation
on incoming data;

– edges represent flows of informations linking together various processing unit,
which are thus able to implement some complex behavior as a whole;

– nodes of the graph are listeners for incoming data or outputs of other nodes
of the graph.

The designed graph-based approach allows to optimize resource allocation
in terms of efficiency, by switching off processing units that have no listeners
registered to them (enabling cost-effectiveness), and scalability, by replicating
those processing units which have a large number of registered listeners. The
combination of these two functionalities and the concept of listener allow the
platform and the overall system to adapt itself to dynamic and heterogeneous
scenarios, by properly routing data streams to the consumers, and to add new
processing units and functionalities on demand.

In order to provide a set of commonly available functionalities, while allowing
to dynamically extend the capabilities of the system, the graph is composed by
concentric levels:
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A Graph-Based Cloud Architecture for Big Stream Real-Time Applications 13

(a) (b)

Fig. 6. (a) The concentric linked Core and Application Graphs. (b) Basic processing
nodes build the Core Graph: the outer nodes have increasing complexity.

– Core Graph: basic processing provided by the architecture (e.g., format trans-
lation, normalization, aggregation, data correlation, and other transforma-
tions);

– one or more Application Graphs: listeners that require data coming from an
inner graph level in order to perform custom processing on already processed
data.

The complexity of processing is directly proportional to the number of levels
crossed by the data. This means that data at an outer graph level must not be
processed again at an inner level. From an architectural viewpoint, as shown in
a representative scheme in Fig. 6, nodes at inner graph levels cannot be listeners
of nodes of outer graph levels. In other words, there can be no link from an outer
graph node to an inner graph node, but only vice versa. Same-level graph nodes
can be linked together if there is a need to do so. Figure 7 illustrates incoming and
outgoing listener flows between Core and Application graphs units. In particular,

Fig. 7. Allowed input and output flows for Core Graph nodes and Application Graph
nodes.
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14 L. Belli et al.

a processing unit of the Core graph can be a listener only for other nodes of the
same level (n incoming streams) and a source both for other Core or Application
graph nodes (m outgoing streams). A node of an Application graph can be, at
the same time, (i) a listener of n incoming flows from Core and/or App graph
and (ii) a data source only for other (m) nodes of the application graph or
heterogeneous external consumers.

4 Conclusions & Future Works

In this paper, we have presented a novel Cloud architecture for the management
of Big Stream applications in IoT scenarios. After defining the Big Stream par-
adigm and highlighting the main differences with the traditional Big Data para-
digm, in terms of data sources and real-time requirements, we have described how
a consumer-oriented architecture might lead to the minimization of the latency
between the time instant of data generation and the time instant at which the
processed data can be delivered to a consumer application. The proposed archi-
tecture is based on a data-driven processing graph, where data flows between
processing units (graph nodes), denoted as “listeners,” which, collectively, per-
form consumer-oriented processing, thus implementing an architecture-wide
push-based communication. The listener-oriented approach has to several bene-
fits, such as: (i) lowest latency, as the push-based approach guarantees that no
delay, due to polling and batch processing, is introduced; (ii) fine-grained self-
configuration, as listeners can dynamically “plug” to those that output data of
interest; (iii) optimal resource allocation, as processing units that have no listen-
ers can be switched off, while those with many listeners can be replicated, thus
leading to cost-effectiveness from a Cloud service perspective. As a next step
of our work, we plan to start the implementation of the presented architecture
modules with open-source technologies, and test them with data from real IoT
scenarios.
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