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Abstract. This paper presents a general approach to distributed de-
tection with multiple sensors in network scenarios with noisy communi-
cation links between the sensors and the fusion center (or access point,
AP). The sensors are independent and observe a common phenomenon.
While in most of the literature the performance metrics usually consid-
ered are missed detection and false alarm probabilities, in this paper we
follow a Bayesian approach for the evaluation of the probability of de-
cision error at the AP. We first derive an optimized fusion rule at the
AP in a scenario with ideal communication links. Then, we consider the
presence of noisy links and model them as binary symmetric channels
(BSCs). This assumption leads to a simple, yet meaningful, performance
analysis. Under this assumption, we show, both analytically and through
simulations, that if the noise intensity is above a critical level (i.e., the
cross-over probability of the BSC is above a critical value), the lowest
probability of decision error at the AP is obtained if the AP selectively
discards the information transmitted by the sensors with noisy links.
Key words: Decentralized detection, sensor networks, noisy communi-
cation links, multiple observations, cross-layer design.

1 Introduction

Distributed detection has been an active research field for a long time [19]. In
particular, several approaches have been proposed to study this problem, in the
realms of information theory [10], target recognition [16, 17], and several other
areas. The increasing interest, over the last decade, for sensor networks, has
spurred a significant research activity on distributed detection techniques in this
context [21, 4, 7, 9].

In recent years, wireless sensor networks are becoming more common, as,
for example, in terrain monitoring applications [18]. In a wireless communica-
tion scenario, links between sensors and the access point (AP) are likely to be
faded [15, 6]. In this case, most of the results proposed in the literature are not
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immediately applicable, since they are based on the assumption that commu-
nication links between sensors and AP are “ideal,” i.e., the information trans-
mitted by sensors is received correctly by the AP. The characteristics (in terms
of capacity) of the radio multiple access channel in wireless sensor networks are
taken into account in [5], where optimal configurations for decentralized detec-
tion are analyzed. Study of decentralized detection taking into account realistic
communication constraints is also considered in [1, 12].

In this paper, we first revisit the basic principles of distributed detection
with binary decisions at the sensors. In order to model a scenario where some
of the links between sensors and AP are non-ideal, we assume that a link can
be modeled as a binary symmetric channel (BSC) [14]. We show that selective
elimination of noisy links may lead to a performance improvement when the
cross-over (or bit-flipping) probability of the BSC increases. In particular, for
each value of the common signal-to-noise ratio (SNR) at the sensors we deter-
mine a critical bit-flipping probability which discriminates between two network
operating regimes: for values of the bit-flipping probability above the critical
value, the best performance is obtained when the AP excludes the sensors with
noisy links. In particular, selective exclusion of sensors with noisy links could be
obtained, for instance, by using a clever medium access control (MAC) protocol
at the AP. Therefore, our results suggest that the use of a cross-layer approach to
the design of sensor networks with unreliable communication links (e.g., wireless
sensor networks) is the best choice.

This paper is structured as follows. In Section 2, we provide the reader
with preliminaries on distributed detection principles, referring to a classical
distributed detection scheme with parallel schedule. In Section 3, the presence
of noisy links, modeled as BSCs, is considered, and the corresponding sensor
network performance is analyzed. Conclusions and future research directions are
presented in Section 4.

2 Preliminaries on Distributed Detection

We consider a classical sensor network scenario where all sensors are connected to
a single AP [21]. Two main approaches for combining the information gathered
by multiple sensors have been proposed.

– The first approach is referred to as centralized : all sensors observations are
transmitted to a central processor that performs a global decision.

– The second approach is referred to as decentralized : each sensor makes a
local decision and a fusion processor, i.e., the AP, makes the final decision,
by applying a suitable fusion rule.

In this paper, all sensors make an observation of a common binary phe-
nomenon. In other words, we consider the binary hypothesis signal detection
problem [13], with statistically independent observations from sensor to sensor.
We will refer to the two hypotheses as H1 and H0, respectively. The true hy-
pothesis will be simply denoted as H . We will assume that the two hypotheses



are equally likely. The extension of this work to the case of correlated sensors [3]
is currently under investigation.

Suppose that there are N sensors and that they observe the same phe-
nomenon at a given point in time (for notational simplicity, we do not explicitly
consider the time instant of the observation). The discrete-time observation at
the i-th sensor can be expressed as

ri = yi + ni (1)

where

yi ,

{

0 if H0

s if H1

with i = 1, 2, . . . , N . Assuming that the noise samples {ni} are independent
and identically distributed with the same Gaussian distribution N (0, σ2), the
common signal-to-noise ratio (SNR) at each sensor can be defined as follows:

SNRsensor ,
[E{yi|H1} − E{yi|H0}]

2

σ2
=

s2

σ2
. (2)

For the sake of notational simplicity, we assume that σ = 1, so that SNRsensor =
s2. We also assume that the SNR is the same at all sensors, i.e., the sensors are
equivalent.

In a classical distributed detection scheme with parallel schedule, each sensor
makes an observation of the common phenomenon, decides for one of the two
hypotheses, and then sends its binary decision, denoted as ui, to the AP. In
general, the decision rule at each sensor (common for all sensors) can be written
as ui = γ(ri), where γ(·) is a suitable decision function. Usually, the communica-
tion link between each sensor and the AP is ideal, i.e., the AP receives correctly
the bit transmitted by each sensor. In order to make a decision, the i-th sensor
compares the observation ri with a threshold value τ and computes its binary
decision as follows:

ui = γ(ri) =

{

1 if ri < τ
0 if ri > τ.

(3)

Equivalently, one can write γ(ri) = U(ri − τ), where U(·) is the unitary step
function. It is possible to show that this decision rule is equivalent to a local
likelihood ratio test [11]. In [20], it is shown that selecting the same value of
τ for all sensors is an asymptotically (for large values of N) optimal choice
for minimizing the probability of incorrect decision. Moreover, in [20] the author
shows also that selecting the same value of τ also for a relatively small number N
of sensors leads a negligible performance loss with respect to an optimal threshold
selection among the sensors. Motivated by this observation, in the remainder of
this paper we will assume that the threshold value τ for local decision is the
same for all sensors.

Once all sensors have made their local decisions {ui}, the AP receives an
array of N binary values, and makes a final decision u0 according to a fusion rule

u0 = Γ (u1, . . . , uN). As shown in the literature, the fusion rule must be based on
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Fig. 1. Decision regions for majority-like fusion rules in the case with N = 2 sensors:
OR (left) and AND (right) rules. In the axes there are the local decisions (denoted as
“0” and “1”) at the two sensors, while within the diagram there is the final decision at
the AP.

a binary monotonic increasing function of the decisions array of length N [21].

Given N , even if there are 22N

possible fusion rules, one can limit herself/himself
at investigating only binary monotonic increasing functions [16, 21]. Under the
assumption that the SNR is the same at all sensors, these fusion rules can be
given the following general majority-like expression:

Γ (u1, . . . , uN ) =

{

1 if
∑

N

i=1 ui ≥ k

0 if
∑

N

i=1 ui < k
(4)

where k = 1, . . . , N . In general, if k = 1 the OR fusion rule is obtained, while if
k = N the AND fusion rule is obtained. In a network with N = 2 sensors, only
the OR and AND fusion rules are possible and a pictorial description of these
rules is shown in Fig. 1.

Provided that the fusion rule is in the form given by (4), the key problem
consists in determining the value of k that minimizes the probability of error
under a Bayesian criterion, defined as

Pe , P{u0 6= H}.

Based on our assumption of equally likely hypotheses (P (H0) = P (H1) = 1/2),
the probability of error can be written as

Pe =
1

2
P (u0 = H0|H1) +

1

2
P (u0 = H1|H0). (5)

In the general case with N ≥ 2 sensors, the two terms at the right side of (5)
can be evaluated as follows:

P (u0 = H0|H1) = P{less than k sensors decide for H1|H1}



=

k−1
∑

i=0

(

N

i

)

P (ui = H1|H1)
iP (ui = H0|H1)

N−i

=

k−1
∑

i=0

(

N

i

)

[1 − Φ(τ − s)]iΦN−i(τ − s) (6)

P (u0 = H1|H0) = P{at least k sensors decide forH1|H0}

=

N
∑

i=k

(

N

i

)

P (ui = H1|H0)
iP (ui = H0|H0)

N−i

=
N

∑

i=k

(

N

i

)

[1 − Φ(τ)]iΦ(N−i)(τ) (7)

where Φ(x) , 1√
2π

∫ x

−∞
e−

y2

2 dy. Therefore, using (6) and (7) into (5), one ob-

tains

Pe =
1

2
P (u0 = H0|H1) +

1

2
P (u0 = H1|H0)

=
1

2

k−1
∑

i=0

(

N

i

)

[1 − Φ(τ − s)]iΦN−i(τ − s) +
1

2

N
∑

i=k

(

N

i

)

[1 − Φ(τ)]iΦN−i(τ).

(8)

The behavior of the probability of error, as a function of the threshold value τ , is
shown in Fig. 2, in the case with SNRsensor = s2 = 0 dB. As one can observe from
Fig. 2, for each decision rule the probability of error is a quasi-convex function of
τ and has an absolute minimum. Numerically, one can characterize the absolute
minimum depending on the value of N .

– N odd: the optimal value of τ is s/2 and the best fusion rule is the majority

rule, i.e., k = ⌊N/2⌋+ 1.
– N even: between the optimal value for the threshold τ and s/2 there is

an offset that, in general, depends on (i) the number of sensors N , (ii) the
sensor SNR s2, and (iii) the fusion rule. In particular, the best fusion rules
are obtained selecting k = N/2 + 1 (i.e., adopting a majority rule) or k =
N/2. For both fusion rules, by properly selecting the threshold value τ the
probability of decision error is the same.

As intuitively expected, increasing the number N of sensors and choosing the
corresponding optimal fusion rule, the performance (in terms of Pe) improves
dramatically.

3 Sensor Networks with Noisy Communication Links

While all previous results apply to a sensor network scenario where the commu-
nication links between sensors and AP are ideal, in a realistic scenario (e.g., a
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Fig. 2. Probability of error, as a function of the threshold value τ , in a scenario with
N = 5 sensors and SNRsensor = 0 dB. Various values of k, corresponding to different
fusion rules, are shown.

wireless sensor network) it might happen that these links are noisy (e.g., they are
faded [6]). Studying such a scenario is difficult, since the presence of fading might
also create correlations among the sensors [15]. The analysis and optimization of
wireless sensor networks is, therefore, a complicated problem. In [6], the authors
propose fusion algorithms that take into account channel fading statistics. In
order to derive significant insights into the problem of decentralized detection in
sensor networks with realistic communication links, we now consider a simplified
model for a noisy communication link. More precisely, a noisy link between a
sensor and the AP is modeled as a BSC with parameter p, corresponding to the
channel cross-over probability1 [8]. In other words, the bit transmitted by the
sensor has a probability p of being “flipped.” The parameter p will depend on the
specific characteristics of the sensors-AP communication links (e.g., modulation
format, presence of channel coding, presence of fading, detection strategy at the
AP, etc.). Assuming binary hard decision at each sensor, if ui is the decision sent
by the i-th sensor, the AP will receive the following information:

ureceived
i

=

{

ui with probability 1 − p
1 − ui with probability p.

1 We remark that the sensor SNR, i.e., SNRsensor =
√

s, is the SNR at each sensor
relative to the local detection of the common phenomenon (or state of nature). A
realistic communication link between a sensor and the AP could be characterized
by an SNR at the AP. In this paper, however, we do not explicitly consider the
communication link SNR, since we concisely describe the communication link as a
BSC, which is completely characterized by the single parameter p.
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Fig. 3. Probability of error for various values of the number of sensors N . In each case,
the optimal fusion rule is considered.

We extend the derivation of the probability of error proposed in Section 2 in order
to encompass the presence of noisy links. More precisely, we want to evaluate the
final probability of error (5) in a sensor network with noisy links. We consider
a majority-like fusion rule at the AP, as described in Section 2, with optimized
values of k and τ . We first consider a scenario where all N links are noisy. Then,
we generalize the obtained results to the case where d ≤ N links are noisy. For
example, this scenario could correspond to a wireless sensor network where some
of the sensors do not have, temporarily, a “clear” communication path to the
AP. Note that the proposed approach could be extended to a scenario where the
noise intensity is not the same in all noisy links.

3.1 Sensor Networks with All Noisy Communication Links

After proper algebraic manipulations, it is possible to show that the first condi-
tional probability in (5) can be written as

P (u0 = H0|H1) = P{i < k sensors for H1|H1} =

k−1
∑

i=0

(

N

i

)

P i

c1P
N−i

e1 (9)

where

Pc1 = (1 − p)P (s + n > τ) + pP (s + n < τ) = (1 − p)[1 − Φ(τ − s)] + pΦ(τ − s)

and Pe1 = 1 − Pc1. Similarly, the second conditional probability in (5) can be
written as

P (u0 = H1|H0) = P{i ≥ k sensors for H1|H0} =

N
∑

i=k

(

N

i

)

P i

e2P
N−i

c2 (10)
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Fig. 4. Probability of error, as a function of the cross-over probability p, for different
values of the sensor SNR. The number of sensors is N = 3. The curve labeled “lower
bound” corresponds to the theoretical limit with SNRsensor = ∞.

where

Pe2 = (1 − p)P (n > τ) + pP (n < τ) = (1 − p)[1 − Φ(τ)] + pΦ(τ)

and Pc2 = 1 − Pe2.
The probability of error (5) can then be evaluated numerically, by using the

derived expressions (9) and (10). In particular, the probability of error depends
on (i) the decision threshold value τ at the sensors, (ii) the sensor SNR s2, and
(iii) the cross-over probability p.

In Fig. 4, the probability of error is shown as a function of the cross-over
probability p, for various values of SNRsensor, in a scenario with N = 3 sensors.
As one can observe, regardless of the sensor SNR, for increasing values of p the
probability of error becomes unacceptable. The lower bound corresponds to a
theoretical case where the sensor SNR is infinite. This lower bound, denoted as
Pe−lb(p) (to underline its dependence on the cross-over probability p), can be
given the following analytical expression:

Pe−lb(p) = lim
s→∞

Pe =
1

2

[

k−1
∑

i=0

(

N

i

)

(1 − p)ipN−i +

N
∑

i=k

(

N

i

)

pi(1 − p)N−i

]

.

From the results shown in Fig. 4, one can conclude that, for any value of p,
increasing the sensor SNR beyond a critical threshold does not lead to any
significant performance improvement. This might have practical implications on
the design of sensors, in terms of their detection accuracy. In fact, one should not
increase the sensor sensitivity without limit, but, rather, should find the critical
sensitivity at which the ultimate theoretical performance is practically obtained.



Table 1. Analytic expressions of P (u0 = H1|H0) in the following cases: (a) d ≥ k,
N − d ≥ k, (b) d ≥ k, N − d < k, (c) d < k, N − d < k and (d) d < k, N − d ≥ k.

Case P (u0 = H1|H0)

(a)
P

k

de=0

h

`

d

de

´

P de
e2

P d−de
c2

P

N−d

ie=k−de

`

N−d

ie

´

P
ie

eH0
P

N−d−ie

cH0

i

+
P

d

de=k+1

`

d

de

´

P de
e2

P d−de
c2

· U(d − k − 1)

(b)
P

k

de=k+d−N

h

`

d

de

´

P de
e2

P d−de
c2

P

N−d

ie=k−de

`

N−d

ie

´

P
ie

eH0
P

N−d−ie

cH0

i

+
P

d

de=k+1

`

d

de

´

P de
e2

P d−de
c2

· U(d − k − 1)

(c)
P

k

de=k+d−N

h

`

d

de

´

P de
e2

P d−de
c2

P

N−d

ie=k−de

`

N−d

ie

´

P
ie

eH0
P

N−d−ie

cH0

i

(d)
P

k

de=0

h

`

d

de

´

P de
e2

P d−de
c2

P

N−d

ie=k−de

`

N−d

ie

´

P
ie

eH0
P

N−d−ie

cH0

i

3.2 Sensor Networks with a Generic Number of Noisy Links

We now extend the previous analysis to encompass the case with a generic num-
ber d ≤ N of noisy links—and, consequently, N − d ideal links. The fusion rule
is the majority-like rule given in (4), with an optimized value of k.

In order to evaluate the probability of error, we first compute the conditional
probability P (u0 = H1|H0) at the right-hand side of (5). Let us denote by
de ≤ d the number of noisy links associated to sensors in error, i.e., sensors
which decide for H1 when H0 has happened, and by ie ≤ N − d the number
of ideal links associated to sensors in error, i.e., sensors which decide for H1

when H0 has happened. With these definitions, the AP might make2 a final
erroneous decision if de + ie ≥ k, with de ∈ {0, . . . , d} and ie ∈ {0, . . . , N − d}.
Depending on the relations between the integers N , k and d, one can distinguish
the following four cases, respectively: (a) d ≥ k, N −d ≥ k, (b) d ≥ k, N−d < k,
(c) d < k, N − d < k and (d) d < k, N − d ≥ k. After tedious manipulations,
the final expressions for P (u0 = H1|H0), in the four considered cases, are shown
in Table 1, where

PeH0
, P (u0 = 1|H0, p = 0) = 1 − Φ(τ)

and PcH0
= 1 − PeH0

.
We now consider the second conditional probability at the right-hand side

of (5), i.e., P (u0 = H0|H1). In this case, the AP makes a final decision error
when n ≤ k − 1 sensors decide for H1. Let us denote by dc and ic the number
of sensors in errors (i.e., they decide for H0 even if H1 has happened) connected
with noisy and ideal links to the AP, respectively. A final decision error might

happen if dc + ic ≤ k − 1, with dc ∈ {0, . . . , d} and ic ∈ {0, . . . , N − d}. As for
the computation of P (u0 = H1|H0), four possible cases can be distinguished,
depending on the values of N , k and d: (a) d ≤ k − 1, N − d ≤ k − 1, (b)

2 The reader should observe that if a sensor is in error and the bit transmitted to the
AP is flipped, then the bit actually received by the AP is correct.



Table 2. Analytic expressions of P (u0 = H0|H1) in the four cases corresponding to
(a) d ≤ k− 1, N − d ≤ k− 1, (b) d ≤ k− 1, N − d > k− 1, (c) d > k− 1, N − d > k− 1
and (d) d > k − 1, N − d ≤ k − 1.

Case P (u0 = H0|H1)

(a)
P

d

dc=k+d−N

h

`

d

de

´

P dc
c1

P d−dc
e1

P

k−1−dc

ic=0

`

N−d

ic

´

P
ic

cH1
P

N−d−ic

eH1

i

+
P

k−1+d−N

dc=0

`

d

dc

´

P dc
c1

P d−dc
e1

(b)
P

d

dc=0

h

`

d

de

´

P dc
c1

P d−dc
e1

P

k−1−dc

ic=0

`

N−d

ic

´

P
ic

cH1
P

N−d−ic

eH1

i

(c)
P

k−1

dc=0

h

`

d

de

´

P dc
c1

P d−dc
e1

P

k−1−dc

ic=0

`

N−d

ic

´

P
ic

cH1
P

N−d−ic

eH1

i

(d)
P

k−1

dc=k+d−N

h

`

d

de

´

P dc
c1

P d−dc
e1

P

k−1−dc

ic=0

`

N−d

ic

´

P
ic

cH1
P

N−d−ic

eH1

i

· U(N − d − 1)

+
P

k−1+d−N

dc=0

`

d

dc

´

P dc
c1

P d−dc
e1

d ≤ k − 1, N − d > k − 1, (c) d > k − 1, N − d > k − 1 and (d) d > k − 1,
N − d ≤ k− 1, respectively. Reasoning as before, one obtains the expressions for
P (u0 = H0|H1) shown in Table 2, where

PeH1
, P (u0 = H0|H1) = Φ(τ − s)

and PcH1
= 1 − PeH1

.
In Fig. 5, the probability of decision error is shown for N = 3 sensors. All

possible values (from 0 to N) of the number d of noisy links are considered.
Obviously, for increasing number of noisy links the performance degrades, and
this degradation is more pronounced (relatively) for high values of the sensor
SNR. This means that when sensors are very reliable, i.e., the sensor SNR is
high, the impact of noisy communication links is (proportionally) higher.

3.3 Selective Exclusion of Sensors with Noisy Links

As we have observed from the results in Fig. 5, for increasing number of noisy
links, the sensor network performance (in terms of probability of decision error
at the AP) degrades rapidly. At this point, one might consider an “intelligent”
AP, which neglects the decisions of a sensor if the link is noisy. For example, in a
wireless sensor network, each sensor could send a pilot symbol to the AP, which,
consequently, could determine the status of the corresponding link. Obviously,
if some sensors are excluded, there is a loss of information. Therefore, selective
elimination of the noisy links will lead to a performance improvement depending
on the value of p, i.e., on the noise intensity in noisy links.

In order to understand when exclusion of noisy links leads to a performance
improvement, we evaluate the probability of decision error, as a function of the
bit-flipping probability p, for a given value of the sensor SNR. In Fig. 6, the
probability of decision error is shown in a scenario with N = 5 sensors and
SNRsensor = 12 dB, for different values of the number of noisy links d ≥ 1. In a
scenario with N = 3 sensors and no noisy link (d = 0), from the results in Fig. 5
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Fig. 5. Probability of error, as a function of the sensor SNR, in a scenario with N = 3
sensors.

one concludes that the probability of error is 1.6× 10−3. Considering, in Fig. 6,
the curve relative to the case with d = 2 noisy links out of N = 5, it follows that
Pe = 1.6× 10−3 corresponds to a value p = 0.12. Therefore, one can distinguish
the following two network operating regions (depending on the value of p).

– If p < 0.12, the probability of decision error in a sensor network with N = 5
sensors and d = 2 noisy links is lower than that of a sensor network with
N = 3 sensors and ideal links. Therefore, using the local decisions of all
sensors (even if d = 2 communication links are noisy) is the best strategy.

– If p > 0.12, the probability of decision error in a sensor network with N = 5
sensors and d = 2 noisy links is higher than that of a sensor network with
N = 3 sensors and ideal links. In this case, the AP should neglect the
information originated by the sensors corresponding to noisy links, and use
only the bits coming from the sensors with ideal links.

In a scenario with d = 3 noisy links, the critical value of the bit-flipping
probability which discriminates between use of all sensors or selection of the
subset of sensors with ideal links is (obviously) lower than the critical value in
a scenario with d = 2 links.

In general, given a particular sensor network structure (N sensors and d
noisy links), for each value of the sensor SNR it is possible to determine the
critical bit-flipping probability which discriminates between (i) using all sensors
or (ii) using only the subset of sensors with ideal links. In the example previously
considered with N = 5 sensors and d = 2 noisy links, the critical bit flipping
probability is shown, as a function of the sensor SNR, in Fig. 7. The diagram has
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Fig. 6. Probability of error, as a function of cross-over probability p, in a sensor network
with N = 5 sensors and SNRsensor = 12 dB.

to be interpreted as follows. Given a particular sensor network scenario with a
particular sensor SNR and a cross-over probability p (which will depend on the
characteristics of the channel between the sensor and the AP), one can determine
the (SNRsensor,p) network operating point: if this point falls above the critical
curve, then the AP should neglect the sensors with noisy links; otherwise, if this
point falls below the critical curve, then the AP should use all sensors. For ease of
understanding, we have also indicated the critical (SNRsensor,p) operating points
corresponding to the probabilities of error between 10−2 and 10−6. For example,
consider the sensor SNR corresponding to Pe = 10−3: if p < 0.16, then using
all sensors will lead to a probability of error lower than 10−3; for p ≥ 0.16, the
lowest possible probability of error (equal to 10−3) is obtained by using only the
sensors with ideal links.

Finally, we remark that the results in Fig. 6 show that the critical bit-flipping
probability decreases for increasing values of the sensor SNR. In other words,
whenever sensors are very sensitive (i.e., the sensor SNR is high), then the
presence of even a limited link noise has a significant impact on the network
performance—in fact, the best operating regime is the one corresponding to se-
lective exclusion of the sensors with noisy links. On the constructive side, sensors
which are selectively excluded could be temporarily turned off (e.g., by properly
estimating the fade duration in a wireless communication scenario), prolonging
the sensor network lifetime. The analysis of this network performance metric,
i.e., the network lifetime, is the subject of on-going research activity.
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Fig. 7. Critical cross-over probability p as a function of the sensor SNR, relative to
a sensor network with N = 5 sensors and d = 2 noisy links. The curve divides two
regions: in the upper region the best performance is obtained by selecting only the
N − d = 3 sensors with ideal links, whereas in the lower region the best performance
is obtained using all N = 5 sensors.

3.4 Multiple Observations at the Sensors

In [2], it has been shown that the use of multiple consecutive and independent
observations of the same phenomenon at each sensor has a beneficial effect on the
performance, i.e., it reduces the probability of decision error at the AP. While
in [2] multiple observations have been considered for sensor networks with ideal

communication links, we now evaluate the effect of multiple observations in sen-
sor networks with noisy communication links. After tedious manipulations (not
reported for lack of space), it is possible to extend the previous analysis (carried
out in a scenario with single observations at the sensors) and derive analytical
expressions for the probability of decision error at the AP. More precisely, in a
sensor network scenario with N sensors and d noisy communication links, given
a number M of multiple observations, it is possible to evaluate the critical bit
flipping probability which discriminates between (a) using all sensors and (b)
discarding the sensors with noisy communication links.

In a scenario with M = 2 observations at each sensor, the critical bit flipping
probability curve is shown in Fig. 8. In the same figure, for the sake of compar-
ison, the critical bit flipping probability curve of Fig. 7 (relative to a scenario
with M = 1 observation per sensor) is also shown. It is immediate to observe
that the critical bit flipping probability increases when M = 2 observations per
sensor are used (roughly speaking, it doubles). In the same figure, both analysis
and simulation results are shown: as one can see, there is excellent agreement.
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Fig. 8. Critical bit-flipping probability p as a function of the sensor SNR, relative to
a sensor network with N = 5 sensors and d = 2 noisy links with M = 1 and M = 2
observations per sensor, respectively.

In order to consider a higher number of observations per sensor, for numerical
reasons we have reduced the number of sensors to N = 3. The obtained analytical
results, for various numbers of observations, are shown in Fig. 9. As expected,
increasing the number of observations has a beneficial effect on the performance
in terms of probability of decision error. In other words, our results suggest that
use of multiple observations (which comes at the cost of (i) increased delay in
the final decision and (ii) increased energy consumption at the sensors and AP)
makes the sensor network more robust against impairments in the sensor-AP
communication links.

From the results in Fig. 9, it is also interesting to observe that the improve-
ment brought by the use of 2 observations instead of 1 is higher than the im-
provement obtained by considering 4 observations instead of 3. More precisely,
since the optimal fusion rule is a majority-like rule, (i) significant performance
improvements are obtained for larger odd values of M and (ii), considering the
next even value (i.e., M + 1), the relative improvement becomes negligible for
increasing values of M . In other words, the number of observations, if sufficiently
high, should be odd.

4 Conclusions and Future Work

In this paper, we have considered the problem of distributed detection in sensor
networks where some of the communication links between the sensors and the
AP may be noisy. First, we have revisited basic principles of distributed detec-
tion with binary decisions at the sensors, discussing optimal fusion rules at the
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Fig. 9. Critical bit-flipping probability p as a function of the sensor SNR, relative to a
sensor network with N = 3 sensors and d = 2 noisy links with multiple observations,
compared to the performance of one sensor with ideal link.

AP. Then, we have introduced a simple BSC model for noisy communication
links between sensors and AP, and we have analyzed the corresponding network
performance, in terms of probability of decision error at the AP. For each value
of the sensor SNR, we have shown the existence of a critical bit-flipping prob-

ability: for values of p higher than this critical value, network performance is
optimized by discarding the decisions coming from sensors with noisy links; for
values of p lower than this critical value, network performance is optimized by
using the decisions from all sensors. Our results show that the critical bit-flipping
probability is a monotonically decreasing function of the sensor SNR.

The different sensor network operating regimes, depending on the number of
noisy links and the noise intensity over such links, could be forced by the use of
a suitable MAC protocol (with channel sensing) at the AP and we are currently
working on its design. We are also extending our approach to encompass the
presence of quantization at the sensors.
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