
8
Bringing IP to Low-power Smart Objects:

The Smart Parking Case in the
CALIPSO Project

Paolo Medagliani,1 Jérémie Leguay1 Andrzej Duda,2 Franck Rousseau2

Simon Duquennoy,3 Shahid Raza3 Gianluigi Ferrari,4 Pietro Gonizzi,4

Simone Cirani,4 Luca Veltri4 Màrius Monton,5 Marc Domingo,5 Mischa
Dohler,5 Ignasi Vilajosana5 Olivier Dupont6

1 Thales Communications & Security, France
2 Centre National de la Recherche Scientifique, France
3 Swedish Institute of Computer Science, Sweden
4 University of Parma, Italy
5 Worldsensing, Spain
6 Cisco System International, Netherlands

Abstract

The chapter describes the Calipso communication architecture for IP connec-
tivity in wireless sensor networks (WSNs) and the Smart Parking application
scenario developed within the Project. The use case is a real life demonstrator
for traffic flow and parking monitoring deployed in the city of Barcelona,
Spain. It is based on a communication infrastructure with sensors for parking
and traffic detection embedded in the ground. The sensor nodes communicate
parking space availability/traffic flow to neighboring sensors until they reach a
gateway. Multi-hop routing is used when there is no direct communication with
the gateway.Acentralized control system stores and processes all data gathered
from sensors. The resulting information and implemented services are offered
to citizens by means of mobile applications and city panels. In the chapter,
we analyze the requirements of the use case, present the communication
architecture of Calipso, and show how the Smart Parking application takes
advantage of different modules within the architecture.

287



288 The Smart Parking Case in the CALIPSO Project

8.1 Introduction

8.1.1 Bringing IP to Energy-Constrained Devices

The Internet of Things (IoT) proposes the vision of interacting with the phys-
ical world by interconnecting objects with processing, communication, sens-
ing, and actuating capabilities. The main IoT challenges include the integration
of small Smart Objects having strong energy and processing constraints,
large-scale interconnection of nodes through flexible and secure networking,
as well as personalized interaction with the physical world and integration
within the user-created content and applications.

Existing solutions stemming from past industrial and academic initia-
tives suffer from several limitations. The most important obstacle in the
development of the Internet of Things was the advent of a large number
of proprietary or semi-closed solutions such as Zigbee, Z-Wave, Xmesh,
SmartMesh/TSMP that proposed different functionalities at several layers.
Moreover, early research works in sensor networks suggested that the
constrained and application-specific nature of sensor networks required net-
working to be based on non-IP concepts [8], [13]. The result was the existence
of many non-interoperable solutions addressing specific problems and based
on different architectures and different protocols. Such approaches have not
led neither to large-scale deployments nor to interconnection of products from
different vendors. Interconnecting heterogeneous networks is possible via
protocol translation gateways, but this approach also presents several problems
(reduced scalability, potential security issues, no end-to-end services, etc.).

For a long time, using IP in constrained networks was considered as
too complex or ill-suited for such environments. However, with the increase
of computing power and memory size, several successful implementations
have showed the possibility of running the full-fledged IP stack [1], [2],
[14], [15], [17], [22], showing that the performance of layered IP-based
sensor network systems rivals that of ad-hoc solutions. One of the salient
examples is the Contiki operating system, which was first used to explore
IPv4 communications for sensor networks [2], [4] and later provided the first
fully certified IPv6 stack for IP-based smart objects [7]. Hui and Culler have
developed an IPv6 architecture for low-power sensor networks based on IEEE
802.15.4 [14].

Running an IP stack on a Smart Object presents the advantage of
easy integration with the current Internet and an easy reuse of existing
applications or protocols. More specifically, IP provides several important
characteristics:



8.1 Introduction 289

• it is based on open standards, which is essential for interoperability, cost
efficiency and innovation

• intelligence is pushed outside the network, enabling not only network
administrators but also users to develop new applications

• flexibility—supporting a wide range of media and devices
• universality—all protocols that solved very specific issues never survived
• open support for security
• support for auto configuration
• scalability.

Obviously, the minimal computing and memory requirements for running
the protocol limit the all IP approach to objects that may currently cost about
tens of euros. Smaller, less powerful nodes may still operate without IP to
perform some specialized functions, if the cost justifies such a choice.

The Pervasive Internet needs a universal alternative to the many existing
techniques for connecting ordinary devices to the Internet. The other tech-
niques all have something to recommend them; each is optimized for a special
purpose. But in return for their optimality, they sacrifice compatibility. Since
most device connectivity rarely requires maximum optimality, compatibility
is a much more important objective. IP is the only answer. End-to-end IP
architectures are widely accepted as the only alternative available to support
the design of scalable and efficient networks comprised of large numbers
of communicating devices. IP enables interoperability at the network layer,
but does not define a common application-layer standard, thus making it
optimal for use in a wide variety of applications ranging across several
industries [11].

8.1.2 The CALIPSO Project

CALIPSO is a European FP7 project targeting the development of IP
connected smart objects. In order to provide long lifetime and high inter-
operability, novel methods to attain very low power consumption are put in
place. CALIPSO leans on the significant body of work on sensor networks
to integrate radio duty cycling and data-centric mechanisms into the IPv6
stack, something that existing work has not previously done. In the CALIPSO
project, we propose a number of enhancements to the standard low-power
IP stack such as protocol optimizations, new network protocols, or security
modules.

The context of CALIPSO is the IETF/IPv6 framework, which includes
the recent IETF RPL and CoAP protocols. It sets up a structure for evaluation



290 The Smart Parking Case in the CALIPSO Project

that has not previously been available. Implementations have been carried out
within the Contiki open source OS, the European leading smart object OS.
In order to drive the development, three applications have been considered:
Smart Infrastructures, Smart Parking, and Smart Toys, all of which need both
standardized interfaces and extremely low power operation.

CALIPSO considers that smart object networks both need to communicate
with other smart objects, other smart object networks, as well as Internet-based
systems. The project goal is to push IP end-to-end connectivity all the way
into smart objects through compact, energy efficient, and loss/failure tolerant
routing and radio protocols. CALIPSO focuses on four specific layers of the IP
stack: the MAC layer, the routing layer, the transport layer, and the application
layer. With a deep understanding of the complex interactions between the
layers, CALIPSO is able to significantly increase the performance and reduce
the power consumption of IP-based smart object networks, thereby removing
major barriers to IP adoption in smart object networks.

8.2 Smart Parking

One of the key applications and entry-points to Smart Cities is the Smart
Parking application. It is designed to help drivers in the tough process of
finding a parking spot in a crowded city. With the help of this kind of
applications, citizens can reduce the searching time by 8% on the average,
allowing them to save time, fuel, and associated costs, and hence, reducing
frustration, accidents, and increasing the quality of life in cities. Because urban
traffic is the cause of 40% of CO2 and 70% of other contaminant in cities,
Smart Parking applications also reduce overall city contamination.

Last but not least, deploying a Smart Parking application in a city with
controlled parking areas, their occupation time is increased, the number of
non-paying drivers drops and in conclusion, the total income of the munici-
pality can be increased by almost 15%.

Some Smart Parking applications are based on cameras aiming at parking
zones and streets with all the problems inherent to image processing applica-
tions (image quality, changing conditions, high bandwidth needs, etc.). The
Smart Parking application specified in CALIPSO is based on individual car
sensor devices installed at every single parking spot in the city. Every device
processes the signal received by car sensing techniques and it decides if there
is a car parked above or if it is a free spot and sends this information to a central
server, where the data is processed, clustered, and sent to the citizens in various
ways (mobile phone application, on-street panels, information website, etc.).



8.2 Smart Parking 291

In parallel to that, municipality and city traffic control can retrieve and
manage the current and historical data to study how to enhance traffic
management in the city, adjust fees on controlled parking areas, etc. This
data is of a great value to the city as long as the information forms a new axis
on the city data space.

Figure 8.1 shows the communication infrastructure with the sensors for
parking and traffic detection embedded in the ground. The sensor nodes
communicate the parking space availability/traffic flow to neighboring sensors
until the data reach the gateway. Multi-hop routing is used when the direct
contact with the gateway cannot be made. A centralized control system stores
and processes all the data gathered from sensors.

The storyline of the use case is the following: a driver heading to a
desired parking sub-area (i.e., within a specified walking distance to the final
destination) can use this service from the mobile phone. First, the system will
tell if it forecasts that free parking spaces will be available at the expected
time of arrival. The availability forecast will be done at the central platform
using algorithms based on context information (time of the day, day of the
week, weather conditions, etc.) and historic data. Two outcomes are possible:

Case 1: available parking spaces are forecasted in this sub-area. In this
case, the system will advise parking spaces with the largest numbers of free
spots. Also, the system will notify the driver if traffic congestion has been
detected along the route up to the selected parking space.

Case 2: no available parking spaces are forecasted in this sub-area. In this
case, the system will search and recommend another sub-area with available

Figure 8.1 Architecture of the parking space availability control service



292 The Smart Parking Case in the CALIPSO Project

parking spots according to user preferences. The preferences will include the
proximity to the desired area and traffic status along the route.

The use case 1 will demonstrate the parking control application that
consists of the following main components:

• Sensor Nodes, which are small-embedded devices containing an AMR
(Anisotropic Magneto-Resistive MEMS) sensor, signal conditioning
stages through FPAA, a low-power IEEE 802.15.4 wireless interface for
communication. These nodes are connected to a self-organizing network
for communication between nodes.

• Hybrid Gateways collecting information about parking availability from
sensor nodes on the streets and transmitting the information to the
centralized urban control through the Internet. They allow interconnec-
tion using different interfaces in order to be easily adapted to different
urban scenarios like urban WiFi, wired municipality infrastructure, fiber
optical, etc.

• Cloud Central Platform collecting the information sent by the gateways
and city sources, and implementing the service to be accessed by the final
users (through Information Panels and Mobile Phones). This service will
identify the available parking spots and offer a forecast.

• Information Panels collecting parking availability information from the
control center and display this information to guide citizens to find free
parking spots.

• Mobile application to run on the users portable devices to access the
information in real time and obtain recommendations.

In Figure 8.2 we show an example of real-time panel information display-
ing and control interface used in Smart Parking applications (the Worldsensing
Smart Parking application were deployed in Barcelona and Moscow).

Figure 8.2 Installation and control interface of a Smart Parking application



8.3 CALIPSO Architecture 293

Figure 8.3 High level functional architecture of sensors

Table 8.2 summarize the requirements of the Smart Parking application
developed by Worldsensing SME. The requirements are based on market
demands and user experience like a long battery life (about 5 years),
maximum delay (i.e. response time of the application must be less than
10 seconds), etc.

8.3 CALIPSO Architecture

This section presents the CALIPSO architecture. Figure 8.3 shows a lay-
ered view of the architecture for a Smart Object node. Bold shapes indi-
cate the blocks on which the project focused by providing enhancements,
optimizations, or adaptations to Smart Objects constraints.

In this figure, we do not present the gateway (or LBR, the border router
in the IETF terminology) that interconnects the constrained network with the
Internet. This element supports the standard TCP/IP protocol stack and adapts
its operation to Smart Object nodes. The main function of the gateway relates
to the 6LoWPAN layer that takes care of fragmenting IPv6 packets longer that
the L2 MTU and compresses headers. It can also provide interfacing CoAP
with the standard HTTP.

At PHY/MAC layer, the constrained nodes should benefit from energy
efficient solutions such as IEEE 802.15.4 or Low Power WiFi, depending on
application needs for bandwidth and delay. On the other side, the gateway



294 The Smart Parking Case in the CALIPSO Project

must be able to communicate both with nodes that is running the same
PHY/MAC protocols, and with the Internet, running standard Ethernet and
WiFi protocols.

Similar considerations can be carried out for the networking layer. The
constrained nodes run the IPv6 protocol, coupled to 6LoWPAN to adapt
to the underlying data link layer. The routing protocols and the data com-
munication paradigms as well are specific to the constrained domain. The
gateway, instead, in addition to the above mentioned solutions, must also
run traditional legacy IPv4 and IPv6 to interconnect to existing network
infrastructures.

At the transport layer, both gateway and nodes can run legacy protocols
such as TCP or UDP, with a preference for UDP in the constrained world, due
to its reduced memory and resource use. In addition, nodes can implement a
publish/subscribe mechanism to improve data collection and reduce unneeded
communications.

Finally, at the application layer, nodes run specific lightweight protocols
to enable efficient communications, such as caching of data or REST-like

Table 8.1 Requirements of the Smart Parking
Aspect Requirement
Physical/link layer 802.15.4 with a duty-cycling scheme
Topology Multi-hop network
Throughput and latency Low throughput (collection of periodic values every

4s). Support for bursty load (car footprint
transmission).

Energy consumption Battery-powered device. Lifetime required for 5 years
Duty cycling MAC Yes. Tailored for convergecast traffic

(Multipoint-to-Point) for Smart Parking data
Data aggregation/storage and
in-network processing

Both required, data aggregation and in-network
processing

Support of mobility No
Traffic patterns Multi-hop convergecast
Routing Fairness and load balancing to mitigate hot spot

problems. Evaluate metrics for RPL as Smart Parking
application suffers from extreme multipath that
requires smart updates on the routing topology.

Transport QoS at transport
Neighbour and service
discovery

Self-discovery of capabilities provided by nodes,
announced/pulled out by the gateways, and/or in the
vicinity.

Security Payload and header encryption



8.3 CALIPSO Architecture 295

interfaces adapted to the constrained world. The gateway, in addition to run the
same protocols, is in charge of the interconnection with the Internet, therefore
it exposes REST APIs that allow remote users to easily interact with the
gateway.

Gateways do not have constraints in terms of energy and computational
capabilities and this kind of issues primarily concerns nodes that need to deal
with energy saving, self-organization, mobility, and security. Nodes appearing
in the network must be able to automatically learn about network parameters.
Eventually, the running protocols must take into account that nodes can
move and react to the change of a position. Securing communications is
another important aspect of the constrained world since the computational
capabilities do not allow for traditional security mechanisms. Since nodes
are battery powered or energy harvested, saving energy becomes crucial to
extend the whole network lifetime. These aspects have an impact on the
whole architecture of a node, requiring a careful specific design of the running
protocols.

In the following, we detail the most important project contributions
included in the CALIPSO stack, as well as some existing protocols and
solutions that have been exploited within CALIPSO.

Table 8.2 Low level details of the Smart Parking
Application
Maximum time since a car arrive until it is
shown on the display

10 sec

Gateway
Maximum nodes per gateway > 50
Motes
Maximum transmission distance between
motes (car on)

Each device must reach 2 other devices,
within 10 meters.

Maximum transmission distance between
motes (no car on)

Each device must reach 3 other devices,
within 15∼20 meters.

Sampling rate 1 Hz
Radio
Size of packets 20 bytes
Number of packets per minute Each time a car comes in/out +

keep-alive every 15 minutes
Duty cycle <0.2%
Percentage of lost messages <10%



296 The Smart Parking Case in the CALIPSO Project

8.3.1 CALIPSO Communication Modules

8.3.1.1 MAC layer
RAWMAC

RAWMAC is a cross-layer mechanism in which the routing layer, for
instance the RPL protocol presented in Section 8.4.1.2, is used as a manage-
ment layer for organizing the asynchronous duty-cycled MAC protocols (such
as ContikiMAC).

ContikiMAC [3], [6] is the Contiki default low-power listening MAC
protocol. To listen, nodes periodically wake up (e.g. at 8 Hz) and proceed
with two Clear Channel Assessments (CCAs) with an interval that guarantees
that any ongoing packet transmission will be sensed. Upon detecting activity
on the channel, the node keeps its radio on, waiting for an incoming packet.
To send, nodes transmit the data packet repeatedly as a wakeup signal, and
keep doing so until they received an acknowledgement (case of unicast) or for
exactly one wakeup period (case of broadcast).

ContikiMAC implements a so-called “phase-lock” optimization where
senders remember the wakeup phase of each of their neighbors to optimize
subsequent transmissions (wakeup signal starts briefly before expected target
wakeup). Once a receiver is active, the transmitter can transmit arbitrarily long
sequences of packets to amortize the wakeup procedure and allows for efficient
forwarding of large data bursts [6]. The contention-based, unscheduled nature
of ContikiMAC allows it to handle random traffic patterns while sleeping
more than 99% of the time. Because it emulates an always-on link and makes
no assumptions on the above layers, ContikiMAC is an ideal choice for
low-power IP scenarios.

The key idea of RAWMAC is to exploit the DODAG built by RPL to make
each node align its wake-up phase with that of its preferred parent, creating a
data propagation “wave” from the leaves of the DODAG to the root. Once a
data packet rides this wave, the latency is significantly reduced, as it depends
only on small propagation delays and on the internal processing carried out
at each device to forward the packet. By properly configuring the phase lock
mechanism of ContikiMAC, the transmitting node wakes up only when the
receiving node is ready to receive the packet, so that the energy consumption
is kept as low as possible.

Figure 8.4 shows this wake-up phase alignment in RAWMAC. As long
as the routing structure is established, a node shifts its wake-up phase in
order to be aligned with that of its parent. More precisely, it sets the wake-up
phase to the time at which it received the last link layer ACK from its RPL



8.3 CALIPSO Architecture 297

Figure 8.4 Principle of RAWMAC: the wake-up phase alignment. Once the RPL DODAG
is set up, each node shifts its wake-up phase according to that of its parent in the DODAG

preferred parent. Since the preferred parent must have been awake to receive
the packet, the node can assume that the reception of the ACK means that
it has successfully transmitted a packet within the preferred parent wake-up
window and, thus, that it has found the preferred parent wake-up phase.

We define the phase offset Po (dimension: [s]) as the offset between the
node wake-up phase and the wake-up phase of its parent. Given the node
sleeping interval CT , it holds that 0 ≤ Po ≤ CT . The parameter Po has indeed
to be chosen carefully, since it has an impact on the system delay performance.
If Po is too short, a node relaying a packet may not be able to catch its parent
wake-up, because the reception of the same packet from its child has not
completed yet. If this is the case, then the child should wait the next cycle
time CT to be able to forward the packet. If Po is too long, instead, the delay
significantly increases, as the sender has to wait for the receiver to wake up
to be able to transmit the packet.

8.3.1.2 Routing layer
RPL

The RPL routing protocol [9], [21] has been developed for a limited
data rate and lossy environments. Actually, RPL is the most adopted routing
protocol for constrained networks. RPL is a distance-vector protocol based
on the creation of a routing topology referred to as the Destination Oriented
Acyclic Directed Graph (DODAG), in which the cost of each path is eval-
uated according metrics defined in an objective function. The goal of this



298 The Smart Parking Case in the CALIPSO Project

protocol is the creation of a collection tree protocol, as well as a point-to-
multipoint network from the root of the network to the devices inside the
network.

To keep the status of the network updated, the root of the RPL DODAG
periodically broadcasts DODAG Information Object (DIO) control messages.
The receiving nodes may relay this message or just process it, if configured
as leaves of the tree. The RPL protocol also introduces a trickle mechanism
that allows reducing the transmission frequency of DIO messages according
to the stability of the network.

In some cases, when specific flags in DIO packets are set, the nodes receiv-
ing a DIO are stimulated for the generation of a Destination Advertisement
Object (DAO) messages. This is a unicast data packet that can be sent either
directly to the root, when a non-storing mode is used or to the selected parent
in the storing mode. The messages create downstream routes from the root to
the leaves.

In the former case (non-storing mode), intermediate nodes simply add
their addresses to the DAO header. Only the root stores the downward
routing table of the tree. In the latter case (storing mode) instead, since
DAO messages are directly processed by the parent node that receives the
packets, each node stores a routing table for the children associated to it.
Before sending in its turn a DAO, a node aggregates the information received
by the children, so that the aggregated reachability information is sent to
its parent. As unicast messages, the DAO can be acknowledged by the
receiver.

The third type of message foreseen by RPL is the DODAG Information
Solicitation (DIS) used by nodes to advertise their presence in the network so
that they can join an existing DODAG.

ORPL
ORPL [5] is an opportunistic extension to RPL. The basic idea behind ORPL is
to replace unicast transmissions to a specific next hop by anycast transmissions
aimed at any node that offers progress towards the destination. Figure 8.5
illustrates the anycast operation in which traditional routing estimates link
quality and sticks to links that appear to be generally good, while ORPL uses
any link available at the time of transmission.

Combined with ContikiMAC radio duty cycling, ORPL conciliates low
energy (nodes sleep most of the time) and low latency (first awoken neighbor
forwards).



8.3 CALIPSO Architecture 299

Routing in ORPL is possible towards the root by simply following a
gradient, but also towards any other node by going away from the gradient,
directed by lightweight routing tables that merely contain the set of nodes
below in the topology (“routing sets”).

ORPL was tested at a large scale and has shown to attain delivery ratios
over 99% together with sub-percent duty cycles and sub-second latency.

RRPL
Reactive RPL is a lightweight version of RPL that retains the collection tree
structure (DODAG) of RPL, but speeds up local repair in case of link failures
and allows for reactive or proactive routing for downward (P2MP) traffic.
It provides a mechanism for fast local route repair through the use of a link
reversal algorithm towards the sink. It takes advantage of the existing DODAG
structure to enable efficient reactive route search. Moreover, RRPL does not
impose the use of the additional RPL header in each packet, since it quickly
detects and fixes routing loops.

Featurecast
Featurecast is a new address-centric communication paradigm especially well-
suited for sensor networks. It uses a data-centric approach to select destination
nodes: destination addresses correspond to a set of features characterizing
sensor nodes. For instance, we can reach a group of nodes satisfying the

Figure 8.5 Traditionally, routing uses unicast over stable links aiming at stability. Low-power
listening introduces a significant delay at every hop. ORPL uses anycast and transmits to the
first awoken forwarder that receives the packet regardless of link quality estimates



300 The Smart Parking Case in the CALIPSO Project

featurecast address [4th floor and temperature]. In this way, the communica-
tion mode closely reflects how application developers reason about sensors,
actuators, and their interaction with the real world. Features may be freely
defined and specific to a particular application or a given deployed network.

Featurecast extends the standard notion of multicast with a more general
definition of groups: instead of one address representing a multicast group, a
featurecast address defines the group membership based on a set of features.
With featurecast, a node has implicitly an address for every subset of its
advertised features. We propose a scheme for efficiently routing packets to
all such addresses as well as an address coding compatible with the multicast
IPv6 address format.

8.3.1.3 Application layer
CoAP
RESTful web services and the HTTP protocol are widely used to publish
the status of resources. However, web services are not suitable for constrained
networks due to the high overhead introduced by HTTP and the presence of the
TCP congestion window. For these reasons, the CoRE IETF working group
aimed at adapting the REST architecture to constrained networks through
the definition of a protocol referred to as Constrained Application Protocol
(CoAP) [20]. The RESTful architecture, as the idealized model of the Web, is
usually implemented with HTTP, and its 4 basic methods: GET, POST, PUT,
and DELETE.

In CoAP, the same four REST verbs have been implemented for con-
strained devices. CoAP is by nature more lightweight than HTTP, supports
multicast natively, as well as the publish-subscribe model. It is for example
perfectly possible with CoAP to subscribe with a single request to all smoke
detectors in a building via a multicast request. In case of fire, an alarm can
then be multicasted to all subscribers. CoAP supports reliable communication
as an option on top of UDP. Actually, CoAP has become a de facto standard
to expose web services in constrained networks.

HTTP/CoAP Proxy
The HTTP/CoAP (HC) proxy with caching functionality has been imple-
mented relying on the IETF protocols. We made this choice both because some
libraries, which can be reused to speed up the implementation, are already
available and because IETF protocols have been specifically designed to meet
the constraints typical of IoT architectures.



8.3 CALIPSO Architecture 301

In Figure 8.6, we show a logical scheme of the implemented caching
system, where the existing CoAP servers expose some resources to be queried.
The running routing protocol is RPL. All the requested information and the
notifications from the nodes are gathered to the root of the RPL tree, which
overlaps with the WSN gateway. The HC proxy will then send the requested
information to the final user.

Our HC proxy implementation is based on the Californium open source
framework [16]. The main reason of this choice is that Californium already
implements in JAVA a basic set of CoAP functionalities. We have then
introduced two information storing mechanisms. The first one is the caching
database, where all the information from the WSN are gathered and stored
and for which we have chosen CouchDB, since it offers a REST HTTP API
to query stored results. The second one is a subscription register to efficiently
manage the subscribers to CoAP resources.

Requests are intercepted by the HC proxy that also handles the eventual
response from a given CoAP server. If the proxy has a stored value that is
fresh enough, that is whose lifetime is smaller than a given value, it directly
replies to the request of a remote client, without forwarding it into the WSN.
Otherwise, if the required value is not present or it is too old, it transfers the
request to the intended CoAP server. Additionally, the proxy stores the sensor
responses in the cache to make them available for other eventual incoming
requests. A similar approach is used for the publish-subscribe register. In the
case of observation requests issued by a remote client, the proxy handles them
by maintaining a list of observed resources and a list of interested clients. Each
time a notification for a resource update is sent from the node to the proxy,
the proxy will forward this message to all interested subscribers.

Caching and observe mechanisms can operate together as well. For
instance, the information already requested by an observe request can be

Figure 8.6 Scheme of the implemented HTTP/CoAP caching system



302 The Smart Parking Case in the CALIPSO Project

cached and made available to another request not related to the previous
observation. In fact, the caching and the observation mechanism are inde-
pendent from each other. Nevertheless, the two systems should be used
together because the information obtained by observation can help the caching
operations.

8.3.2 CALIPSO Security Modules

Compression of IPsec AH and ESP Headers for Constrained
Environments

The security in 6LoWPAN networks is particularly important as we
connect smart objects to the insecure Internet. The standardized and
mandatory security solution for IPv6 is IPsec. We have proposed an
extension of 6LoWPAN defining header compression for IPsec datagrams
[18–19] .

We focus on the IPsec transport mode that provides end-to-end security,
both from device to device and from device to traditional Internet hosts.

Our solution supports both the AH and ESP protocols, where:

• AH authenticates the IPv6 header and payload between two end hosts;
• ESP authenticates and encrypts the IPv6 payload (but not the header)

between the end hosts.

When needed, IPsec AH and ESP can be combined to link-layer security
to encrypt and authenticate the entire payload of the frame in a hop-by-hop
fashion.

Our solution brings standard Internet-class security to the most constrained
devices, i.e. devices running Contiki on 16-bit MCUs and with only tens of
kilo-bytes of memory [19].

Distributed key verification and management
Distributed key certification renders sensor nodes fully autonomous and does
not require the use of central authorities and certificates. We have designed
a protocol based on asymmetric cryptography and one-way accumulators.
It provides secure node enrollment and key certification suitable for other
security protocols like IPsec and DTLS.

The protocol relies on Elliptic Curve Cryptography (ECC) for pub-
lic/private keys as well as the accumulator. Each node is assigned a pair of
keys and the material needed for the one-way accumulator: its witness, and
the accumulator containing all the public keys of the nodes in the network,
including the gateway. Two nodes can then assess that they are part of the



8.3 CALIPSO Architecture 303

same network by sending their public key and the witness to each other for
mutual verification. Once the nodes have mutually verified their public keys,
they can establish a symmetric key through the Elliptic Curve Diffie-Hellman
(ECDH) key agreement protocol.

Our protocol inherits the major security properties of one-way accumula-
tors: “one-way-ness” and resistance to forgery. Regarding node injection, the
security of our protocol is reduced to the security of the accumulator. Due to
the one-way-ness of accumulators, the capture of a node does not compromise
the communications of other nodes: only the keys of the captured node are
compromised. Finally, we deal with denial-of-service by triggering the most
expensive operation (ECDH) using a table lookup, hence preventing the replay
of correct messages that would cause the exhaustion of the node resources
otherwise.

OAuth
Open Authorization (OAuth) [10] is an open protocol that allows secure
authorization in a simple and standardized way from third-party applications
accessing online services, based on the REST web architecture. OAuth has
been designed to provide an authorization layer, typically on top of a secure
transport layer such as HTTPS.
OAuth defines three main roles:

• the User (U) is the entity who generates some sort of information;
• the Service Provider (SP) hosts the information generated by the users

and makes it available through APIs;
• the Service Consumer (SC), also referred to as “client application”,

accesses the information stored by the SP for its aims.

In order to allow a client application access information on his/her/its
behalf, a user must issue an explicit agreement. The agreement results
in the grant of an access token, containing the user’s and client applica-
tion’s identities. The client must exhibit the access token in every request
as an authorization proof. The OAuth 2.0 protocol enhances the original
OAuth protocol focusing on the easiness of client development [12].

Smart objects providing CoAP-based services might also require some
authorization for permitting access by third-party applications. In order to meet
this kind of security requirement, smart objects might benefit by the use of
the OAuth protocol. However, due to the need to execute heavy cryptographic
computation and memory footprint issues (both in terms of available ROM



304 The Smart Parking Case in the CALIPSO Project

and RAM on smart objects), it is not feasible to implement the OAuth logic
and access-token management directly on the device.

For this reason, a novel OAuth-based authorization framework targeted to
IoT scenarios has been designed and implemented. The authorization frame-
work, denoted as “IoT-OAS”, allows smart objects to delegate authorization-
related operations in order to minimize the memory occupation due to the
implementation of specific software and storage modules.

The procedure takes an incoming OAuth-secured request and asks the
IoT-OAS authorization service to verify the access token included in the
request against a set of client and user credentials it stores, by using the
appropriate digital signature verification scheme, as specified in the OAuth
protocol definition (either PLAINTEXT with secure transport, HMAC, or
RSA). Upon reception of the request, the IoT-OAS service computes the
digital signature for the incoming message and performs a lookup in its internal
credential store to see if the request matches client identity, user grants, and
requested resource access. If the signature is verified and the resource is set
to be accessible, the IoT-OAS service replies with a success response and the
request can then be served. Otherwise, the request is blocked and a client error
response is sent back to notify that the client is not authorized to access the
requested resource.

The delegation of the authorization functionalities to an external service,
which may be invoked by any subscribed host or thing, affects:

• the time required to build new OAuth-protected online services, thus
letting developers focus on service logic rather than on security and
authorization issues;

• the simplicity of the Smart Object, which does not need to implement
any authorization logic but must only invoke securely the authorization
service in order to decide whether to serve an incoming request or not;

• the possibility to configure the access control policies (dynamically and
remotely) that the smart object (acting as SP) is willing to enforce,
especially in those scenarios where it is hardly possible to intervene
directly on the device.

The IoT-OAS architecture supports HTTP(secured through TLS transport)
and CoAP (secured through DTLS transport) requests sent by external clients
targeting services provided by smart objects, thus enabling the possibility
to perform access control either on the device (before serving requests) or
on HTTP/CoAP proxies at the border of a constrained network (filtering



8.4 Calipso Implementation and Experimentation with Smart Parking 305

incoming requests, which are consequently delivered or not to the target smart
object).

8.4 Calipso Implementation and Experimentation with
Smart Parking

This section presents the implementation of the Calipso modules, described
in the previous section, and the experimentation plan for the Smart Parking
application.

8.4.1 Implementation of Calipso Modules

Figure 8.7 shows the integration of the different modules. As Calipso targets
several IoT-based applications, the integration of the modules is made as
flexible as possible, to allow the choice between different protocols depending
on the deployed application.

At the MAC layer, we can choose between two different MAC protocols:
(i) RAWMAC and (ii) ContikiMAC. RAWMAC is suitable for efficient data
collection (i.e., mostly mono-directional traffic). In order to create a “wave”,
this protocol requires a routing layer that does not vary routing tables very
often. For instance, it can rely on RPL since routes are created and maintained

Figure 8.7 Software architecture for Smart Parking



306 The Smart Parking Case in the CALIPSO Project

proactively during time. On the other side, ContikiMAC is suitable in scenarios
where low power communications are mostly bi-directional. Differently from
RAWMAC, it does not require any information from the upper layer. Clearly,
the choice of a specific MAC layer has an impact on the routing plane.

At the networking layer, we have the choice between three routing
protocols: (i) ORPL, (ii) Reactive RPL, and (iii) RPL. ORPL is an extension of
RPL where packets are forwarded opportunistically towards their destination,
leading to increased reliability, shorter delay and reduced energy consumption.
ORPL relies on anycast at the MAC layer (ContikiMAC), making it incom-
patible with the unicast-oriented RawMAC. ORPL performs at best in static,
dense network, and supports random channel access. In use cases where only
a few nodes are connected to the network at the same time and the impact
of opportunistic strategies would be limited, it is preferable to adopt more
conservative mechanisms providing anyway interesting capabilities such as
fault tolerance and slow mobility management. RRPL instead, provides on-
demand route recalculation. This allows to handle node (limited) mobility and
to react to network failures. RRPL can coexist with RAWMAC since, as soon
as a route is recalculated, RAWMAC follows route modification.

All the MAC and routing protocols presented above are perfectly com-
patible with IPv6, as well as with the IPSec security mechanism that allows
providing secured communications. Featurecast instead is only compatible
with ContikiMAC. In fact, Featurecast has the objective of providing an alter-
native to group communications for networks where no or limited mobility
is provided. Since the considered routing protocols address unicast commu-
nications, whereas Featurecast is developed for multicast communications,
these protocols can coexist natively. In contrast, Featurecast is not perfectly
compatible with RAWMAC as the latter has been designed for aligning activity
phases for efficient many-to-one communications. In Featurecast, instead,
communications follow a many-to-many pattern. The two protocols could
then coexist, but the delay introduced by RAWMAC would be significant.

At the transport layer, UDP is compatible with all the above-mentioned
protocols, due to its stateless operation. In order to provide end-to-end
security over UDP, we use DTLS. Since we want to reduce the overhead
of cryptographic computation, we introduce a distributed key validation
mechanism. In addition, as it could be important to authenticate users accessing
the network, we use the OAuth solution. Because an authentication server
cannot be executed directly on nodes for a matter of resource consumption, it
has been integrated with the proxy node.



8.4 Calipso Implementation and Experimentation with Smart Parking 307

At the application layer we choose CoAP, which offers RESTful primitives
to constrained networks. The most used verbs of CoAP are GET and Observe.
In the former case, we deal with bi-directional communications, whereas in
the latter, we mainly have mono-directional data transfer, matching very well
a protocol for data collection such as RAWMAC.

When many requests from external users are carried out on the same node,
it would be more efficient to have a caching node outside the constrained
network replying on behalf of the in-network node. In addition, since requests
from the Internet are coming in HTTP, it necessary to translate request (and
responses) from HTTP to CoAP (and from CoAP to HTTP). The HTTP/CoAP
proxy is then in charge of carrying out this protocol translation. The proxy is
also able to publish data on remote webservers in case this is required by the
use case.

8.4.2 Experimentation Plan for Smart Parking

The integrated modules will be evaluated in the Smart Parking application,
whose requirements have been already defined in previous sections.

8.4.2.1 Prototype description
In the experiments, it is planned to use the Tmote Sky platform. This mote
is an ultra-low power wireless module that leverages industry standards like
USB and IEEE 802.15.4 to interoperate with other devices. The Tmote Sky
has been the base for most of the developments done in Calipso.

The Tmote Sky has the following hardware characteristics:

• 250kbps 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver
• 8MHz Texas Instruments MSP430 microcontroller (10k RAM,

48k Flash)
• Integrated onboard antenna with 50m range indoors / 125m range

outdoors
• Integrated Humidity, Temperature, and Light sensors
• Ultra-low current consumption
• Programming and data collection via USB
• optional SMA antenna connector
• Contiki support

The Tmote is connected to a standard battery (see Figure 8.8 (a))
and placed into a Worldsensing box to be buried into the tarmac (see
Figure 8.8 (b)).



308 The Smart Parking Case in the CALIPSO Project

Figure 8.8 Tmote with battery ready for boxing, and (b) Tmote in the Worldsensing box in
the real deployment

8.4.2.2 Description of the scenario
Each device will be integrated with the Worldsensing box in order to be buried
in tarmac in the same way a real installation is done. This installation procedure
will mimic the exact conditions for a real deployment.

The test facility is situated in a corner street in Barcelona in the 22@
neighborhood. Its location can be seen in Figure 8.9. The corner is Park-
ing Load Zone that it is restricted for loading and unloading activities,
with a maximum stop time of 30 minutes. Each device is buried about
2 meters a part of each other, for a total of 6 devices to cover the entire
corner.

This zone is selected due to its high car churn (car replacement) and its lack
of marked parking space. This lack of markings causes different placement of
any truck or car parking on the zone, changing the radio link between motes
each time a car enters or leave the zone. These changes will be reflected on
changes on the routing and the topology of the network created.

The network topology would be available through tools consulting the
base station (Figure 8.10).

In order to test RAWMAC performance, nodes are configured in a chain
topology as shown in Figure 8.10. As soon as a car is moved, a message is
sent to the web application. We will measure the delay of transmission and the
packet delivery ratio. In addition, we will fix a threshold on delay and we will
compare the energy consumption of RAWMAC and ContikiMAC. We will
also measure the convergence time while RRPL is establishing new routes,
the lengths of the established routes/paths, as well as the traffic overhead of
RRPL signaling.



8.4 Calipso Implementation and Experimentation with Smart Parking 309

Figure 8.9 Picture of the selected Smart Parking test facility

Figure 8.10 Configuration of the network topology

8.4.2.3 Performance indicators
For each of the tested modules, we provide the performance indicators that
will characterize the operation of the proposed mechanisms.

RAWMAC
The performance of RAWMAC will be measured in terms of the following
metrics:



310 The Smart Parking Case in the CALIPSO Project

• Packet delivery ratio: the ratio of packets successfully delivered to the
base station.

• Energy consumption of the sensors.
• Upward delay (Optional): delay of a packet sent from a sensor to the base

station.

Reactive RPL
The performance of reactive RPL will be measured in terms of the following
metrics:

• Code footprint: the amount of flash memory the routing protocol uses
when compiled into the node firmware.

• Convergence time and route length measure how quickly the routes are
established and maintained as well as their length.

• Traffic overhead to maintain connectivity. Routing packets consume
radio resources, but also computation time at the sender and receiver.

ORPL
The performance of ORPL will be measured in terms of the following metrics:

• Packet delivery ratio: the ratio of packets successfully delivered to the
base station.

• End-to-end delay: delay from a node transmitting to the base station
receiving it.

• Duty cycle: proportion of time with radio turned on, used as a proxy for
power.

• Hop count: the number of hops for transmitted packets to reach the root
(this metric does not reflect the end goal, but is interesting for network
monitoring).

8.5 Concluding Remarks

In this chapter, we have first presented the CALIPSO communication architec-
ture and the Smart Parking use case. Then, we have detailed the most relevant
modules developed in CALIPSO showing how they contribute to meet the
use case objectives and which interfaces are necessary to make the modules
interoperable.

The example application clearly shows how IP can foster communica-
tions among constrained smart objects. Currently, the CALIPSO protocol
stack is being tested and validated in the Smart Parking application. Our



References 311

preliminary results show significant improvements in performance and energy
consumption while extending IP reachability to small constrained devices.
Other applications may benefit from the functionalities to bring new innovative
services to citizens.

Future research extensions of CALIPSO project will encompass the
inclusion of energy harvesting techniques into the developed stack and
the use of heterogeneous networks. In order to let the devices recharge,
even more severe duty cycles at the nodes must be used. Thus, the
solutions developed must be adapted to take into account this additional
functionality.

Actual solutions for constrained devices barely allow the transmission of
large amount of data due to the limited bandwidth offered, so coupling a
high speed and high energy-consumption interface with a low power and low
bandwidth interface will boost the overall network capacity.

Acknowledgements

The work of the authors is funded by the European Community’s Seventh
Framework Program, area “Internetconnected Objects”, under Grant no.
288879, CALIPSO project - Connect All IP-based Smart Objects. The work
reflects only the authors’views; the European Community is not liable for any
use that may be made of the information contained herein.

References

[1] Dawson-Haggerty, S., Jiang, X., Tolle, G., Ortiz, J., & Culler, D., “SMAP:
a simple measurement and actuation profile for physical information”.
Proceedings of the 8th ACM Conference on Embedded Networked Sensor
Systems, 2010, pp.197–210.

[2] Dunkels, A., “Full TCP/IP for 8-bit architectures”. Proceedings of The
International Conference on Mobile Systems, Applications, and Services
(MobiSys), 2003, 14 pages.

[3] Dunkels,A., “The ContikiMAC Radio Duty Cycling Protocol”, Technical
Report T2011:13. Swedish Institute of Computer Science, December
2011.

[4] Dunkels, A., Voigt, T., & Alonso, J., “Making TCP/IP Viable for Wireless
Sensor Networks”, Proceedings of the European Conference on Wireless
Sensor Networks (EWSN), 2004, 4 pages.



312 The Smart Parking Case in the CALIPSO Project

[5] Duquennoy, S., Landsiedel, O., &Voigt,T., “Let theTree Bloom: Scalable
Opportunistic Routing with ORPL”, Proceedings of the International
Conference on Embedded Networked Sensor Systems (ACM SenSys
2013), Rome, Italy, November 2013.

[6] Duquennoy, S., Österlind, F., & Dunkels, A., “Lossy Links, Low Power,
High Throughput”, Proceedings of the International Conference on
Embedded Networked Sensor Systems (ACM SenSys 2011). Seattle, WA,
USA, November 2011.

[7] Durvy, M. et al., “Making Sensor Networks IPv6 Ready”, Proceedings of
the International Conference on Embedded Networked Sensor Systems
(ACM SenSys), 2008, pp. 421–422.

[8] Estrin, J. H., Govindan, R., & Kumar, S., “Next century challenges:
scalable coordination in sensor networks”, Proceedings of the fifth
annual ACM/IEEE international conference on Mobile computing and
networking, 1999, pp. 263–270.

[9] Gaddour, O., & Koubâa,A., “RPLin a nutshell:Asurvey”, Computer Net-
works: The International Journal of Computer and Telecommunications
Networking, 2012, pp. 3163–3178.

[10] Hammer-Lahav, E., “The OAuth 1.0 Protocol - RFC 5849”, April 2010.
[11] Harbor Research. M2M & Smart Systems, Machine-To-Machine (M2M)

& Smart Systems. London: Harbor Research, 2011.
[12] Hardt, D., “The OAuth 2.0 Authorization Framework - RFC 6749”,

October 2012.
[13] Hill, J., “System Architecture Directions for Networked Sensors”, ACM

SIGOPS Operating Systems Review, 2000, pp. 93–104.
[14] Hui, J., & Culler, D., “IP is Dead, Long Live IP for Wireless Sensor

Networks”, Proceedings of the International Conference on Embedded
Networked Sensor Systems (ACM SenSys), 2008, 14 pages.

[15] Jiang, X., Dawson-Haggerty, S., Dutta, P., & Culler, D., “Design and
implementation of a high-fidelity ac metering network”, Proceedings
of the International Conference on Information Processing in Sensor
Networks (ACM/IEEE IPSN), 2009, 12 pages.

[16] Kovatsch, M., Mayer, S., & Ostermaier, B., “Moving Application Logic
from the Firmware to the Cloud: Towards the Thin Server Architecture
for the Internet of Things”, Proc of the 6th Int Conf on Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS 2012), 2012,
6 pages.



References 313

[17] Priyantha, B., Kansal, A., Goraczko, M., & Zhao, F., “Tiny web
services: design and implementation of interoperable and evolv-
able sensor networks”, Proceedings of the International Confer-
ence on Embedded Networked Sensor Systems (ACM SenSys), 2008,
pp. 253–266

[18] Raza, S., Duquennoy, S., & Selander, G., “Compression of IPsec AH
and ESP Headers for Constrained Environments”, 2014, Retrieved from
http://tools.ietf.org/html/draft-raza-6lo-ipsec-00

[19] Raza, S., Duquennoy, S., Chung, T., Yazar, D., Voigt, T., & Roedig,
U., “Securing Communication in 6LoWPAN with Compressed IPsec”,
7th IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS ’11). Barcelona, Spain, June 2011.

[20] Shelby, Z. et al., “Constrained Application Protocol (CoAP)”, draft-ietf-
core-coap-18, 2013.

[21] Winter, T. et al., “RPL: IPv6 Routing Protocol for Low-Power and Lossy
Networks. RFC 6550”, March 2012.

[22] Yazar, D., & Dunkels, A., “Efficient Application Integration in IP-Based
Sensor Networks”, Proceedings of the ACM BuildSys 2009 workshop, in
conjuction with ACM SenSys 2009, 6 pages.


