
26 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Big	Stream,	Cloud,	Internet	of	Things	(IoT),	Low	Latency,	Open-Source	Applications,	Processing	
Graph,	Real-Time	Applications,	Smart-X	Applications

ABSTRACT
The	Internet	of	Things	(IoT)	will	consist	of	billions	(50	billions	by	2020)	of	interconnected	heterogeneous	
devices	denoted	as	“Smart	Objects:”	tiny,	constrained	devices	which	are	going	to	be	pervasively	deployed	
in	several	contexts.	To	meet	low-latency	requirements,	IoT	applications	must	rely	on	specific	architectures	
designed	to	handle	the	gigantic	stream	of	data	coming	from	Smart	Objects.	This	paper	propose	a	novel	Cloud	
architecture	for	Big	Stream	applications	that	can	efficiently	handle	data	coming	from	Smart	Objects	through	a	
Graph-based	processing	platform	and	deliver	processed	data	to	consumer	applications	with	low	latency.	The	
authors	reverse	the	traditional	“Big	Data”	paradigm,	where	real-time	constraints	are	not	considered,	and	
introduce	the	new	“Big	Stream”	paradigm,	which	better	fits	IoT	scenarios.	The	paper	provides	a	performance	
evaluation	of	a	practical	open-source	implementation	of	the	proposed	architecture.	Other	practical	aspects,	
such	as	security	considerations,	and	possible	business	oriented	exploitation	plans	are	presented.

A Scalable Big Stream
Cloud Architecture for
the Internet of Things

Laura	Belli,	University	of	Parma,	Parma,	Italy

Simone	Cirani,	University	of	Parma,	Parma,	Italy

Luca	Davoli,	University	of	Parma,	Parma,	Italy

Gianluigi	Ferrari,	University	of	Parma,	Parma,	Italy

Lorenzo	Melegari,	University	of	Parma,	Parma,	Italy

Màrius	Montón,	WorldSensing,	Barcelona,	Spain

Marco	Picone,	University	of	Parma,	Parma,	Italy

INTRODUCTION

The actors involved in IoT scenarios have extremely heterogeneous characteristics (in terms
of processing and communication capabilities, energy supply and consumption, availability,
and mobility), spanning from constrained devices, also denoted as “Smart Objects (SOs),” to
smartphones and other personal devices, Internet hosts, and the Cloud. Smart Objects are typi-

DOI: 10.4018/IJSSOE.2015100102

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 27

cally equipped with sensors and/or actuators and are thus capable to perceive and act on the
environment where they are deployed. By 2020, 50 billions of Smart Objects are expected to
be deployed in urban, home, industrial, and rural scenarios (Evans, 2011), in order to collect
relevant information, which may be used to build new useful applications.

Shared and interoperable communication mechanisms and protocols are currently being
defined and standardized, allowing heterogeneous nodes to efficiently communicate with each
other and with existing common Internet-based hosts or general-purpose Internet-ready devices.
The most prominent driver for interoperability in the IoT is the adoption of the Internet Protocol
(IP), namely IPv6 (Postel, 1981; Deering & Hinden, 1998). An IP-based IoT will be able to
extend and interoperate seamlessly with the existing Internet.

In a typical IoT scenario, sensed data are collected by SOs, deployed in and populating
the IoT network, and sent uplink to collection entities (servers or the Cloud). In some cases, an
intermediate element may support the Cloud, carrying out storage, communication, or computa-
tion operations in local networks (e.g., data aggregation or protocol translation). This approach
is the basis of the Fog Computing (Bonomi, Milito, Zhu, & Addepalli, 2012) and will be better
explained in the “Background” section.

Figure 1 shows the hierarchical structure of layers involved in data collection, processing,
and distribution in IoT scenarios.

With billions of nodes capable of gathering data and generating information, the availability
of efficient and scalable mechanisms for collecting, processing, and storing data is crucial.

Big Data techniques, which were developed in the last few years and became popular due
to the evolution of online and social/crowd services, address the need to process extremely large
amounts of heterogeneous data for multiple purposes. These techniques have been designed
mainly to deal with huge volumes of information (focusing on storage, aggregation, analysis,
and provisioning of data), rather than to provide real-time processing and dispatching (Zaslavsky,

Figure	1.	The	hierarchy	of	layers	involved	in	IoT	scenarios:	the	Fog	works	as	an	extension	of	
the	Cloud	to	the	network	edge	to	support	data	collection,	processing,	and	distribution

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

28 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

Perera, & Georgakopoulos, 2013; Leavitt, 2013). Cloud Computing has found a direct application
with Big Data analysis due to its scalability, robustness, and cost-effectiveness.

One of the distinctive features of IoT systems is the deployment of a huge amount of het-
erogeneous data sources collecting data from the environment and sending information through
the internet to collectors. The work of all data sources generate, as a whole, streams with a very
high frequency. Moreover, several relevant IoT scenarios (such as industrial automation, trans-
portation, networks of sensors and actuators) need real-time or predictable latency.

The number of data sources, on one side, and the subsequent frequency of incoming data, on
the other side, create a new need for Cloud architectures to handle such massive information flows.

Big Data approaches typically have an intrinsic inertia because they are based on batch
processing. For this reason, they are not suitable to the dynamicity of IoT scenarios with real-
time requirements.

To better fit these requirements, the Big Data paradigm is shifted to a new paradigm,
which has been denoted as “Big Stream” (Belli, Cirani, Ferrari, Melegari, & Picone, 2014).
Big Stream-oriented systems should react effectively to changes and provide smart behavior
for allocating resources, thus implementing scalable and cost-effective Cloud services. The Big
Stream paradigm is specifically designed to perform real-time and ad-hoc processing in order
to link incoming streams of data to consumers. This new paradigm should: have a high degree
of scalability and fine-grained/dynamic configurability; and efficiently manage heterogeneous
data formats which are not a priori known.

The main differences between Big Data and Big Stream paradigms can be summarized as
follows.

• The nature of data sources: Big Stream refers to scenarios with a huge number of data sources
sending small amounts of information.

• The real-time or low-latency requirements of consumers: information in Big Stream IoT
scenarios is usually short-lived and should be provided to consumers before it becomes
outdated (and useless).

• The meaning of the adjective “Big:” for Big Data, it refers to the data volume, whereas for
Big Stream it refers to the global aggregate information generation rate of data sources.
Moreover, this has an impact on the data that are considered relevant to consumer appli-
cations. While for Big Data applications it is important to keep all sensed data, in order
to be able to perform any required computation, Big Stream applications might decide to
perform local data aggregation/pruning, in order to minimize the latency in conveying the
final processing results to consumers, without persistence needs.

In conclusion, although both Big Data and Big Stream deal with massive amounts of data,
they have different purposes (as shown in Figure 2): the former focuses on storage, analysis
and interpretation of data, while the latter focuses on data flow management in order to provide
informations to interested customers with minimum latency.

From a more general perspective, Big Data applications might be consumers of Big Stream
data flows.

For the above observations, the objective of this paper is to propose an architecture target-
ing Cloud-based applications with real-time constraints, i.e., Big Stream applications, for IoT
scenarios. The proposed architecture relies on the concepts of a data listener and data-oriented
processing graph in order to implement a scalable, highly configurable, and dynamic chain of
computations on incoming Big Streams and to dispatch data with a push-based approach, thus
providing the lowest delay between the generation of information and its consumption.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 29

BACKGROUND

The IoT paradigm refers to a huge number of different and heterogeneous SOs connected in a
worldwide “Network of Networks.” These nodes are envisioned as collectors of information
from the environment in order to provide useful services to users. This ubiquitous sensing,
enabled by the IoT in most areas of modern living, has led to information and communication
systems invisibly embedded in the environment, thus making the technology disappear from
the consciousness of the users. The outcome of this trend is the generation of a huge amount
of data that, depending on the specific application scenario, should be processed, aggregated,
stored, transformed, and delivered to the final users of the system, in an efficient and effective
way, with traditional commodity services.

In the next sections, related works regarding Cloud, Big Data, IoT architectures and models
are first presented; then, some suitable open-source technologies and protocols are listed.

IoT Architectures

A large number of architectures for IoT scenarios have been proposed in the literature. For instance,
most of the ongoing projects on IoT architectures address relevant challenges, particularly from
a Wireless Sensor Networks (WSN) perspective. Some examples are given by a few European
Union projects, such as SENSEI project (European Community’s 7th Framework Programme,
2008-2010) and Internet of Things-Architecture (IoT-A) project (European Community’s 7th
Framework Programme, 2012-2015).

The purpose of the SENSEI project is to create an open and business-driven architecture
that addresses the scalability problems for a large number of globally distributed Wireless Sen-
sor and Actuator (WS&A) network devices, enabling interactions with physical environment.

The IoT-A project consortium has focused on the definition of an initial set of key building
blocks, aiming at creating open interoperable platforms, connecting vertically closed architectures.

“Connect All IP-based Smart Objects!” (CALIPSO) (European Community’s 7th Framework
Programme, 2011-2014) is another European project whose main purpose is to build IoT systems
with IPv6-connected and low-power consumption SOs, thus providing both high interoperability
and long lifetime, entailing three communication protocol stack layers (network, routing, and
application).

In (Gubbi, Buyya, Marusic, & Palaniswami, 2013) is proposed an IoT architecture which
is not based on WSNs and is focused instead on the user and the Cloud. The consumer is the

Figure	2.	(a)	Data	sources	in	Big	Data	systems.	(b)	The	multiple	data	sources	and	listeners	
management	in	Big	Stream	system

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

30 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

“center” and drives the use of data and infrastructure to develop new applications. The rest of
the work discusses the key enabling technologies and the different future applications domains,
describes a Cloud-centric architecture for IoT, and presents a real implementation.

Another Cloud-based IoT architecture is proposed in the FI-WARE project (European Com-
munity’s 7th Framework Programme, 2011), an open infrastructure with public, royalty-free, and
OCCI-compliant API, providing to developers a platform to build innovative products.

As previously stated, the most prominent driver to provide interoperability in the IoT, refer-
ring to IP stack, is IPv6. At the application layer, the IoT scenario brings a variety of possible
protocols that can be employed according to the specific applications requirements. Relevant
options are: (i) HyperText Transfer Protocol (HTTP) (R. Fielding et al., 1999); (ii) Constrained
Application Protocol (CoAP) (Shelby, Hartke, Bormann, & Frank, 2014); (iii) Extensible Messag-
ing and Presence Protocol (XMPP) (Saint-Andre, 2004); (iv) MQ Telemetry Transport (MQTT)
protocol (Locke, 2010); (v) Constrained Session Initiation Protocol (CoSIP) (Cirani, Picone, &
Veltri, 2013, 2014; Cirani, Davoli, Picone, & Veltri, 2014).

Regardless of the selected application-layer protocol, most IoT/M2M applications follow the
REpresentational State Transfer Protocol (REST) architectural model presented in (R. T. Field-
ing, 2000), as this provides simple and uniform interfaces and is designed to build long-lasting,
robust, and resilient to changes applications.

Big Data Processing Pattern

From a business perspective, managing and gaining insights from data is a challenge and a key
to competitive advantage. Analytical solutions that mine structured and unstructured data are
important, as they can help companies to gain cross-related information not only from their pri-
vately acquired data, but also from large amounts of data publicly available on the Web, social
networks, and Blogs. Big Data opens a wide range of possibilities for organizations to understand
the needs of their customers, predict their demands, and optimize the use of evaluable resources.

The work of (McAfee & Brynjolfsson, 2012) illustrates that the Big Data notion is different
and more powerful with respect to traditional analytics tools used by companies. As analytics
tools, Big Data can find patterns and glean intelligence from data translating that into business
advantage. However, Big Data is powered by what is often referred as a multi V model, in which
V stands for:

• Variety: To represent the data types;
• Velocity: To represent the rate at which the data is produced and processed and stored ac-

cording with further analysis;
• Volume: To define the amount of data;
• Veracity: Refers to how much the data can be trusted given the reliability of its sources.

Big Data architectures generally use traditional processing patterns with a pipeline approach
(Hohpe & Woolf, 2003). These architectures are typically based on a processing perspective
where the data flow goes downstream from input to output, to perform specific tasks or reach
the target goal.

Typically, the information follows a pipeline where data are sequentially handled with tightly
coupled pre-defined processing sub-units (static data routing). The described paradigm can be
defined as “process-oriented:” a central coordination point manages the execution of subunits
in a certain order and each sub-unit provides a specific processing output, which is created to
be used only within the scope of its own process without the possibility to be shared among dif-
ferent processes. This approach represents a major deviation from traditional Service Oriented

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 31

Architectures (SOAs), where the sub-units are external web services invoked by a coordinator
process rather than internal services (Isaacson, 2009). Big Data applications generally interact with
Cloud Computing architectures which can handle resources and provide services to consumers.

In (Assunção, Calheiros, Bianchi, Netto, & Buyya, 2014), the authors presents a survey on
approaches, environments, and technologies on key-areas for Big Data analytics capabilities,
investigating how they can contribute to build analytics solutions for Clouds. A set of gaps and
recommendations, for the research community, on future directions on Cloud-supported Big
Data computing are also described.

Fog Computing

In the area of user-driven and Cloud IoT architectures, (Bonomi, Milito, Zhu, & Addepalli, 2012)
propose Fog Computing as a novel and appropriate paradigm for a variety of IoT services and
applications that require mobility support, low latency, and location awareness.

The Fog can be described as a highly virtualized platform that provides computing, storage,
and networking services between end-devices and the Cloud. In other words, the Fog is meant
to act as an extension of the Cloud, operating at the edge of the network to support endpoints by
providing rich services that can fulfill real-time and low-latency consumer’s requirements. The
Fog paradigm has specific characteristics, which can be summarized as follows:

• Geographical distribution, in contrast with the centralization envisioned by the Cloud;
• Subscriber model employed by the players in the Fog;
• Support for mobility.

The architecture described by (Bonomi, Milito, Zhu, & Addepalli, 2012) is based on the
Fog and Cloud interplay: the former provides localization, low latency, and context awareness
to endpoints; the latter provides global centralization functionalities. In the presented IoT Fog
scenario, collectors at the edge of the network manage the data generated by sensors and de-
vices: the portion of these data that require real-time processing (from milliseconds to tenths
of seconds) are consumed locally by the first tier of the Fog. The rest is sent to the higher tiers
for operations with less stringent time constraints (from seconds to minutes). The higher is the
tier, the wider is the geographical coverage and the longer the time scale. As a result, the Fog
must support several types of storage: from ephemeral, at the lowest tier, to semi-permanent,
at the highest tier. The ultimate and global coverage is provided by the Cloud, which is used as
repository for data with a potential duration of months or years.

Stream and Real-Time Management

The architecture proposed in the current paper is specifically designed for scenarios with low
latency and real-time requirements. Other projects related to real-time and stream management
are Apache Storm (Apache, n.d-a.) and Apache S4 (Neumeyer, Robbins, Nair, & Kesari, 2010).

Storm is a free and open source distributed real-time computation system to reliably process
unbounded streams of data. The system can be integrated with different queueing and database
technologies and provides mechanisms to define topologies in which nodes consume data streams
and process them in arbitrarily complex ways. S4 is a general purpose, near real-time, distributed,
decentralized, scalable, event-driven, and modular platform that allows programmers to imple-
ment applications for processing streams of data. Multiple application nodes can be deployed
and interconnected on S4 clusters to create more sophisticated systems.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

32 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

Although there are several similarities between these systems and the architecture proposed
here, such as modularity, scalability, latency minimization and the graph topology, there are
some notable differences. The most relevant use cases for Storm and S4 are stream processing
and continuous computations on data stored in databases (e.g., message processing for database
update). The proposed architecture, on the other hand, is specifically designed to work in dy-
namic IoT scenarios comprising heterogeneous data sources and making no assumption on the
repositories (if needed) where data can be retrieved or stored.

Another major difference is related to the nature of the topology of the processing units.
While Storm stream management is based on an operator-defined and static graph topology, the
architecture proposed in the remainder of this paper is extremely dynamic, as the number of
nodes and edges in the Graph Framework can change according to the workload and listener’s
requirements.

The works described in (Marganiec et al., 2014; Tilly & Reiff-Marganiec, 2011) address the
problem to process, procure, and provide information related to the IoT scenario with almost zero
latency. The authors consider, as a motivating example, a taxi fleet management system, which
has to identify the most relevant taxi in terms of availability and proximity to the customer’s
location. The core of the publish/subscribe architecture proposed in (Marganiec et al., 2014) is
the Mediator, which encapsulates the processing of the incoming requests from the consumer side
and the incoming events from the services side. Services are publishers (taxis in the proposed
example) which are responsible to inform the Mediator if there is some change in the provided
service (e.g., the taxi location or the number of current passengers). Thus, instead of pulling data
at consumer’s request time, the Mediator knows at any time the status of all services, being able
to join user requests with the event stream coming from the taxis, using temporal join-statements
expressed through SQL-like expressions.

Cloud Computing

Cloud Computing represents the increasing trend moving to the external deployment of Informa-
tion Technology (IT) resources, obtaining them as services (Stanoevska-Slabeva, Wozniak, &
Ristol, 2009). Cloud Computing enables convenient and on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage elements, applications,
and services) that could be rapidly provisioned and released with minimal management effort
or service provider interaction (Mell & Grance, 2011).

At hardware level, a number of physical devices, including processors, hard drives, and
network devices, fulfill processing and storage needs. Above this, the combination of (i) soft-
ware layer, (ii) virtualization layer, and (iii) management layer, allows effective management of
servers. In Cloud Computing, available service models are the following.

• Infrastructure as a Service (IaaS): Provides processing, storage, networks, and other
computing resources, allowing the consumer to deploy and run arbitrary software, including
OSs and applications. The consumer has control over OSs, storage, deployed applications
and, possibly, limited control of select networking components.

• Platform as a Service (PaaS): Provides the capability to deploy infrastructure, consumer-
created, or acquired applications. The consumer has no control on the underlying infrastructure
(e.g., network, servers, OSs, or storage) but only manages deployed applications.

• Software as a Service (SaaS): Provides the capability to use the provider’s applications,
running on the Cloud infrastructure, by accessing from various client devices through
proper client interfaces. The consumer does not manage or control the underlying Cloud

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 33

infrastructure or individual application capabilities, with the possible exception of limited
user-specific application configuration settings.

Cloud Computing is generally complementary to the IoT scenario, as it acts (i) as collector of
real-time sensed data and (ii) as provider of services built on the basis of collected informations.
The main need is to be extremely scalable, allowing the support to large-scale IoT applications.

There are several open source frameworks and technologies which can be used for Cloud IoT
systems, such as OpenStack (Rackspace, NASA, n.d.) and OpenNebula (Milojičić, Llorente, &
Montero, 2011). The former is an open Cloud OS that controls large pools of computing, storage,
and networking resources, while OpenStack can be seen as a framework with a vendor-driven
model, the second is an open-source project aiming at delivering a simple, feature-rich, and
flexible solution to build and manage enterprise Clouds and virtualized data centers.

ARCHITECTURE

As previously stated, a major difference between Big Data and Big Stream resides in the real-
time and low-latency requirements of consumers. The gigantic amount of data sources in IoT
applications has mistakenly made Cloud services implementers believe that re-using Big Data-
driven architectures would be the right solution for all applications, rather than designing specific
paradigms for those scenarios.

IoT application scenarios are characterized by a huge number of data sources, sending small
amounts of information to a collector service, typically at a limited data rate. Many services can
be built on top of these data, such as environmental monitoring, building automation, and smart
cities applications. These applications are typically characterized by low-latency or real-time
requirements, in order to provide efficient reactive/proactive behaviors.

Big Stream Oriented Architecture

Applying a traditional Big Data approach for IoT application scenarios might lead to high - even
unpredictable - latencies between data generation and its availability to a consumer, since this
was not among the main objectives behind the design of Big Data systems.

Figure 3 illustrates the main delay contributions introduced when data, generated by SOs
in IoT networks, need to be processed, stored, and then polled by consumers. Clients interested
in processed data are extremely heterogeneous, spanning from mobile or desktop applications
to Data Warehouse (DW) applications and till other IoT Smart Objects networks.

The total delay required by any data to be delivered to a consumer can be expressed as:

0 1 2 T t t t= + +

where:

• t0 is the time elapsed from the moment a data source sends information, through an available
API, to the Cloud service (1), which dispatches the data to an appropriate queue, where it
can wait for an unpredictable time (2), in order to decouple data acquisition from processing;

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

34 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

• t1 is the time needed for data, extracted by the queue, to be pre-processed and stored into a
DW (3): this time contribution depends on the number of concurrent processes that need to
be executed and get access the common DW and the current size of the DW;

• t2 is the data consumption time, which depends on: (i) the remaining time that a polling
consumer needs to wait before performing the next fetch (4); (ii) the time for a request to be
sent to the Cloud service (5); (iii) the time required for lookup in the DW and post-process the
fetched data (6); and (iv) the time for the response to be delivered back to the consumer (7).

It can be observed that the architecture described is not optimized to minimize the latency
and, therefore, to feed (possibly a large number of) real-time applications but, rather, to perform
data collection and batch processing. Moreover, it is important to underline and understand that
significant data for Big Stream applications might be short-lived, since they are to be consumed
immediately, while Big Data applications tend to collect and store massive amounts of data for
an unpredictable time.

The main design criteria of the architecture proposed in this paper are:

• The minimization of the latency in data dispatching to consumers;
• The optimization of resource allocation.

The main novelty in the presented architecture lies in the concepts of “consumer-oriented”
data flows and “listeners.” The former denotes a different approach in retrieving incoming data,
rather than being based on the knowledge of collection points (repositories) to which request
data. The latter relies on final consumers: data generated by a deployed Smart Object, might
be of interest for some consumer application, denoted as listener, which can register itself in
order to receive updates (either in the form of raw or processed data) coming from a particular
streaming endpoint (i.e., Cloud service). On the basis of application-specific needs, each listener

Figure	3.	Delay	contributions	in	a	traditional	Big	Data	architecture	for	IoT,	from	data	genera-
tion	to	applications	information	delivery

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 35

defines a set of rules, which specify what type of data should be selected and the associated
filtering operations. For instance, referring to a smart parking scenario, a mobile application
might be interested in receiving contents related only to specific events that occur within a given
geographical area, in order to accomplish relevant tasks. Specifically, the application can listen
for parking sensor status updates, the positions of other cars, or weather conditions, in order to
find available parking spots.

The proposed Big Stream architecture guarantees that, as soon as they are available, data will
be dispatched to the listener, which is thus no longer responsible to poll data, thus minimizing
latencies and possibly avoiding network traffic.

The information flow in a listener-based Cloud architecture is shown in Figure 4.
With the Big Stream paradigm, the total time required by any data to be delivered to a

consumer can be expressed as:

0 1 T t t= +

where:

• t0 is the same time delay contribution defined for Figure 3;
• t1 is the time needed to process data extracted from the queue and be processed (accord-

ing to the needs of the listener, e.g., to perform format translation) and then deliver it to
registered listeners.

It is clear that the perspective inversion introduced by a listener-oriented communication
is optimal in terms of minimization of the time that a listener must wait before it receives data

Figure	4.	The	delay	contributions	from	data	generation	to	consumers	information	delivery	fol-
lowing	the	listener-based	Big	Stream	approach

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

36 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

of interest. In order to highlight the benefits brought by the Big Stream approach, with respect
to Big Data, an alerting application (where an event should be notified to one or more consum-
ers in the shortest possible time) can be considered. The traditional Big Data approach would
require an unnecessary pre-processing/storage/post-processing cycle to be executed before the
event can be made available to consumers, which would be responsible to retrieve data by poll-
ing. The listener-oriented approach, instead, guarantees that only the needed processing will be
performed before data are being delivered directly to the listener, thus providing an effective
real-time solution.

This general discussion proves that a consumer-oriented paradigm may be better suited to
real-time Big Stream applications, rather than simply reusing existing Big Data architectures,
which better fit applications that do not have critical real-time requirements.

Graph-Based Processing

In order to overcome the limitations of the “process-oriented” approach described in the previ-
ous section and fit with the proposed Big Stream paradigm, the proposed Cloud architecture is
based on a Graph Framework. More precisely, we consider a graph composed by basic building
blocks that are self-consistent and perform “atomic” processing on data, but that are not directly
linked to a specific task. In such a system, the data flows are based on dynamic graph-routing
rules determined only by the nature of the data itself and not by a centralized coordination unit.
This new approach allows the platform to be “consumer-oriented” and to implement optimal
resource allocation. Without the need of a coordination process, the data streams can be dynami-
cally routed in the network by following the edges of the graph and allowing the possibility to
automatically switch-off nodes (if some processing units are not required at a certain point) and
transparently replicate nodes (if some processing entities are consumed by a significant amount
of concurrent consumers).

Figure 5 illustrates the proposed directed Graph-based processing architecture and the concept
of listener. A listener is an entity (e.g., a processing unit in the graph or an external consumer)
interested in the raw data stream or in the output provided by a different node in the graph. Each
listener represents a node in the topology and the presence and combination of multiple listeners,
across all processing units, defines the routing of data streams from producers to consumers.
More in detail, in this architectural approach:

• Nodes are processing units (processes), performing some kind of computation on incoming
data;

• Edges represent flows of information linking together various processing unit, which are
thus able to implement some complex behavior as a whole;

• Nodes of the graph are listeners for incoming data or outputs of other nodes of the graph.

The designed Graph-based approach allows to optimize resource allocation in terms of
efficiency, by switching off processing units that have no listeners registered to them (enabling
cost-effectiveness and scalability) and by replicating those processing units which have a large
number of registered listeners. The combination of these two functionalities and the concept of
listener allow the platform and the overall system to adapt itself to dynamic and heterogeneous
scenarios, by properly routing data streams to the consumers, and to add new processing units
and functionalities on demand.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 37

In order to provide a set of commonly available functionalities, while allowing to dynami-
cally extend the capabilities of the system, the graph is composed by concentric layers. Each
layer contains two types of nodes, as shown in Figure 6 (a):

• Core Graph Nodes: Listeners which perform basic processing operations provided by
the architecture (e.g., format translation, normalization, aggregation, data correlation, and
other transformations);

• Application Graph Nodes: Listeners that require data coming from an inner graph layer
in order to perform custom processing on already processed data.

Figure	5.	The	proposed	listener-based	Graph	architecture:	the	nodes	of	the	graph	are	listeners;	
the	edges	refer	to	the	dynamic	flow	of	information	data	streams

Figure	6.	(a)	The	concentric	linked	Core	and	Application	Layers.	(b)	Basic	processing	nodes	
build	the	Core	Graph	Layer,	the	outer	nodes	have	increasing	complexity

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

38 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

The architecture thus consists of a single Core Layer including many core nodes, and sev-
eral Application Layers containing application nodes. The complexity of processing is directly
proportional to the number of layers crossed by the data. This also means that data at an outer
graph layer must not be processed again at an inner layer, which also guarantees that processing
loops, due to misconfigurations, are avoided by design.

From an architectural viewpoint, as shown in Figure 6 (b), nodes at inner graph layers cannot
be listeners of nodes of outer graph layers. In other words, there can be no link from an outer
graph node to an inner graph node, but only vice versa. Same layer graph nodes may be linked
together if there is a need to do so.

In particular, a processing unit of the Core Graph layer can be a listener only for other nodes
of the same layer (n incoming streams) and a source for other Core and Application graph nodes
(m outgoing streams). A node of an Application Graph layer can be, at the same time:

• A listener of n incoming flows from Core and/or Application graph layers;
• A data source only for other m nodes of the application graph layers or heterogeneous

external consumers.

The overall behavior of a task is generated by following a complete path in the Graph from
a data source to a final consumer. Processing units perform operations that can be reused, thus
data produced by a node can belong to several different paths and can be forwarded to all inter-
ested listeners. For this reason, in order to optimize the workload nodes with a large number of
listeners can be replicated and nodes with no listeners can be shut down.

IMPLEMENTATION

In this section, the details of the functionalities and implementation of the proposed architecture
by using standard protocols and open-source components are presented (Belli, & al., 2015).

Three main modules concur in forming the entire system:

• Acquisition and normalization of the incoming raw data;
• Graph management;
• Application register entity.

All modules and their relationships are shown in Figure 7. A detailed explanation is given
in the following sections.

Acquisition Module

The Acquisition Module represents the entry point, for external IoT networks of SOs, to the
Cloud architecture. Its purpose is to receive incoming raw data from heterogeneous sources,
making them available to all subsequent functional blocks. As mentioned before, about IoT
models, several application-layer protocols can be implemented by SOs; adhering to this idea,
the Acquisition Module has been modeled to include a set of different connectors, in order to
properly handle each protocol-specific incoming data stream.

Considering the main and most widespread IoT application-layer protocols, the current
implementation of the Acquisition Module supports: HTTP, CoAP and MQTT.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 39

In order to increase scalability and efficiency, in the module implementation an instance
of NGINX (Reese, 2008) has been adopted as an HTTP acquisition server node. The server is
reachable via the default HTTP port, working with a dedicated PHP page, as processing module,
which has been configured to forward incoming data to the inner queue server. We have chosen
NGINX, instead of the prevailing and well-known open source Apache HTTPD Server (R. T.
Fielding & Kaiser, 1997), because it uses an event-driven asynchronous architecture to improve
scalability and, specifically, aims to guarantee a high performance even in the presence of a
critical number of requests.

The CoAP acquisition interface has been implemented using a Java process, based on a
mjCoAP server (Cirani, Picone, & Veltri, 2014) instance, waiting for incoming raw messages,
and connected to the RabbitMQ queue server (RabbitMQ, n.d.), passing it injected elements.
Indeed, since the proposed architecture is Big Stream-oriented, a well-fitting messaging paradigm
is given by queue communication; therefore, in the developed platform an instance of RabbitMQ
queue broker was adopted.

The MQTT acquisition node is built by implementing an ActiveMQ (Apache, n.d.) server
through a Java process which listens for incoming data over a specific input topic (mqtt.input).

This solution has been preferred over other existing solutions (e.g., the C-based server Mos-
quitto) because it provides a dedicated API that allows a custom development of the component.
The MQTT acquisition node is also connected to the architecture’s queue server. In order to
avoid potential bottlenecks and collision points, each acquisition protocol module has dedicated
Exchange module and queue (managed by RabbitMQ), linked together with a protocol-related
routing key, ensuring the efficient management of incoming streams and their availability to
the subsequent nodes.

In the described implementation, an Exchange is a RabbitMQ component which acts as a
router in the system and dispatches incoming messages to one or more output queues, following
dynamic routing rules.

Figure	7.	Components	of	the	proposed	Graph	Cloud	architecture	and	relations	between	each	
element

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

40 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

Normalization Module

Since incoming raw data are generally application- and theme-dependent, a Normalization
Module has been designed in order to normalize all the collected information and generate a
representation suitable for processing. The normalization procedure is made by fundamental and
atomic operations on data such as:

• Suppression of useless information (e.g., unnecessary headers or meta-data);
• Annotation with additional information;
• Translation of the payload to a suitable format.

In order to handle the huge amount of incoming data efficiently, the normalization step is
organized with protocol-specific queues and Exchanges.

As shown in the normalization section of Figure 8, the information flow originated by the
Acquisition Module is handled as follows.

• All protocol-specific data streams are routed to a dedicated protocol-dependent Exchange,
which forwards them to a specific queue.

• A normalization process handles the input data currently available on that queue and performs
all necessary normalization operations in order to obtain a stream of information units that
can be processed by subsequent modules.

• The normalized stream is forwarded to an output Exchange.

The main advantage of using Exchanges is that queues and normalization processes can be
dynamically adapted to the current workload: for instance, normalization queues and processes
could be easily replicated to avoid system congestion.

Figure	8.	Detailed	representation	of	Acquisition	and	Normalization	blocks

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 41

Each normalization node has been implemented as a Java process, which analyzes incoming
raw data extracted from a queue identified through a protocol-like routing key (e.g., <proto-
col>.event.in), leaving unaltered the associated routing key, which identifies the originator SO
protocol. The received data are fragmented and encapsulated into a JSON-formatted document,
which provides an easy-to-manage format.

At the end of the normalization chain, each processor node forwards its new output chunk
to its next Exchange that represents the entry-point of the Graph Module, promoting data flows
to next layers of the proposed architecture.

Graph Framework

The Graph Framework is composed by an amount of different computational processes represent-
ing a single node in the topology; layers are linked together with frontier Exchanges, forwarding
data streams to their internal nodes.

Each Graph node i of a specific layer n is a listener, waiting for input data stream on a
dedicated layer n Exchange-connected queue. If this node also acts as publisher, after perform-
ing its processing on input data, it can deliver computation results to the its layer n Exchange.
In order to forward streams, informations generated by node i become available for layer n and
layer n+1 listeners, interested for this kind of data, thanks to the binding between layer n and
layer n+1 Exchanges.

Incoming messages are stored into active queues, connected to each Graph Layer’s Exchange.
Queues can be placed into the Core Graph layers, for basic computation, or into Application
Graph Layers, for enhanced computation. Layers are connected, through one-way links, with
their successor Exchange by using the binding rules allowed by the queue manager, ensuring
proper propagation of data flows and avoiding loops. Each graph layer is composed by Java-based
Graph Nodes dedicated to process data provided by the Graph layer’s Exchange. Such nodes can
either be Core, if they are dedicated to simple and primitive data processing, or Application, if
they are oriented to a more complex and specific data management. Messages, identified with
a routing key, are first retrieved from the layer’s Exchange, then processed, and finally sent to
the target Exchange, with a new work-related routing key, as shown in Figure 9. If the outgoing
routing key belongs to the same incoming graph layer, data remain into same Exchange and
become available for other local processes. If the outgoing routing key belongs to an outer graph
layer, then data are forwarded to the corresponding Exchange and, finally, forwarded adhering
to binding rules. Each graph node, upon becoming part of the system, can specify if it acts as a
data publisher, capable of handling and forwarding data to its layer’s Exchange, or if it acts only
as data consumer. A data flow continues until it reaches the last layer’s Exchange, responsible to
manage the notification to the external entities that are interested in final processed data (e.g.,
Data Warehouse, browsers, Smart entities, other Cloud Graph processes).

Application Register Module

The Application Register Module has the fundamental responsibilities (i) to manage the process-
ing graph by maintaining all the information about the current statuses of all graph nodes in the
system and (ii) to route data across the graph. In more detail, the application register module
performs the following operations:

• Attach new nodes or consumer applications interested in some of the streams provided by
the system;

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

42 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

• Detach nodes of the graph that are no more interested in streaming flows and eventually
re-attach them;

• Handle nodes that are publishers of new streams;
• Maintain information regarding topics of data, in order to correctly generate the routing

keys and to compose data flow between nodes in different graph layers.

In order to accomplish all these functionalities, the Application Register Module is composed
by two main components, as shown in Figure 10.

The first module is the Graph State Database, which is dedicated to store all the informa-
tion about active graph nodes, such as: their states, layers, and whether they are publishers. The
second one is the Node Registration and Queue Manager (NRQM), which handles requests from

Figure	9.	Interaction	between	Core	and	Application	layers	with	binding	rule

Figure	10.	Detailed	representation	of	the	Application	Register	module,	with	possible	actions	
that	may	be	performed	by	Graph	nodes,	highlighting	ATTACH	request	steps	needed	to	include	
an	external	node	in	the	Graph

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 43

graph nodes or external processes, and handles queue management and routing in the system.
When a new process joins the graph as a listener, it sends an attach request to the Application
Register Module, specifying the kind of data which it is interested to. The NQRM module stores
the information of the new process in the Graph State Database and creates a new dedicated
input queue for the process, according to its preferences. Finally, the NRQM sends a reference of
the queue to the process, which becomes a new listener of the graph and can read the incoming
stream from the input queue. After this registration phase, the node can perform new requests
(e.g., publish, detach, and get status).

The overall architecture is managed by a Java process (Application Register), which has
the role to coordinate the interactions between graph nodes and external services, like the Rab-
bitMQ queue server and the MySQL database. It maintains and updates all information and
parameters related to processing unit queues. As a first step, the Application Register starts up
all the external connections, and then it activates each layer’s Exchange, binding them with
their successors. At the end, it proceeds with the activation of a Jetty HTTP server, responsible
for listening and handling all Core and Application nodes requests, as shown in Figure 10: (A)
attach, (B) status request, (C) change publishing policy, (D) detach, and (E) re-attach request,
using a RESTful HTTP paradigm.

In Figure 11, all the proposed architecture modules described above, with a detailed indica-
tion of the information flows, are shown.

PERFORMANCE EVALUATION

The implementation of the proposed Graph Framework for Big Stream management has been
carried out by deploying an Oracle VirtualBox VM, equipped with Linux Ubuntu 12.04 64-bit,
4GB RAM, 2 CPUs and 10GB HDD.

The implemented architecture has been evaluated through the definition of a real use case,
represented by a Smart Parking scenario. The data traces used for the evaluation of the proposed
architecture have been provided by WorldSensing from one of the company’s deployments in
a real-life scenario, used to control parking spots on streets. The traces are a subset of an entire

Figure	11.	The	complete	Graph	Cloud	Architecture,	with	reference	 to	 the	data	stream	 flows	
between	all	building	blocks,	from	IoT	data	sources	to	final	consumers

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

44 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

deployment (more than 10,000 sensors) with information from 400 sensors over a 3 month period,
forming a dataset with more than 604k parking events.

Each dataset item is represented by: (i) sensor ID; (ii) event sequence number, relative to
the specific sensor; (iii) event timestamp; and (iv) parking spot status (free/busy). No additional
informations about parking zone are provided. Therefore, thus, in order to create a realistic sce-
nario, parking spot sensors are divided into 7 groups, representing different parking zones of a
city. This parking spot-city zone association is stored into an external database.

Experimental Setup

The parking dataset has been used in the Cloud infrastructure using a Java-based data generator,
which simulates the IoT sensors network. The generator randomly selects an available proto-
col (HTTP, CoAP, or MQTT) and periodically sends streams to the corresponding acquisition
node interface. Once the data has been received by the acquisition layer, they are forwarded to
the dedicated normalization Exchange, where corresponding nodes enrich incoming data with
platform-specific details. With reference to the selected scenario, the normalization stage adds
parking zone details to input data, retrieving the association from an external database. Once
the normalization module has completed its processing, it sends the structured data to the Graph
Framework, allowing to further process the enriched data stream.

The Graph Framework considered in our experimental set-up is composed by 8 Core layers
and 7 Application layers, within which different node topologies are built and evaluated.

Processed data follow a path based on routing keys, until the final external listener is reached.
Each Application node is interested in detecting changes of parking spot data, related to specific
parking zones. Upon a change of the status, the Graph node generates a new aggregated descriptor,
which is forwarded to the responsible layer’s Exchange, which has the role to notify the change
event to external entities interested in the update (free → busy, busy → free).

The rate of these events, coming from a real deployment in a European city, respects some
rules imposed by the company, and for our purposes might seems low. Thus, in order to stress
enough the proposed Big Stream Cloud system, the performance is evaluated by varying the data
generation rate in a proper range. In other words, we force a specific rate for incoming events,
without taking into account real parking spots timestamps gathered from the dataset.

Results

The proposed architecture has been evaluated, using the testbed described in the previous sub-
section, by varying the incoming raw data from 1 msg/s to 100 msg/s. The evaluation consists
in assessing the performance of the acquisition stage and the computation stage.

First, performance is evaluated by measuring the time difference (dimension: [ms]) between
the instant at which data are sent from a data generator to the corresponding acquisition interface
and the instant at which the data are enriched by normalization nodes, thus becoming available
for the first processing Core Node. The results are shown in Figure 12. The acquisition time is
slightly increasing but it is around 15 ms at all considered rates.

The second performance evaluation has been carried out by measuring the time (dimension:
[ms]) between the instant at which enriched data become ready for processing activities and the
time instant at which the message reaches the end of its Graph Framework routes, becoming
available for external consumers/customers. In order to consider only the effective overhead
introduced by the architecture, and without considering implementation-specific contributions,
performance results were obtained by subtracting the processing time of all Core and Application
Nodes. Finally, these times have been normalized over the number of computational nodes, in

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 45

order to obtain the per-node overhead introduced by the architecture, in a way that is independent
of the specific routing and topology that were implemented. The results, shown in Figure 13 and
Figure 14, have thus been calculated using the following expression:

 1

freq

N
out in kk

processing

T T GP
T

N
=

− −
= ∑

where:
out
T is the instant at which parking data reach the last Application layer;

in
T indicates

the instant in which normalized data comes to first Core layer; and GPk is the processing time
of a Graph process k	∈	{1,...,N}.

Figure 13 shows how Tprocessing values grow increasing the data generation frequency (from
10 msg/s to 100 msg/s). Each curve is related to a different Graph topology.

Figure 14 shows how Tprocessing values grow increasing the number of nodes composing the
Graph topology (from 20 to 50 nodes). Each curve in Figure 14 is related to a different value
of frequency rate.

Figure	12.	Average	time	(dimension:	[ms])	related	to	the	acquisition	block

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

46 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

DISCUSSIONS

Solutions and Security Considerations

The presented architecture is designed with reference to a specific IoT scenario with strict la-
tency and real-time requirements, namely a smart city-related Smart Parking scenario. There are
several possible use cases and applications fitting this scenario, alerting or real time monitoring
applications.

The work of (Vilajosana et al., 2013) shows how Smart Cities are having difficulties in real
deployment, even though obvious factors justify the necessity and the usefulness of making cities
smarter. The authors of (Vilajosana et al., 2013) analyze in detail the causes and factors which
act as barriers in the process of institutionalization of smart cities, and propose an approach to
make smart cities become a reality.

The authors advocate three different stages in order to deploy smart cities technologies and
services.

• The Bootstrap Phase: This phase is dedicated to offer services and technologies that are not
only of great use and really improve urban living, but also offer a return on investments. The
important objective of this first step is, thus, to set technological basis of the infrastructure
and guarantee the system long life by generating cash flows for future investments.

Figure	13.	Average	 times	 (dimension:	 [ms])	 related	 to	Graph	Framework	processing	block,	
showing	per-node	time,	varying	data	generation	rate,	for	each	subset	of	nodes	deployed	into	
the	Graph	topology

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 47

• The Growth Phase: In this phase, the finances generated in the previous phase are used
to ramp up technologies and services which require large investments and not necessarily
produce financial gains but are only of great use for consumers.

• The Wide Adoption Phase: In this third phase, collected data are made available through
standardized APIs and offered by all different stakeholders to third party developers in
order to create new services. At the end of this step, the system becomes self-sustainable
and might produce a new tertiary sector specifically related to services and applications
generated using the underlying infrastructure.

With reference to the third phase, (Vilajosana et al., 2013) propose three main different
business models to handle the delivery of informations to third parties.

• The App Store-Like Model: Developers can build their apps using a set of verified APIs
after a subscription procedure which might involve some subscription fee. IoT operators
can hold a small percentage of gains of Apps published in Apple and/or Android market.

• The Google Maps-Like Model: The percentage fee on apps sales price is scaled according
to the number and granularity of the queries to deployed APIs.

Figure	14.	Average	 times	 (dimension:	 [ms])	 related	 to	Graph	Framework	processing	block,	
showing	per-node	time,	varying	the	subset	of	nodes	deployed	into	the	Graph	topology,	for	each	
evaluated	data	generation	frequency

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

48 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

• The Open Data Model: This model grants access to APIs in a classical open data vision,
without charging any fee to developers.

The architecture described in this paper is compatible with the steps described in the work
of (Vilajosana et al., 2013) and, more specifically, it can adopt the “Google-Maps-like” where
infrastructure APIs make available different information streams with different complexity layers.

The graph architecture, moreover, gives another opportunity to extend the business model,
as developers can use available streams to generate a new node of the graph, and publish a new
stream for the system.

Another aspect, with a relevant impact on the business model, is security. This entails both
processing module and interaction with external entities. It is possible to adopt different policies
related to authentication and/or authorization on data sources, e.g., based on well-known and
standard solutions such as OAuth (Hammer-Lahav, 2010; Hardt, 2012), avoiding data stream
malicious alterations and following negative consequences, that could affect both processing
results and platform reliability. At a final stage, security could be applied for consumer accounting
and authentication, ensuring appropriate platform access only by authenticated/authorized enti-
ties, and providing security transactions, with authorized entities, via secured communications.

Security features, including authorization, authentications and confidentiality, should be
integrated into the architecture, in order to make the implementation complete and usable. Details
about integration of security features in the proposed Big Stream platform and its further impact
on the system performance are not included in this paper. They represent interesting research
topics for future work.

Practical Use

In the previous sections, we have detailed the implementation of the Graph-based Cloud archi-
tecture for a Big Stream IoT scenario. This section addresses some aspects regarding practical
use of the proposed architecture, taking into account its deployment on a Cloud platform.

The proposed architecture is mainly intended for developers, interested in building ap-
plications based on data generated by IoT networks, with real-time constraints, low-overhead,
customizing paths and informations flows, in order to generate new streams, through the addition
of newly developed and deployed Graph nodes.

Analyzing the Cloud components of the platform, the preferred service model seems to be
the Software-as-a-Service (SaaS) model, providing useful services for developers.

• Node upload/deletion: to change the Graph Framework topology, loading or removing newly
custom processing node;

• Stream status: to get the list of all available streams generated by the graph;
• Data source upload/deletion: to load or remove a new external data source before the Ac-

quisition module of the Graph-based system.

It is important to observe that each developer, accessing the architecture, could operate on
data streams coming from IoT networks (already processed or not) which he/she does not own.

The interactions between IoT developers and the proposed Cloud architecture are similar
to those provided by Node-RED (IBM Emerging Technology, 2013), a WEB-based applica-
tion, running on Node.js engine, which allows developers to create IoT graphs, wiring together
hardware devices, APIs, and online services.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 49

FUTURE RESEARCH DIRECTIONS

The proposed architecture is oriented to large amounts of incoming raw data, providing to interested
consumers an enhanced version of them: this could be useful in scenarios in which consumers
are final entities, interested only in retrieving aggregated data. The proposed architecture could
also be seen as a first-step processing platform, in which final data could represent an incom-
ing set for other processing entities. This flow could be applied to many scientific fields: for
example, since the proposed architecture is not a simulation or emulation platforms, could serve
as data provider for instances of those processors types. In medical environments, the proposed
platform could be seen as a platform trying to work on an enhanced dataset, looking for some
diagnosis. Other possible applications fields, are related to mobility and vehicular simulation
and emulation, where simulations platforms (e.g., ns-2, ns-3) could apply their functionalities
over enhanced datasets, being able to work properly, looking for a good performance, in terms
of processing time and result reliability.

As stated before, security is a central aspect to be taken into account, in order to enhance
the architecture reliability and the processing control. To provide guarantees at input stages, an
optimal solution could be represented by the introduction of an authorization module, which
tokenizes incoming data adopting an asymmetric security paradigm, to sure that raw data provid-
ers are authorized to provide information.

Looking for a reliable behavior at the output stage, a good solution could be reached by
introducing an Accounting/Authentication/Authorization (AAA) module, which manages and
controls the acceptance of consumers, providing some cryptographic functionalities, to check
security-level of each entity.

CONCLUSION

In this paper, the authors presented a novel Cloud Graph-based architecture for efficient manage-
ment of Big Stream Real-time applications in IoT scenarios. After describing the main require-
ments, in terms of reduced latency between the data creation instant and the instant at which
processed data can be delivered to a consumer, the new Big Stream paradigm has been introduced
highlighting its differences with respect to the Big Data paradigm. The main components of the
designed listener-based architecture are the following: the Acquisition Module, the Normaliza-
tion Module, the Graph Framework, and the Application Register. The implementation of the
overall system and its evaluation on a real-world Smart Parking dataset has been presented. The
listener-oriented approach generates several benefits, such as:

• Decreased Latency: The push-based approach guarantees that no delays due to polling and
batch processing are introduced;

• Fine-Grained Self-Configuration: Listeners can dynamically “plug” to streams interest data;
• Optimal Resource Allocation: Processing units that have no listeners can be switched off,

while those with many listeners can be replicated, thus leading to cost-effectiveness from
the Cloud service perspective.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

50 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

KEY TERMS AND DEFINITIONS

Big Data: Paradigms and technologies to handle massive volume of structured and unstructured
data which is so large that it’s impossible to process using traditional database and software
techniques.

Big Stream: Paradigms and technologies to handle with real-time and low-latency require-
ments, the massive volume of data generated with very high frequency by a huge number
of different data sources.

Exchange: In a generic network or graph topology is a component that receives messages from
producers and dispatches them to one or more output queue depending on specific routing
rules.

Graph: A mathematical model to represent a set of entities connected to each other. The com-
plete topology of a graph is identified by a list of vertices (or nodes) and a list of edges (or
links) between two vertices.

Internet of Things: The interconnection of billions of heterogeneous devices called “Smart Ob-
jects” through the Internet infrastructure. Smart Objects are typically constrained devices like
sensors or actuator and are deployed to collect data and to build useful services to consumers.

Listener: In an event driven system, a process or a component which is able to listen for and to
handle it a particular event.

Real-Time System: System required to guarantee responses with hard and strict time constraints.
Smart Object: A device with communication capabilities deployed in IoT systems. Generally

has constrained capabilities and is equipped with sensor or actuator to collect data or act
in the environment.

REFERENCES

Apache. (n.d.-a). Storm. Retrieved from https://storm.incubator.apache.org/

Apache. (n.d.-b). ActiveMQ. Retrieved from http://activemq.apache.org/

Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A., & Buyya, R. (2014). Big data computing and
Clouds: Trends and future directions. Journal	of	Parallel	and	Distributed	Computing.

Belli, L., Cirani, S., Davoli, L., Melegari, L., Mónton, M., & Picone, M. (2015). An Open-Source Cloud
Architecture for Big Stream IoT Applications. In I. Podnar Žarko, K. Pripužić, & M. Serrano (Eds.), In-
teroperability and Open-Source Solutions for the Internet of Things (Vol. 9001, pp. 73-88). Lecture Notes
in Computer Science (LNCS). Springer International Publishing. Retrieved from DOI: doi:10.1007/978-
3-319-16546-2_7

Belli, L., Cirani, S., Ferrari, G., Melegari, L., & Picone, M. (2014). A	Graph-based	Cloud	architecture	for	
Big	Stream	real-time	applications	in	the	Internet	of	Things. In 2nd	International	Workshop	on	Cloud	for	
IoT	(CLIoT	2014), Manchester, United Kingdom, September 2014.

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog	Computing	and	its	role	in	the	internet	of	things.
In Proceedings	of	the	First	Edition	of	the	ACM	Workshop	on	Mobile	Cloud	Computing (p. 13-16). New
York, NY, USA. Retrieved from http://doi.acm.org/10.1145/2342509.2342513

Cirani, S., Davoli, L., Picone, M., & Veltri, L. (2014, July). Performance	Evaluation	 of	 a	 SIP-based	
Constrained	Peer-to-Peer	Overlay. In 2014 International Conference on High Performance Computing
Simulation (HPCS), (p. 432-435). Retrieved from doi:10.1109/HPCSim.2014.6903717

https://storm.incubator.apache.org/
http://activemq.apache.org/
http://dx.doi.org/10.1007/978-3-319-16546-2_7
http://dx.doi.org/10.1007/978-3-319-16546-2_7
http://doi.acm.org/10.1145/2342509.2342513
http://dx.doi.org/10.1109/HPCSim.2014.6903717

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 51

Cirani, S., Picone, M., & Veltri, L. (2013). CoSIP: A Constrained Session Initiation Protocol for the Internet
of Things. In C. Canal & M. Villari (Eds.), Advances in Service-Oriented and Cloud Computing (Vol. 393,
pp. 13–24). Springer Berlin Heidelberg. Retrieved from doi:10.1007/978-3-642-45364-9_2

Cirani, S., Picone, M., & Veltri, L. (2014). A	Session	Initiation	Protocol	for	the	Internet	of	Things. Scal-
able Computing: Practice and Experience, 14 (4), 249-263. Retrieved from doi:10.12694/scpe.v14i4.931

Cirani, S., Picone, M., & Veltri, L. (2015). mjCoAP: An Open-Source Lightweight Java CoAP Library for
Internet of Things Applications. In: Interoperability and Open-Source Solutions for the Internet of Things.
LNCS, vol. 9001, Retrieved from DOI:, Springer International Publishing Switzerland. doi:10.1007/978-
3-319-16546-2_10

Deering, S., & Hinden, R. (1998, December). Internet	Protocol,	version	6	(IPv6)	Specification	(No.	2460).
RFC 2460 (Draft Standard). IETF. Retrieved from http://www.ietf.org/rfc/rfc2460.txt. (Updated by RFCs
5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112)

Dunkels, A., Gronvall, B., & Voigt, T. (2004). Contiki	-	A	Lightweight	and	flexible	Operating	System	for	
tiny	networked	sensors. Local Computer Networks, 2004. 29th Annual IEEE International Conference on
(pp. 455-462). IEEE.

Emerging Technology, I. B. M. (2013). Node-RED. Retrieved from http://nodered.org/

European Community’s 7th Framework Programme. (2007). OpenIoT	-	Open	Source	Cloud	solution	for	
the	Internet	of	Things. Retrieved from http://openiot.eu/. Retrieved from http://openiot.eu/

European Community’s 7th Framework Programme. (2008-2010). SENSEI	Project. Retrieved from http://
www.ict-sensei.org/

European Community’s 7th Framework Programme. (2011-2014). CALIPSO	-	Connect	All	IP-based	Smart	
Objects. Retrieved from http://www.ict-calipso.eu/

European Community’s 7th Framework Programme. (2011). FI-Ware	Project. Retrieved from http://www.
fi-ware.org/

European Community’s 7th Framework Programme. (2012-2015). Internet	of	Things	-	Architecture	(IoT	
-	A). Retrieved from http://www.iot-a.eu/

Evans, D. (2011). The	Internet	of	Things:	How	the	next	evolution	of	the	internet	is	changing	everything.
CISCO white paper, 1.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T. (1999). Hypertext	
transfer	protocol	–	http/1.1. United States: RFC Editor.

Fielding, R. T. (2000). Architectural styles and the design of network-based software architectures (Un-
published doctoral dissertation).

Fielding, R. T., & Kaiser, G. (1997). The Apache HTTP server project. IEEE	Internet	Computing, 1(4),
88–90. Retrieved from doi:10.1109/4236.612229

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural
elements, and future directions. Future	Generation	Computer	Systems, 29(7), 1645–1660. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0167739X13000241 doi:10.1016/j.future.2013.01.010

Hammer-Lahav, E. (2010). RFC	5849:	The	OAuth	1.0	protocol.	Internet	Engineering	Task	Force. IETF.

Hardt, D. (2012). RFC 6749: The	OAuth	2.0	authorization	framework-revision.

Hohpe, G., & Woolf, B. (2003). Enterprise	integration	patterns:	Designing,	building,	and	deploying	mes-
saging	solutions. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Isaacson, C. (2009). Software	pipelines	and	SOA:	Releasing	the	power	of	multi-core	processing (1st ed.).
Addison-Wesley Professional.

http://dx.doi.org/10.1007/978-3-642-45364-9_2
http://dx.doi.org/10.12694/scpe.v14i4.931
http://dx.doi.org/10.1007/978-3-319-16546-2_10
http://dx.doi.org/10.1007/978-3-319-16546-2_10
http://www.ietf.org/rfc/rfc2460.txt
http://nodered.org/
http://openiot.eu/
http://openiot.eu/
http://www.ict-sensei.org/
http://www.ict-sensei.org/
http://www.ict-calipso.eu/
http://www.fi-ware.org/
http://www.fi-ware.org/
http://www.iot-a.eu/
http://dx.doi.org/10.1109/4236.612229
http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://dx.doi.org/10.1016/j.future.2013.01.010

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

52 International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015

Leavitt, N. (2013). Storage challenge: Where will all that big data go? Computer, 46(9), 22–25. Retrieved
from doi:10.1109/MC.2013.326

Locke, D. (2010). MQ	Telemetry	Transport	(MQTT)	v3.	1	protocol	specification. IBM developer Works
Technical Library], Retrieved from https://www.ibm.com/developerworks/webservices/library/ws-mqtt/

Marganiec, S. R., Tilly, M., & Janicke, H. (2014, June). Low-Latency	Service	Data	Aggregation	Using	
Policy	Obligations. In	Web	Services	(ICWS), 2014 IEEE International Conference on (pp. 526-533). IEEE.

McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard	Business	Review,
(90): 60–66. PMID:23074865

Mell, P., & Grance, T. (2011). The NIST definition of Cloud Computing. National	Institute	of	Standards	
and	Technology, 53(6), 50.

Milojičić, D., Llorente, I. M., & Montero, R. S. (2011). OpenNebula:	A	Cloud	management	tool. IEEE
Internet Computing, 15(2), 0011-14.

Mosquitto. (n.d.). An	Open	Source	MQTT	Broker. Retrieved from http://mosquitto.org/

MySQL. (n.d.). Retrieved from http://www.mysql.com/

Neumeyer, L., Robbins, B., Nair, A., & Kesari, A. (2010). S4: Distributed stream computing platform. In
2010	IEEE	International	Conference	on	Data	mining	workshops	(ICDMW) (pp. 170–177). doi:10.1109/
ICDMW.2010.172

Postel, J. (Ed.). (1981, September). RFC 791 Internet Protocol - DARPA Internet program, protocol speci-
fication [Computer software manual]. Retrieved from http://tools.ietf.org/html/rfc791

Rabbit, M. Q. (n.d.). Retrieved from http://www.rabbitmq.com/

Rackspace, N. A. S. A. (n.d.). OpenStack	Cloud	Software	-	Open	source	software	for	building	private	and	
public	Clouds. Retrieved from https://www.openstack.org/

Reese, W. (2008). NGINX:	the	high-performance	web	server	and	reverse	proxy. Linux Journal, 2008 (173), 2.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., & Schooler, E. (2003).
RFC	3261:	SIP:	Session	Initiation	Protocol. IETF, Tech. Rep., 2002. Retrieved from http://www.ietf.org/
rfc/rfc3261.txt

Saint-Andre, P. (2004, October). Extensible	messaging	and	presence	protocol	(XMPP):	Instant	messaging	
and	presence. Internet RFC 3921.

Shelby, Z., Hartke, K., Bormann, C., & Frank, B. (2014). RFC	7252:	The	Constrained	Application	Protocol	
(CoAP). Internet Engineering Task Force.

Stanoevska-Slabeva, K., Wozniak, T., & Ristol, S. (2009). Grid	and	Cloud	Computing:	a	business	perspec-
tive	on	technology	and	applications. Springer Science & Business Media.

Tilly, M., & Reiff-Marganiec, S. (2011, March). Matching	customer	requests	to	service	offerings	in	real-
time. In Proceedings of the 2011 ACM Symposium on Applied Computing (pp. 456-461). ACM. Retrieved
from doi:10.1145/1982185.1982285

Vilajosana, I., Llosa, J., Martinez, B., Domingo-Prieto, M., Angles, A., & Vilajosana, X. (2013). Bootstrap-
ping smart cities through a self-sustainable model based on big data flows. Communications Magazine,
IEEE, 51(6).

Vinoski, S. (2006, November). Advanced	message	queuing	protocol. IEEE Internet Computing, 10 (6),
87–89. Retrieved from .10.1109/MIC.2006.116

Zaslavsky, A., Perera, C., & Georgakopoulos, D. (2013). Sensing	as	a	service	and	big	data. Retrieved from
http://arxiv.org/abs/1301.0159

http://dx.doi.org/10.1109/MC.2013.326
https://www.ibm.com/developerworks/webservices/library/ws-mqtt/
http://www.ncbi.nlm.nih.gov/pubmed/23074865
http://mosquitto.org/
http://www.mysql.com/
http://dx.doi.org/10.1109/ICDMW.2010.172
http://dx.doi.org/10.1109/ICDMW.2010.172
http://tools.ietf.org/html/rfc791
http://www.rabbitmq.com/
https://www.openstack.org/
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt
http://dx.doi.org/10.1145/1982185.1982285
http://arxiv.org/abs/1301.0159

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015 53

Laura	Belli	received	the	Dr.	Ing.	degree	in	Computer	Engineering	from	the	University	of	Parma,	Parma,	
Italy	in	2011.	Currently	she	is	a	PhD	student	in	Information	Technologies	at	the	same	University.

Simone	Cirani	is	a	Postdoctoral	Research	Associate	at	the	Department	of	Information	Engineering	of	the	
University	of	Parma,	Italy.	He	received	his	Dr.	Ing.	(Laurea)	degree	in	Computer	Science	“cum	laude”	from	
the	University	of	Parma,	Italy,	in	2007.	In	2011,	he	received	his	PhD	in	Information	Technologies	at	the	
Department	of	Information	Engineering	of	the	same	university.	His	research	interests	are	Internet	of	Things,	
Peer-to-peer	networks,	Network	Security,	Pervasive	Computing,	and	Mobile	Application	Development.

Luca	Davoli	received	the	BSc	and	MSc	degrees	in	Computer	Science	Engineering	from	the	University	of	
Parma,	Parma,	Italy,	in	2011	and	2013,	respectively,	and	is	currently	working	toward	the	PhD	degree	in	
Information	Engineering	at	the	University	of	Parma.	His	research	interests	include	Peer-to-Peer	networks,	
security	and	protocols	for	the	Internet	of	Things,	and	Pervasive	Computing.

Gianluigi	Ferrari	received	his	Laurea	and	PhD	degrees	from	the	University	of	Parma,	Parma,	Italy,	in	
1998	and	2002,	respectively.	Since	2002,	he	has	been	with	the	University	of	Parma,	where	he	currently	is	
an	Associate	Professor	of	Telecommunications.	He	was	a	Visiting	Researcher	at	USC	(Los	Angeles,	CA,	
USA,	2000-2001),	CMU	(Pittsburgh,	PA,	USA,	2002-2004),	KMITL	(Bangkok,	Thailand,	2007),	and	ULB	
(Brussels,	Belgium,	2010).	Since	2006,	he	has	been	the	Coordinator	of	the	Wireless	Ad-hoc	and	Sensor	
Networks	Lab	(http://wasnlab.tlc.unipr.it/)	at	the	Department	of	Information	Engineering.	As	of	today,	he	
has	published/accepted	more	than	200	papers	in	leading	international	journals	and	conferences,	22	book	
chapters,	9	patents,	and	8	books.	He	edited	 the	book	Sensor	Networks:	Where	Theory	Meets	Practice	
(Springer:	2010).	His	research	interests	include	wireless	ad	hoc	and	sensor	networking,	adaptive	digital	
signal	processing,	and	communication	theory.	He	participates	in	several	research	projects	funded	by	pub-
lic	and	private	bodies	(recovered	funds	over	1.9	M€).	Prof.	Ferrari	is	corecipient	of	a	best	student	paper	
award	at	IWWAN’06;	a	best	paper	award	at	EMERGING’10;	the	first	Body	Sensor	Network	(BSN)	contest	
winner	award	(as	member	of	the	WASNLab	team)	held	in	conjunction	with	BSN	2011;	an	award	for	the	
outstanding	technical	contributions	at	ITST-2011;	the	best	paper	award	at	SENSORNETS	2012;	the	best	
paper	award	at	EvoCOMNET	2013;	the	Best	Runner-up	Paper	Award	at	BSN	2014;	the	Best	Conference	
Paper	Award	at	SoftCOM’14	(Symposium	on	“RFID	Technologies	and	Internet	of	Things”).	He	acts	as	a	
frequent	reviewer	for	many	international	journals	and	conferences,	as	well	as	TPC	for	many	international	
conferences.	He	currently	serves	on	the	editorial	boards	of	several	international	journals.	He	was	a	Guest	
Editor	of	the	2010	EURASIP	JWCN	Special	Issue	on	“Dynamic	Spectrum	Access:	From	the	Concept	to	the	
Implementation”	and	of	the	2014	Hindawi	IJDSN	Special	Issue	on	“Advanced	Applications	of	Wireless	Sen-
sor	Network	Using	Sensor	Cloud	Infrastructure.”	He	is	a	Guest	Editor	of	the	2015	Hindawi	IJDSN	Special	
Issue	on	“Wireless	Sensor	Networks	for	Structural	Health	Monitoring.”	He	is	an	IEEE	Senior	Member.

Màrius	Montón	obtained	a	PhD	in	Computer	Science	from	the	Universitat	Autonoma	de	Barcelona	(UAB)	
and	a	Masters	in	Microelectronics	and	Electronic	Systems	and	Computer	Engineer	degree	from	the	same	
university.	Currently	he	is	working	as	Head	of	Firmware	group	in	WorldSensing.	He	was	working	several	
years	as	engineer	at	Cephis-UAB.	He	also	worked	as	associate	professor	at	the	university.	In	addition,he	
is	working	as	ca	onsultor	for	GreenSocs	developing	TLM-2.0	based	solutions	for	ESL	businesses.

Marco	Picone	currently	is	a	Postdoctoral	Research	Associate	at	the	University	of	Parma.	He	received	the	
Dr.	Ing.	degree	(Master)	in	Computer	Engineering	“cum	laude”in	2008	and	the	PhD	degree	in	Informa-
tion	Technologies	in	2012,	both	from	the	same	university.	Between	January	2011	and	June	2011,	he	was	
a	research	visitor	in	the	Network	and	Operating	Systems	group	at	the	Computer	Laboratory,	University	
of	Cambridge.	His	supervisor	 in	Cambridge	was	Dr.	Cecilia	Mascolo	and	the	research	activities	were	
focused	on	mobile	based	sensing	systems	and	sensor	networks	interaction.	His	research	activity	focuses	
on	Distributed	and	Peer-to-Peer	Systems,	with	particular	interest	for	solutions	that	involve	mobile	devices.	
Application	fields	include:	Neighbor	position	discovery	in	peer-to-peer	networks,	Vehicle-to-Vehicle	and	
Vehicle-to-Infrastructure	communications,	P2P	approach	for	Inter-vehicular	networks,	Vehicular	networks	
simulation	and	mobility	model,	Mobile	based	sensing	system	and	Vertical	Handover	Algorithms	&	Ap-
plications.	He	is	a	lecturer	for	the	class	of	Mobile	Application	Development	(Programmazione	di	Sistemi	
Mobili)	at	the	University	of	Parma,	for	the	2013/2014	school	year.

