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ABSTRACT
The	Internet	of	Things	(IoT)	will	consist	of	billions	(50	billions	by	2020)	of	interconnected	heterogeneous	
devices	denoted	as	“Smart	Objects:”	tiny,	constrained	devices	which	are	going	to	be	pervasively	deployed	
in	several	contexts.	To	meet	low-latency	requirements,	IoT	applications	must	rely	on	specific	architectures	
designed	to	handle	the	gigantic	stream	of	data	coming	from	Smart	Objects.	This	paper	propose	a	novel	Cloud	
architecture	for	Big	Stream	applications	that	can	efficiently	handle	data	coming	from	Smart	Objects	through	a	
Graph-based	processing	platform	and	deliver	processed	data	to	consumer	applications	with	low	latency.	The	
authors	reverse	the	traditional	“Big	Data”	paradigm,	where	real-time	constraints	are	not	considered,	and	
introduce	the	new	“Big	Stream”	paradigm,	which	better	fits	IoT	scenarios.	The	paper	provides	a	performance	
evaluation	of	a	practical	open-source	implementation	of	the	proposed	architecture.	Other	practical	aspects,	
such	as	security	considerations,	and	possible	business	oriented	exploitation	plans	are	presented.
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INTRODUCTION

The actors involved in IoT scenarios have extremely heterogeneous characteristics (in terms 
of processing and communication capabilities, energy supply and consumption, availability, 
and mobility), spanning from constrained devices, also denoted as “Smart Objects (SOs),” to 
smartphones and other personal devices, Internet hosts, and the Cloud. Smart Objects are typi-
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cally equipped with sensors and/or actuators and are thus capable to perceive and act on the 
environment where they are deployed. By 2020, 50 billions of Smart Objects are expected to 
be deployed in urban, home, industrial, and rural scenarios (Evans, 2011), in order to collect 
relevant information, which may be used to build new useful applications.

Shared and interoperable communication mechanisms and protocols are currently being 
defined and standardized, allowing heterogeneous nodes to efficiently communicate with each 
other and with existing common Internet-based hosts or general-purpose Internet-ready devices. 
The most prominent driver for interoperability in the IoT is the adoption of the Internet Protocol 
(IP), namely IPv6 (Postel, 1981; Deering & Hinden, 1998). An IP-based IoT will be able to 
extend and interoperate seamlessly with the existing Internet.

In a typical IoT scenario, sensed data are collected by SOs, deployed in and populating 
the IoT network, and sent uplink to collection entities (servers or the Cloud). In some cases, an 
intermediate element may support the Cloud, carrying out storage, communication, or computa-
tion operations in local networks (e.g., data aggregation or protocol translation). This approach 
is the basis of the Fog Computing (Bonomi, Milito, Zhu, & Addepalli, 2012) and will be better 
explained in the “Background” section.

Figure 1 shows the hierarchical structure of layers involved in data collection, processing, 
and distribution in IoT scenarios.

With billions of nodes capable of gathering data and generating information, the availability 
of efficient and scalable mechanisms for collecting, processing, and storing data is crucial.

Big Data techniques, which were developed in the last few years and became popular due 
to the evolution of online and social/crowd services, address the need to process extremely large 
amounts of heterogeneous data for multiple purposes. These techniques have been designed 
mainly to deal with huge volumes of information (focusing on storage, aggregation, analysis, 
and provisioning of data), rather than to provide real-time processing and dispatching (Zaslavsky, 

Figure	1.	The	hierarchy	of	layers	involved	in	IoT	scenarios:	the	Fog	works	as	an	extension	of	
the	Cloud	to	the	network	edge	to	support	data	collection,	processing,	and	distribution
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Perera, & Georgakopoulos, 2013; Leavitt, 2013). Cloud Computing has found a direct application 
with Big Data analysis due to its scalability, robustness, and cost-effectiveness.

One of the distinctive features of IoT systems is the deployment of a huge amount of het-
erogeneous data sources collecting data from the environment and sending information through 
the internet to collectors. The work of all data sources generate, as a whole, streams with a very 
high frequency. Moreover, several relevant IoT scenarios (such as industrial automation, trans-
portation, networks of sensors and actuators) need real-time or predictable latency.

The number of data sources, on one side, and the subsequent frequency of incoming data, on 
the other side, create a new need for Cloud architectures to handle such massive information flows.

Big Data approaches typically have an intrinsic inertia because they are based on batch 
processing. For this reason, they are not suitable to the dynamicity of IoT scenarios with real-
time requirements.

To better fit these requirements, the Big Data paradigm is shifted to a new paradigm, 
which has been denoted as “Big Stream” (Belli, Cirani, Ferrari, Melegari, & Picone, 2014). 
Big Stream-oriented systems should react effectively to changes and provide smart behavior 
for allocating resources, thus implementing scalable and cost-effective Cloud services. The Big 
Stream paradigm is specifically designed to perform real-time and ad-hoc processing in order 
to link incoming streams of data to consumers. This new paradigm should: have a high degree 
of scalability and fine-grained/dynamic configurability; and efficiently manage heterogeneous 
data formats which are not a priori known.

The main differences between Big Data and Big Stream paradigms can be summarized as 
follows.

• The nature of data sources: Big Stream refers to scenarios with a huge number of data sources 
sending small amounts of information.

• The real-time or low-latency requirements of consumers: information in Big Stream IoT 
scenarios is usually short-lived and should be provided to consumers before it becomes 
outdated (and useless).

• The meaning of the adjective “Big:” for Big Data, it refers to the data volume, whereas for 
Big Stream it refers to the global aggregate information generation rate of data sources. 
Moreover, this has an impact on the data that are considered relevant to consumer appli-
cations. While for Big Data applications it is important to keep all sensed data, in order 
to be able to perform any required computation, Big Stream applications might decide to 
perform local data aggregation/pruning, in order to minimize the latency in conveying the 
final processing results to consumers, without persistence needs.

In conclusion, although both Big Data and Big Stream deal with massive amounts of data, 
they have different purposes (as shown in Figure 2): the former focuses on storage, analysis 
and interpretation of data, while the latter focuses on data flow management in order to provide 
informations to interested customers with minimum latency.

From a more general perspective, Big Data applications might be consumers of Big Stream 
data flows.

For the above observations, the objective of this paper is to propose an architecture target-
ing Cloud-based applications with real-time constraints, i.e., Big Stream applications, for IoT 
scenarios. The proposed architecture relies on the concepts of a data listener and data-oriented 
processing graph in order to implement a scalable, highly configurable, and dynamic chain of 
computations on incoming Big Streams and to dispatch data with a push-based approach, thus 
providing the lowest delay between the generation of information and its consumption.
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BACKGROUND

The IoT paradigm refers to a huge number of different and heterogeneous SOs connected in a 
worldwide “Network of Networks.” These nodes are envisioned as collectors of information 
from the environment in order to provide useful services to users. This ubiquitous sensing, 
enabled by the IoT in most areas of modern living, has led to information and communication 
systems invisibly embedded in the environment, thus making the technology disappear from 
the consciousness of the users. The outcome of this trend is the generation of a huge amount 
of data that, depending on the specific application scenario, should be processed, aggregated, 
stored, transformed, and delivered to the final users of the system, in an efficient and effective 
way, with traditional commodity services.

In the next sections, related works regarding Cloud, Big Data, IoT architectures and models 
are first presented; then, some suitable open-source technologies and protocols are listed.

IoT Architectures

A large number of architectures for IoT scenarios have been proposed in the literature. For instance, 
most of the ongoing projects on IoT architectures address relevant challenges, particularly from 
a Wireless Sensor Networks (WSN) perspective. Some examples are given by a few European 
Union projects, such as SENSEI project (European Community’s 7th Framework Programme, 
2008-2010) and Internet of Things-Architecture (IoT-A) project (European Community’s 7th 
Framework Programme, 2012-2015).

The purpose of the SENSEI project is to create an open and business-driven architecture 
that addresses the scalability problems for a large number of globally distributed Wireless Sen-
sor and Actuator (WS&A) network devices, enabling interactions with physical environment.

The IoT-A project consortium has focused on the definition of an initial set of key building 
blocks, aiming at creating open interoperable platforms, connecting vertically closed architectures.

“Connect All IP-based Smart Objects!” (CALIPSO) (European Community’s 7th Framework 
Programme, 2011-2014) is another European project whose main purpose is to build IoT systems 
with IPv6-connected and low-power consumption SOs, thus providing both high interoperability 
and long lifetime, entailing three communication protocol stack layers (network, routing, and 
application).

In (Gubbi, Buyya, Marusic, & Palaniswami, 2013) is proposed an IoT architecture which 
is not based on WSNs and is focused instead on the user and the Cloud. The consumer is the 

Figure	2.	(a)	Data	sources	in	Big	Data	systems.	(b)	The	multiple	data	sources	and	listeners	
management	in	Big	Stream	system
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“center” and drives the use of data and infrastructure to develop new applications. The rest of 
the work discusses the key enabling technologies and the different future applications domains, 
describes a Cloud-centric architecture for IoT, and presents a real implementation.

Another Cloud-based IoT architecture is proposed in the FI-WARE project (European Com-
munity’s 7th Framework Programme, 2011), an open infrastructure with public, royalty-free, and 
OCCI-compliant API, providing to developers a platform to build innovative products.

As previously stated, the most prominent driver to provide interoperability in the IoT, refer-
ring to IP stack, is IPv6. At the application layer, the IoT scenario brings a variety of possible 
protocols that can be employed according to the specific applications requirements. Relevant 
options are: (i) HyperText Transfer Protocol (HTTP) (R. Fielding et al., 1999); (ii) Constrained 
Application Protocol (CoAP) (Shelby, Hartke, Bormann, & Frank, 2014); (iii) Extensible Messag-
ing and Presence Protocol (XMPP) (Saint-Andre, 2004); (iv) MQ Telemetry Transport (MQTT) 
protocol (Locke, 2010); (v) Constrained Session Initiation Protocol (CoSIP) (Cirani, Picone, & 
Veltri, 2013, 2014; Cirani, Davoli, Picone, & Veltri, 2014).

Regardless of the selected application-layer protocol, most IoT/M2M applications follow the 
REpresentational State Transfer Protocol (REST) architectural model presented in (R. T. Field-
ing, 2000), as this provides simple and uniform interfaces and is designed to build long-lasting, 
robust, and resilient to changes applications.

Big Data Processing Pattern

From a business perspective, managing and gaining insights from data is a challenge and a key 
to competitive advantage. Analytical solutions that mine structured and unstructured data are 
important, as they can help companies to gain cross-related information not only from their pri-
vately acquired data, but also from large amounts of data publicly available on the Web, social 
networks, and Blogs. Big Data opens a wide range of possibilities for organizations to understand 
the needs of their customers, predict their demands, and optimize the use of evaluable resources.

The work of (McAfee & Brynjolfsson, 2012) illustrates that the Big Data notion is different 
and more powerful with respect to traditional analytics tools used by companies. As analytics 
tools, Big Data can find patterns and glean intelligence from data translating that into business 
advantage. However, Big Data is powered by what is often referred as a multi V model, in which 
V stands for:

• Variety: To represent the data types;
• Velocity: To represent the rate at which the data is produced and processed and stored ac-

cording with further analysis;
• Volume: To define the amount of data;
• Veracity: Refers to how much the data can be trusted given the reliability of its sources.

Big Data architectures generally use traditional processing patterns with a pipeline approach 
(Hohpe & Woolf, 2003). These architectures are typically based on a processing perspective 
where the data flow goes downstream from input to output, to perform specific tasks or reach 
the target goal.

Typically, the information follows a pipeline where data are sequentially handled with tightly 
coupled pre-defined processing sub-units (static data routing). The described paradigm can be 
defined as “process-oriented:” a central coordination point manages the execution of subunits 
in a certain order and each sub-unit provides a specific processing output, which is created to 
be used only within the scope of its own process without the possibility to be shared among dif-
ferent processes. This approach represents a major deviation from traditional Service Oriented 
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Architectures (SOAs), where the sub-units are external web services invoked by a coordinator 
process rather than internal services (Isaacson, 2009). Big Data applications generally interact with 
Cloud Computing architectures which can handle resources and provide services to consumers.

In (Assunção, Calheiros, Bianchi, Netto, & Buyya, 2014), the authors presents a survey on 
approaches, environments, and technologies on key-areas for Big Data analytics capabilities, 
investigating how they can contribute to build analytics solutions for Clouds. A set of gaps and 
recommendations, for the research community, on future directions on Cloud-supported Big 
Data computing are also described.

Fog Computing

In the area of user-driven and Cloud IoT architectures, (Bonomi, Milito, Zhu, & Addepalli, 2012) 
propose Fog Computing as a novel and appropriate paradigm for a variety of IoT services and 
applications that require mobility support, low latency, and location awareness.

The Fog can be described as a highly virtualized platform that provides computing, storage, 
and networking services between end-devices and the Cloud. In other words, the Fog is meant 
to act as an extension of the Cloud, operating at the edge of the network to support endpoints by 
providing rich services that can fulfill real-time and low-latency consumer’s requirements. The 
Fog paradigm has specific characteristics, which can be summarized as follows:

• Geographical distribution, in contrast with the centralization envisioned by the Cloud;
• Subscriber model employed by the players in the Fog;
• Support for mobility.

The architecture described by (Bonomi, Milito, Zhu, & Addepalli, 2012) is based on the 
Fog and Cloud interplay: the former provides localization, low latency, and context awareness 
to endpoints; the latter provides global centralization functionalities. In the presented IoT Fog 
scenario, collectors at the edge of the network manage the data generated by sensors and de-
vices: the portion of these data that require real-time processing (from milliseconds to tenths 
of seconds) are consumed locally by the first tier of the Fog. The rest is sent to the higher tiers 
for operations with less stringent time constraints (from seconds to minutes). The higher is the 
tier, the wider is the geographical coverage and the longer the time scale. As a result, the Fog 
must support several types of storage: from ephemeral, at the lowest tier, to semi-permanent, 
at the highest tier. The ultimate and global coverage is provided by the Cloud, which is used as 
repository for data with a potential duration of months or years.

Stream and Real-Time Management

The architecture proposed in the current paper is specifically designed for scenarios with low 
latency and real-time requirements. Other projects related to real-time and stream management 
are Apache Storm (Apache, n.d-a.) and Apache S4 (Neumeyer, Robbins, Nair, & Kesari, 2010).

Storm is a free and open source distributed real-time computation system to reliably process 
unbounded streams of data. The system can be integrated with different queueing and database 
technologies and provides mechanisms to define topologies in which nodes consume data streams 
and process them in arbitrarily complex ways. S4 is a general purpose, near real-time, distributed, 
decentralized, scalable, event-driven, and modular platform that allows programmers to imple-
ment applications for processing streams of data. Multiple application nodes can be deployed 
and interconnected on S4 clusters to create more sophisticated systems.
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Although there are several similarities between these systems and the architecture proposed 
here, such as modularity, scalability, latency minimization and the graph topology, there are 
some notable differences. The most relevant use cases for Storm and S4 are stream processing 
and continuous computations on data stored in databases (e.g., message processing for database 
update). The proposed architecture, on the other hand, is specifically designed to work in dy-
namic IoT scenarios comprising heterogeneous data sources and making no assumption on the 
repositories (if needed) where data can be retrieved or stored.

Another major difference is related to the nature of the topology of the processing units. 
While Storm stream management is based on an operator-defined and static graph topology, the 
architecture proposed in the remainder of this paper is extremely dynamic, as the number of 
nodes and edges in the Graph Framework can change according to the workload and listener’s 
requirements.

The works described in (Marganiec et al., 2014; Tilly & Reiff-Marganiec, 2011) address the 
problem to process, procure, and provide information related to the IoT scenario with almost zero 
latency. The authors consider, as a motivating example, a taxi fleet management system, which 
has to identify the most relevant taxi in terms of availability and proximity to the customer’s 
location. The core of the publish/subscribe architecture proposed in (Marganiec et al., 2014) is 
the Mediator, which encapsulates the processing of the incoming requests from the consumer side 
and the incoming events from the services side. Services are publishers (taxis in the proposed 
example) which are responsible to inform the Mediator if there is some change in the provided 
service (e.g., the taxi location or the number of current passengers). Thus, instead of pulling data 
at consumer’s request time, the Mediator knows at any time the status of all services, being able 
to join user requests with the event stream coming from the taxis, using temporal join-statements 
expressed through SQL-like expressions.

Cloud Computing

Cloud Computing represents the increasing trend moving to the external deployment of Informa-
tion Technology (IT) resources, obtaining them as services (Stanoevska-Slabeva, Wozniak, & 
Ristol, 2009). Cloud Computing enables convenient and on-demand network access to a shared 
pool of configurable computing resources (e.g., networks, servers, storage elements, applications, 
and services) that could be rapidly provisioned and released with minimal management effort 
or service provider interaction (Mell & Grance, 2011).

At hardware level, a number of physical devices, including processors, hard drives, and 
network devices, fulfill processing and storage needs. Above this, the combination of (i) soft-
ware layer, (ii) virtualization layer, and (iii) management layer, allows effective management of 
servers. In Cloud Computing, available service models are the following.

• Infrastructure as a Service (IaaS): Provides processing, storage, networks, and other 
computing resources, allowing the consumer to deploy and run arbitrary software, including 
OSs and applications. The consumer has control over OSs, storage, deployed applications 
and, possibly, limited control of select networking components.

• Platform as a Service (PaaS): Provides the capability to deploy infrastructure, consumer-
created, or acquired applications. The consumer has no control on the underlying infrastructure 
(e.g., network, servers, OSs, or storage) but only manages deployed applications.

• Software as a Service (SaaS): Provides the capability to use the provider’s applications, 
running on the Cloud infrastructure, by accessing from various client devices through 
proper client interfaces. The consumer does not manage or control the underlying Cloud 
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infrastructure or individual application capabilities, with the possible exception of limited 
user-specific application configuration settings.

Cloud Computing is generally complementary to the IoT scenario, as it acts (i) as collector of 
real-time sensed data and (ii) as provider of services built on the basis of collected informations. 
The main need is to be extremely scalable, allowing the support to large-scale IoT applications.

There are several open source frameworks and technologies which can be used for Cloud IoT 
systems, such as OpenStack (Rackspace, NASA, n.d.) and OpenNebula (Milojičić, Llorente, & 
Montero, 2011). The former is an open Cloud OS that controls large pools of computing, storage, 
and networking resources, while OpenStack can be seen as a framework with a vendor-driven 
model, the second is an open-source project aiming at delivering a simple, feature-rich, and 
flexible solution to build and manage enterprise Clouds and virtualized data centers.

ARCHITECTURE

As previously stated, a major difference between Big Data and Big Stream resides in the real-
time and low-latency requirements of consumers. The gigantic amount of data sources in IoT 
applications has mistakenly made Cloud services implementers believe that re-using Big Data-
driven architectures would be the right solution for all applications, rather than designing specific 
paradigms for those scenarios.

IoT application scenarios are characterized by a huge number of data sources, sending small 
amounts of information to a collector service, typically at a limited data rate. Many services can 
be built on top of these data, such as environmental monitoring, building automation, and smart 
cities applications. These applications are typically characterized by low-latency or real-time 
requirements, in order to provide efficient reactive/proactive behaviors.

Big Stream Oriented Architecture

Applying a traditional Big Data approach for IoT application scenarios might lead to high - even 
unpredictable - latencies between data generation and its availability to a consumer, since this 
was not among the main objectives behind the design of Big Data systems.

Figure 3 illustrates the main delay contributions introduced when data, generated by SOs 
in IoT networks, need to be processed, stored, and then polled by consumers. Clients interested 
in processed data are extremely heterogeneous, spanning from mobile or desktop applications 
to Data Warehouse (DW) applications and till other IoT Smart Objects networks.

The total delay required by any data to be delivered to a consumer can be expressed as:

0 1 2  T t t t= + +  

where:

• t0 is the time elapsed from the moment a data source sends information, through an available 
API, to the Cloud service (1), which dispatches the data to an appropriate queue, where it 
can wait for an unpredictable time (2), in order to decouple data acquisition from processing;
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• t1 is the time needed for data, extracted by the queue, to be pre-processed and stored into a 
DW (3): this time contribution depends on the number of concurrent processes that need to 
be executed and get access the common DW and the current size of the DW;

• t2 is the data consumption time, which depends on: (i) the remaining time that a polling 
consumer needs to wait before performing the next fetch (4); (ii) the time for a request to be 
sent to the Cloud service (5); (iii) the time required for lookup in the DW and post-process the 
fetched data (6); and (iv) the time for the response to be delivered back to the consumer (7).

It can be observed that the architecture described is not optimized to minimize the latency 
and, therefore, to feed (possibly a large number of) real-time applications but, rather, to perform 
data collection and batch processing. Moreover, it is important to underline and understand that 
significant data for Big Stream applications might be short-lived, since they are to be consumed 
immediately, while Big Data applications tend to collect and store massive amounts of data for 
an unpredictable time.

The main design criteria of the architecture proposed in this paper are:

• The minimization of the latency in data dispatching to consumers;
• The optimization of resource allocation.

The main novelty in the presented architecture lies in the concepts of “consumer-oriented” 
data flows and “listeners.” The former denotes a different approach in retrieving incoming data, 
rather than being based on the knowledge of collection points (repositories) to which request 
data. The latter relies on final consumers: data generated by a deployed Smart Object, might 
be of interest for some consumer application, denoted as listener, which can register itself in 
order to receive updates (either in the form of raw or processed data) coming from a particular 
streaming endpoint (i.e., Cloud service). On the basis of application-specific needs, each listener 

Figure	3.	Delay	contributions	in	a	traditional	Big	Data	architecture	for	IoT,	from	data	genera-
tion	to	applications	information	delivery
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defines a set of rules, which specify what type of data should be selected and the associated 
filtering operations. For instance, referring to a smart parking scenario, a mobile application 
might be interested in receiving contents related only to specific events that occur within a given 
geographical area, in order to accomplish relevant tasks. Specifically, the application can listen 
for parking sensor status updates, the positions of other cars, or weather conditions, in order to 
find available parking spots.

The proposed Big Stream architecture guarantees that, as soon as they are available, data will 
be dispatched to the listener, which is thus no longer responsible to poll data, thus minimizing 
latencies and possibly avoiding network traffic.

The information flow in a listener-based Cloud architecture is shown in Figure 4.
With the Big Stream paradigm, the total time required by any data to be delivered to a 

consumer can be expressed as:

0 1  T t t= +  

where:

• t0 is the same time delay contribution defined for Figure 3;
• t1 is the time needed to process data extracted from the queue and be processed (accord-

ing to the needs of the listener, e.g., to perform format translation) and then deliver it to 
registered listeners.

It is clear that the perspective inversion introduced by a listener-oriented communication 
is optimal in terms of minimization of the time that a listener must wait before it receives data 

Figure	4.	The	delay	contributions	from	data	generation	to	consumers	information	delivery	fol-
lowing	the	listener-based	Big	Stream	approach
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of interest. In order to highlight the benefits brought by the Big Stream approach, with respect 
to Big Data, an alerting application (where an event should be notified to one or more consum-
ers in the shortest possible time) can be considered. The traditional Big Data approach would 
require an unnecessary pre-processing/storage/post-processing cycle to be executed before the 
event can be made available to consumers, which would be responsible to retrieve data by poll-
ing. The listener-oriented approach, instead, guarantees that only the needed processing will be 
performed before data are being delivered directly to the listener, thus providing an effective 
real-time solution.

This general discussion proves that a consumer-oriented paradigm may be better suited to 
real-time Big Stream applications, rather than simply reusing existing Big Data architectures, 
which better fit applications that do not have critical real-time requirements.

Graph-Based Processing

In order to overcome the limitations of the “process-oriented” approach described in the previ-
ous section and fit with the proposed Big Stream paradigm, the proposed Cloud architecture is 
based on a Graph Framework. More precisely, we consider a graph composed by basic building 
blocks that are self-consistent and perform “atomic” processing on data, but that are not directly 
linked to a specific task. In such a system, the data flows are based on dynamic graph-routing 
rules determined only by the nature of the data itself and not by a centralized coordination unit. 
This new approach allows the platform to be “consumer-oriented” and to implement optimal 
resource allocation. Without the need of a coordination process, the data streams can be dynami-
cally routed in the network by following the edges of the graph and allowing the possibility to 
automatically switch-off nodes (if some processing units are not required at a certain point) and 
transparently replicate nodes (if some processing entities are consumed by a significant amount 
of concurrent consumers).

Figure 5 illustrates the proposed directed Graph-based processing architecture and the concept 
of listener. A listener is an entity (e.g., a processing unit in the graph or an external consumer) 
interested in the raw data stream or in the output provided by a different node in the graph. Each 
listener represents a node in the topology and the presence and combination of multiple listeners, 
across all processing units, defines the routing of data streams from producers to consumers. 
More in detail, in this architectural approach:

• Nodes are processing units (processes), performing some kind of computation on incoming 
data;

• Edges represent flows of information linking together various processing unit, which are 
thus able to implement some complex behavior as a whole;

• Nodes of the graph are listeners for incoming data or outputs of other nodes of the graph.

The designed Graph-based approach allows to optimize resource allocation in terms of 
efficiency, by switching off processing units that have no listeners registered to them (enabling 
cost-effectiveness and scalability) and by replicating those processing units which have a large 
number of registered listeners. The combination of these two functionalities and the concept of 
listener allow the platform and the overall system to adapt itself to dynamic and heterogeneous 
scenarios, by properly routing data streams to the consumers, and to add new processing units 
and functionalities on demand.



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Systems and Service-Oriented Engineering, 5(4), 26-53, October-December 2015   37

In order to provide a set of commonly available functionalities, while allowing to dynami-
cally extend the capabilities of the system, the graph is composed by concentric layers. Each 
layer contains two types of nodes, as shown in Figure 6 (a):

• Core Graph Nodes: Listeners which perform basic processing operations provided by 
the architecture (e.g., format translation, normalization, aggregation, data correlation, and 
other transformations);

• Application Graph Nodes: Listeners that require data coming from an inner graph layer 
in order to perform custom processing on already processed data.

Figure	5.	The	proposed	listener-based	Graph	architecture:	the	nodes	of	the	graph	are	listeners;	
the	edges	refer	to	the	dynamic	flow	of	information	data	streams

Figure	6.	(a)	The	concentric	linked	Core	and	Application	Layers.	(b)	Basic	processing	nodes	
build	the	Core	Graph	Layer,	the	outer	nodes	have	increasing	complexity
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The architecture thus consists of a single Core Layer including many core nodes, and sev-
eral Application Layers containing application nodes. The complexity of processing is directly 
proportional to the number of layers crossed by the data. This also means that data at an outer 
graph layer must not be processed again at an inner layer, which also guarantees that processing 
loops, due to misconfigurations, are avoided by design.

From an architectural viewpoint, as shown in Figure 6 (b), nodes at inner graph layers cannot 
be listeners of nodes of outer graph layers. In other words, there can be no link from an outer 
graph node to an inner graph node, but only vice versa. Same layer graph nodes may be linked 
together if there is a need to do so.

In particular, a processing unit of the Core Graph layer can be a listener only for other nodes 
of the same layer (n incoming streams) and a source for other Core and Application graph nodes 
(m outgoing streams). A node of an Application Graph layer can be, at the same time:

• A listener of n incoming flows from Core and/or Application graph layers;
• A data source only for other m nodes of the application graph layers or heterogeneous 

external consumers.

The overall behavior of a task is generated by following a complete path in the Graph from 
a data source to a final consumer. Processing units perform operations that can be reused, thus 
data produced by a node can belong to several different paths and can be forwarded to all inter-
ested listeners. For this reason, in order to optimize the workload nodes with a large number of 
listeners can be replicated and nodes with no listeners can be shut down.

IMPLEMENTATION

In this section, the details of the functionalities and implementation of the proposed architecture 
by using standard protocols and open-source components are presented (Belli, & al., 2015).

Three main modules concur in forming the entire system:

• Acquisition and normalization of the incoming raw data;
• Graph management;
• Application register entity.

All modules and their relationships are shown in Figure 7. A detailed explanation is given 
in the following sections.

Acquisition Module

The Acquisition Module represents the entry point, for external IoT networks of SOs, to the 
Cloud architecture. Its purpose is to receive incoming raw data from heterogeneous sources, 
making them available to all subsequent functional blocks. As mentioned before, about IoT 
models, several application-layer protocols can be implemented by SOs; adhering to this idea, 
the Acquisition Module has been modeled to include a set of different connectors, in order to 
properly handle each protocol-specific incoming data stream.

Considering the main and most widespread IoT application-layer protocols, the current 
implementation of the Acquisition Module supports: HTTP, CoAP and MQTT.
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In order to increase scalability and efficiency, in the module implementation an instance 
of NGINX (Reese, 2008) has been adopted as an HTTP acquisition server node. The server is 
reachable via the default HTTP port, working with a dedicated PHP page, as processing module, 
which has been configured to forward incoming data to the inner queue server. We have chosen 
NGINX, instead of the prevailing and well-known open source Apache HTTPD Server (R. T. 
Fielding & Kaiser, 1997), because it uses an event-driven asynchronous architecture to improve 
scalability and, specifically, aims to guarantee a high performance even in the presence of a 
critical number of requests.

The CoAP acquisition interface has been implemented using a Java process, based on a 
mjCoAP server (Cirani, Picone, & Veltri, 2014) instance, waiting for incoming raw messages, 
and connected to the RabbitMQ queue server (RabbitMQ, n.d.), passing it injected elements. 
Indeed, since the proposed architecture is Big Stream-oriented, a well-fitting messaging paradigm 
is given by queue communication; therefore, in the developed platform an instance of RabbitMQ 
queue broker was adopted.

The MQTT acquisition node is built by implementing an ActiveMQ (Apache, n.d.) server 
through a Java process which listens for incoming data over a specific input topic (mqtt.input).

This solution has been preferred over other existing solutions (e.g., the C-based server Mos-
quitto) because it provides a dedicated API that allows a custom development of the component. 
The MQTT acquisition node is also connected to the architecture’s queue server. In order to 
avoid potential bottlenecks and collision points, each acquisition protocol module has dedicated 
Exchange module and queue (managed by RabbitMQ), linked together with a protocol-related 
routing key, ensuring the efficient management of incoming streams and their availability to 
the subsequent nodes.

In the described implementation, an Exchange is a RabbitMQ component which acts as a 
router in the system and dispatches incoming messages to one or more output queues, following 
dynamic routing rules.

Figure	7.	Components	of	the	proposed	Graph	Cloud	architecture	and	relations	between	each	
element
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Normalization Module

Since incoming raw data are generally application- and theme-dependent, a Normalization 
Module has been designed in order to normalize all the collected information and generate a 
representation suitable for processing. The normalization procedure is made by fundamental and 
atomic operations on data such as:

• Suppression of useless information (e.g., unnecessary headers or meta-data);
• Annotation with additional information;
• Translation of the payload to a suitable format.

In order to handle the huge amount of incoming data efficiently, the normalization step is 
organized with protocol-specific queues and Exchanges.

As shown in the normalization section of Figure 8, the information flow originated by the 
Acquisition Module is handled as follows.

• All protocol-specific data streams are routed to a dedicated protocol-dependent Exchange, 
which forwards them to a specific queue.

• A normalization process handles the input data currently available on that queue and performs 
all necessary normalization operations in order to obtain a stream of information units that 
can be processed by subsequent modules.

• The normalized stream is forwarded to an output Exchange.

The main advantage of using Exchanges is that queues and normalization processes can be 
dynamically adapted to the current workload: for instance, normalization queues and processes 
could be easily replicated to avoid system congestion.

Figure	8.	Detailed	representation	of	Acquisition	and	Normalization	blocks
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Each normalization node has been implemented as a Java process, which analyzes incoming 
raw data extracted from a queue identified through a protocol-like routing key (e.g., <proto-
col>.event.in), leaving unaltered the associated routing key, which identifies the originator SO 
protocol. The received data are fragmented and encapsulated into a JSON-formatted document, 
which provides an easy-to-manage format.

At the end of the normalization chain, each processor node forwards its new output chunk 
to its next Exchange that represents the entry-point of the Graph Module, promoting data flows 
to next layers of the proposed architecture.

Graph Framework

The Graph Framework is composed by an amount of different computational processes represent-
ing a single node in the topology; layers are linked together with frontier Exchanges, forwarding 
data streams to their internal nodes.

Each Graph node i of a specific layer n is a listener, waiting for input data stream on a 
dedicated layer n Exchange-connected queue. If this node also acts as publisher, after perform-
ing its processing on input data, it can deliver computation results to the its layer n Exchange. 
In order to forward streams, informations generated by node i become available for layer n and 
layer n+1 listeners, interested for this kind of data, thanks to the binding between layer n and 
layer n+1 Exchanges.

Incoming messages are stored into active queues, connected to each Graph Layer’s Exchange. 
Queues can be placed into the Core Graph layers, for basic computation, or into Application 
Graph Layers, for enhanced computation. Layers are connected, through one-way links, with 
their successor Exchange by using the binding rules allowed by the queue manager, ensuring 
proper propagation of data flows and avoiding loops. Each graph layer is composed by Java-based 
Graph Nodes dedicated to process data provided by the Graph layer’s Exchange. Such nodes can 
either be Core, if they are dedicated to simple and primitive data processing, or Application, if 
they are oriented to a more complex and specific data management. Messages, identified with 
a routing key, are first retrieved from the layer’s Exchange, then processed, and finally sent to 
the target Exchange, with a new work-related routing key, as shown in Figure 9. If the outgoing 
routing key belongs to the same incoming graph layer, data remain into same Exchange and 
become available for other local processes. If the outgoing routing key belongs to an outer graph 
layer, then data are forwarded to the corresponding Exchange and, finally, forwarded adhering 
to binding rules. Each graph node, upon becoming part of the system, can specify if it acts as a 
data publisher, capable of handling and forwarding data to its layer’s Exchange, or if it acts only 
as data consumer. A data flow continues until it reaches the last layer’s Exchange, responsible to 
manage the notification to the external entities that are interested in final processed data (e.g., 
Data Warehouse, browsers, Smart entities, other Cloud Graph processes).

Application Register Module

The Application Register Module has the fundamental responsibilities (i) to manage the process-
ing graph by maintaining all the information about the current statuses of all graph nodes in the 
system and (ii) to route data across the graph. In more detail, the application register module 
performs the following operations:

• Attach new nodes or consumer applications interested in some of the streams provided by 
the system;
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• Detach nodes of the graph that are no more interested in streaming flows and eventually 
re-attach them;

• Handle nodes that are publishers of new streams;
• Maintain information regarding topics of data, in order to correctly generate the routing 

keys and to compose data flow between nodes in different graph layers.

In order to accomplish all these functionalities, the Application Register Module is composed 
by two main components, as shown in Figure 10.

The first module is the Graph State Database, which is dedicated to store all the informa-
tion about active graph nodes, such as: their states, layers, and whether they are publishers. The 
second one is the Node Registration and Queue Manager (NRQM), which handles requests from 

Figure	9.	Interaction	between	Core	and	Application	layers	with	binding	rule

Figure	10.	Detailed	representation	of	the	Application	Register	module,	with	possible	actions	
that	may	be	performed	by	Graph	nodes,	highlighting	ATTACH	request	steps	needed	to	include	
an	external	node	in	the	Graph
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graph nodes or external processes, and handles queue management and routing in the system. 
When a new process joins the graph as a listener, it sends an attach request to the Application 
Register Module, specifying the kind of data which it is interested to. The NQRM module stores 
the information of the new process in the Graph State Database and creates a new dedicated 
input queue for the process, according to its preferences. Finally, the NRQM sends a reference of 
the queue to the process, which becomes a new listener of the graph and can read the incoming 
stream from the input queue. After this registration phase, the node can perform new requests 
(e.g., publish, detach, and get status).

The overall architecture is managed by a Java process (Application Register), which has 
the role to coordinate the interactions between graph nodes and external services, like the Rab-
bitMQ queue server and the MySQL database. It maintains and updates all information and 
parameters related to processing unit queues. As a first step, the Application Register starts up 
all the external connections, and then it activates each layer’s Exchange, binding them with 
their successors. At the end, it proceeds with the activation of a Jetty HTTP server, responsible 
for listening and handling all Core and Application nodes requests, as shown in Figure 10: (A) 
attach, (B) status request, (C) change publishing policy, (D) detach, and (E) re-attach request, 
using a RESTful HTTP paradigm.

In Figure 11, all the proposed architecture modules described above, with a detailed indica-
tion of the information flows, are shown.

PERFORMANCE EVALUATION

The implementation of the proposed Graph Framework for Big Stream management has been 
carried out by deploying an Oracle VirtualBox VM, equipped with Linux Ubuntu 12.04 64-bit, 
4GB RAM, 2 CPUs and 10GB HDD.

The implemented architecture has been evaluated through the definition of a real use case, 
represented by a Smart Parking scenario. The data traces used for the evaluation of the proposed 
architecture have been provided by WorldSensing from one of the company’s deployments in 
a real-life scenario, used to control parking spots on streets. The traces are a subset of an entire 

Figure	11.	The	complete	Graph	Cloud	Architecture,	with	reference	 to	 the	data	stream	 flows	
between	all	building	blocks,	from	IoT	data	sources	to	final	consumers
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deployment (more than 10,000 sensors) with information from 400 sensors over a 3 month period, 
forming a dataset with more than 604k parking events.

Each dataset item is represented by: (i) sensor ID; (ii) event sequence number, relative to 
the specific sensor; (iii) event timestamp; and (iv) parking spot status (free/busy). No additional 
informations about parking zone are provided. Therefore, thus, in order to create a realistic sce-
nario, parking spot sensors are divided into 7 groups, representing different parking zones of a 
city. This parking spot-city zone association is stored into an external database.

Experimental Setup

The parking dataset has been used in the Cloud infrastructure using a Java-based data generator, 
which simulates the IoT sensors network. The generator randomly selects an available proto-
col (HTTP, CoAP, or MQTT) and periodically sends streams to the corresponding acquisition 
node interface. Once the data has been received by the acquisition layer, they are forwarded to 
the dedicated normalization Exchange, where corresponding nodes enrich incoming data with 
platform-specific details. With reference to the selected scenario, the normalization stage adds 
parking zone details to input data, retrieving the association from an external database. Once 
the normalization module has completed its processing, it sends the structured data to the Graph 
Framework, allowing to further process the enriched data stream.

The Graph Framework considered in our experimental set-up is composed by 8 Core layers 
and 7 Application layers, within which different node topologies are built and evaluated.

Processed data follow a path based on routing keys, until the final external listener is reached. 
Each Application node is interested in detecting changes of parking spot data, related to specific 
parking zones. Upon a change of the status, the Graph node generates a new aggregated descriptor, 
which is forwarded to the responsible layer’s Exchange, which has the role to notify the change 
event to external entities interested in the update (free → busy, busy → free).

The rate of these events, coming from a real deployment in a European city, respects some 
rules imposed by the company, and for our purposes might seems low. Thus, in order to stress 
enough the proposed Big Stream Cloud system, the performance is evaluated by varying the data 
generation rate in a proper range. In other words, we force a specific rate for incoming events, 
without taking into account real parking spots timestamps gathered from the dataset.

Results

The proposed architecture has been evaluated, using the testbed described in the previous sub-
section, by varying the incoming raw data from 1 msg/s to 100 msg/s. The evaluation consists 
in assessing the performance of the acquisition stage and the computation stage.

First, performance is evaluated by measuring the time difference (dimension: [ms]) between 
the instant at which data are sent from a data generator to the corresponding acquisition interface 
and the instant at which the data are enriched by normalization nodes, thus becoming available 
for the first processing Core Node. The results are shown in Figure 12. The acquisition time is 
slightly increasing but it is around 15 ms at all considered rates.

The second performance evaluation has been carried out by measuring the time (dimension: 
[ms]) between the instant at which enriched data become ready for processing activities and the 
time instant at which the message reaches the end of its Graph Framework routes, becoming 
available for external consumers/customers. In order to consider only the effective overhead 
introduced by the architecture, and without considering implementation-specific contributions, 
performance results were obtained by subtracting the processing time of all Core and Application 
Nodes. Finally, these times have been normalized over the number of computational nodes, in 
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order to obtain the per-node overhead introduced by the architecture, in a way that is independent 
of the specific routing and topology that were implemented. The results, shown in Figure 13 and 
Figure 14, have thus been calculated using the following expression:

  1
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where: 
out
T  is the instant at which parking data reach the last Application layer; 

in
T  indicates 

the instant in which normalized data comes to first Core layer; and GPk is the processing time 
of a Graph process k	∈	{1,...,N}.

Figure 13 shows how Tprocessing values grow increasing the data generation frequency (from 
10 msg/s to 100 msg/s). Each curve is related to a different Graph topology.

Figure 14 shows how Tprocessing values grow increasing the number of nodes composing the 
Graph topology (from 20 to 50 nodes). Each curve in Figure 14 is related to a different value 
of frequency rate.

Figure	12.	Average	time	(dimension:	[ms])	related	to	the	acquisition	block
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DISCUSSIONS

Solutions and Security Considerations

The presented architecture is designed with reference to a specific IoT scenario with strict la-
tency and real-time requirements, namely a smart city-related Smart Parking scenario. There are 
several possible use cases and applications fitting this scenario, alerting or real time monitoring 
applications.

The work of (Vilajosana et al., 2013) shows how Smart Cities are having difficulties in real 
deployment, even though obvious factors justify the necessity and the usefulness of making cities 
smarter. The authors of (Vilajosana et al., 2013) analyze in detail the causes and factors which 
act as barriers in the process of institutionalization of smart cities, and propose an approach to 
make smart cities become a reality.

The authors advocate three different stages in order to deploy smart cities technologies and 
services.

• The Bootstrap Phase: This phase is dedicated to offer services and technologies that are not 
only of great use and really improve urban living, but also offer a return on investments. The 
important objective of this first step is, thus, to set technological basis of the infrastructure 
and guarantee the system long life by generating cash flows for future investments.

Figure	13.	Average	 times	 (dimension:	 [ms])	 related	 to	Graph	Framework	processing	block,	
showing	per-node	time,	varying	data	generation	rate,	for	each	subset	of	nodes	deployed	into	
the	Graph	topology
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• The Growth Phase: In this phase, the finances generated in the previous phase are used 
to ramp up technologies and services which require large investments and not necessarily 
produce financial gains but are only of great use for consumers.

• The Wide Adoption Phase: In this third phase, collected data are made available through 
standardized APIs and offered by all different stakeholders to third party developers in 
order to create new services. At the end of this step, the system becomes self-sustainable 
and might produce a new tertiary sector specifically related to services and applications 
generated using the underlying infrastructure.

With reference to the third phase, (Vilajosana et al., 2013) propose three main different 
business models to handle the delivery of informations to third parties.

• The App Store-Like Model: Developers can build their apps using a set of verified APIs 
after a subscription procedure which might involve some subscription fee. IoT operators 
can hold a small percentage of gains of Apps published in Apple and/or Android market.

• The Google Maps-Like Model: The percentage fee on apps sales price is scaled according 
to the number and granularity of the queries to deployed APIs.

Figure	14.	Average	 times	 (dimension:	 [ms])	 related	 to	Graph	Framework	processing	block,	
showing	per-node	time,	varying	the	subset	of	nodes	deployed	into	the	Graph	topology,	for	each	
evaluated	data	generation	frequency
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• The Open Data Model: This model grants access to APIs in a classical open data vision, 
without charging any fee to developers.

The architecture described in this paper is compatible with the steps described in the work 
of (Vilajosana et al., 2013) and, more specifically, it can adopt the “Google-Maps-like” where 
infrastructure APIs make available different information streams with different complexity layers.

The graph architecture, moreover, gives another opportunity to extend the business model, 
as developers can use available streams to generate a new node of the graph, and publish a new 
stream for the system.

Another aspect, with a relevant impact on the business model, is security. This entails both 
processing module and interaction with external entities. It is possible to adopt different policies 
related to authentication and/or authorization on data sources, e.g., based on well-known and 
standard solutions such as OAuth (Hammer-Lahav, 2010; Hardt, 2012), avoiding data stream 
malicious alterations and following negative consequences, that could affect both processing 
results and platform reliability. At a final stage, security could be applied for consumer accounting 
and authentication, ensuring appropriate platform access only by authenticated/authorized enti-
ties, and providing security transactions, with authorized entities, via secured communications.

Security features, including authorization, authentications and confidentiality, should be 
integrated into the architecture, in order to make the implementation complete and usable. Details 
about integration of security features in the proposed Big Stream platform and its further impact 
on the system performance are not included in this paper. They represent interesting research 
topics for future work.

Practical Use

In the previous sections, we have detailed the implementation of the Graph-based Cloud archi-
tecture for a Big Stream IoT scenario. This section addresses some aspects regarding practical 
use of the proposed architecture, taking into account its deployment on a Cloud platform.

The proposed architecture is mainly intended for developers, interested in building ap-
plications based on data generated by IoT networks, with real-time constraints, low-overhead, 
customizing paths and informations flows, in order to generate new streams, through the addition 
of newly developed and deployed Graph nodes.

Analyzing the Cloud components of the platform, the preferred service model seems to be 
the Software-as-a-Service (SaaS) model, providing useful services for developers.

• Node upload/deletion: to change the Graph Framework topology, loading or removing newly 
custom processing node;

• Stream status: to get the list of all available streams generated by the graph;
• Data source upload/deletion: to load or remove a new external data source before the Ac-

quisition module of the Graph-based system.

It is important to observe that each developer, accessing the architecture, could operate on 
data streams coming from IoT networks (already processed or not) which he/she does not own.

The interactions between IoT developers and the proposed Cloud architecture are similar 
to those provided by Node-RED (IBM Emerging Technology, 2013), a WEB-based applica-
tion, running on Node.js engine, which allows developers to create IoT graphs, wiring together 
hardware devices, APIs, and online services.
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FUTURE RESEARCH DIRECTIONS

The proposed architecture is oriented to large amounts of incoming raw data, providing to interested 
consumers an enhanced version of them: this could be useful in scenarios in which consumers 
are final entities, interested only in retrieving aggregated data. The proposed architecture could 
also be seen as a first-step processing platform, in which final data could represent an incom-
ing set for other processing entities. This flow could be applied to many scientific fields: for 
example, since the proposed architecture is not a simulation or emulation platforms, could serve 
as data provider for instances of those processors types. In medical environments, the proposed 
platform could be seen as a platform trying to work on an enhanced dataset, looking for some 
diagnosis. Other possible applications fields, are related to mobility and vehicular simulation 
and emulation, where simulations platforms (e.g., ns-2, ns-3) could apply their functionalities 
over enhanced datasets, being able to work properly, looking for a good performance, in terms 
of processing time and result reliability.

As stated before, security is a central aspect to be taken into account, in order to enhance 
the architecture reliability and the processing control. To provide guarantees at input stages, an 
optimal solution could be represented by the introduction of an authorization module, which 
tokenizes incoming data adopting an asymmetric security paradigm, to sure that raw data provid-
ers are authorized to provide information.

Looking for a reliable behavior at the output stage, a good solution could be reached by 
introducing an Accounting/Authentication/Authorization (AAA) module, which manages and 
controls the acceptance of consumers, providing some cryptographic functionalities, to check 
security-level of each entity.

CONCLUSION

In this paper, the authors presented a novel Cloud Graph-based architecture for efficient manage-
ment of Big Stream Real-time applications in IoT scenarios. After describing the main require-
ments, in terms of reduced latency between the data creation instant and the instant at which 
processed data can be delivered to a consumer, the new Big Stream paradigm has been introduced 
highlighting its differences with respect to the Big Data paradigm. The main components of the 
designed listener-based architecture are the following: the Acquisition Module, the Normaliza-
tion Module, the Graph Framework, and the Application Register. The implementation of the 
overall system and its evaluation on a real-world Smart Parking dataset has been presented. The 
listener-oriented approach generates several benefits, such as:

• Decreased Latency: The push-based approach guarantees that no delays due to polling and 
batch processing are introduced;

• Fine-Grained Self-Configuration: Listeners can dynamically “plug” to streams interest data;
• Optimal Resource Allocation: Processing units that have no listeners can be switched off, 

while those with many listeners can be replicated, thus leading to cost-effectiveness from 
the Cloud service perspective.
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KEY TERMS AND DEFINITIONS

Big Data: Paradigms and technologies to handle massive volume of structured and unstructured 
data which is so large that it’s impossible to process using traditional database and software 
techniques.

Big Stream: Paradigms and technologies to handle with real-time and low-latency require-
ments, the massive volume of data generated with very high frequency by a huge number 
of different data sources.

Exchange: In a generic network or graph topology is a component that receives messages from 
producers and dispatches them to one or more output queue depending on specific routing 
rules.

Graph: A mathematical model to represent a set of entities connected to each other. The com-
plete topology of a graph is identified by a list of vertices (or nodes) and a list of edges (or 
links) between two vertices.

Internet of Things: The interconnection of billions of heterogeneous devices called “Smart Ob-
jects” through the Internet infrastructure. Smart Objects are typically constrained devices like 
sensors or actuator and are deployed to collect data and to build useful services to consumers.

Listener: In an event driven system, a process or a component which is able to listen for and to 
handle it a particular event.

Real-Time System: System required to guarantee responses with hard and strict time constraints.
Smart Object: A device with communication capabilities deployed in IoT systems. Generally 

has constrained capabilities and is equipped with sensor or actuator to collect data or act 
in the environment.
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