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In this paper, we consider the problem of locating a target node
(TN) moving along a corridor in a large industrial environment by
means of ultrawide band signaling from fixed anchor nodes (ANs)
uniformly positioned at the same height on both sides of the corridor.
For a representative geometry of a large indoor (industrial)
scenario, we formulate an analytical approach to the optimized
placement (in terms of internode distance) of ANs using the criterion
of minimizing the average mean square error (MSE) in the
time-difference-of-arrival-based estimated positions of the TN.
Under the assumption of a fixed variance of the range estimation
error, we derive a simple closed-form expression for the optimal
inter-AN distance in terms of the corridor width and the height of
the ANs. The effectiveness of the analytical approach is confirmed by
simulations. We also show that the proposed approach allows the
MSE in the TN position estimates to reach the Cramer Rao lower
bound.
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I. INTRODUCTION

In recent years, the problem of locating a source in an
indoor environment has been widely studied, since it has
various applications in many areas, including military
security, home surveillance, and medical supervision [1].
In this paper, we focus on the problem of locating and
tracking vehicles and/or people in industrial environments.
Wireless sensor networks (WSNs) are a promising
technology to address this problem because they combine
low power and low rate communications with positioning
capabilities [2]. In this context, ultrawide band (UWB)
signaling holds the promise of good accuracy in ranging
because of its high time resolution [3]. Moreover, owing to
an inherent robustness against interference and fading and
to a significant obstacles penetration capacity, UWB
signaling is an attractive option for source location in
short-range communication scenarios [4, 5].

Several positioning techniques can be used to locate a
target node (TN) through wireless communications. They
are usually based on a two-step approach in which certain
parameters (such as signal strength, angle of arrival, or
time of flight) are first extracted from the signals traveling
between the TN and given anchor nodes (ANs) and, then,
used to estimate the position of the TN. The use of a time
domain-positioning algorithm takes advantage of a feature
of UWB signals (namely, their large bandwidth). As a
matter of fact, it is known that, when using a time
domain-based approach, the accuracy of the position
estimate can be improved by increasing the effective
bandwidth of the signal [3]. Time domain-based
positioning techniques rely on measurements of the time
of flight of signals transmitted between pairs of nodes. If
all the nodes have a common clock, then each node can
determine the time-of-arrival (TOA) of an incoming signal
time-stamped by the sender. If the TN is not synchronized
with the ANs but there is synchronization among the ANs,
then the time-difference-of-arrival (TDOA) technique can
be employed. This technique is based on the estimation of
the difference between the arrival times of UWB signals
traveling between the TN and the reference ANs [1]. In
this paper, in order to avoid the synchronization
requirement between the TN and ANs, the TDOA
approach is used.

Given the range-difference measurements, various
methods have been proposed in the literature to compute a
location estimate. Iterative methods—such as Taylor series
expansion [6], Gauss-Newton, steepest descent, or
Levenberg-Marquardt algorithm [7]—require an accurate
initial position estimate (which is often not available) and
are computationally expensive. Therefore, closed-form
solutions (based, for instance, on the least squares
principle) have been proposed [8], including the spherical
intersection and interpolation methods [9] and the
approximate maximum likelihood and two-stage
maximum likelihood (TSML) methods [10, 11].

In this paper, we formulate an analytical approach to
optimizing the placement of ANs that minimizes the
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estimation error of the TN position for large indoor
scenarios. This approach can be applied to, for example,
indoor localization of automated guided vehicles (AGVs)
in industrial environments. The problem of optimal sensor
placement for effective distributed processing has been
studied in the literature in various contexts [12, 13]. In
[14], the plane intersection (PI) method [15] for
localization of the TN has been used to optimize ANs
placement in a two-dimensional scenario, i.e., when the
TN and the ANs are located on the same plane. Here, we
generalize this approach to a three-dimensional scenario
where the TN moves on the floor along a corridor and the
ANs are positioned uniformly on both sides of the corridor
at the same height (e.g., at the top of shelves). Using four
ANs, it is possible to estimate the TN position by
intersecting the major axes of two three-dimensional
conics associated with two three-AN subsets. A
mathematical framework for optimized placement of ANs
is described. Assuming the variance of the range
estimation error is constant (the validity of this assumption
is discussed in Appendix A), a simple closed-form
expression for the optimal inter-AN distance, as a function
of the corridor width and the height of the ANs, is derived.
Simulation results (with no approximation involved)
confirm the effectiveness of the proposed analytical
approach to optimized AN placement. Finally, it is shown
that the proposed approach (to optimized AN placement)
allows the mean square error (MSE) of the TN position
estimates to reach the Cramer-Rao lower bound (CRLB).

This paper is organized as follows. In Section II, we
describe a general mathematical framework for conic
position estimation of a TN using four ANs. In Section III,
we apply the framework of Section II to the special case of
dynamic position estimation of a TN moving along a
straight line in the middle of a corridor, with the ANs
positioned uniformly at the same height on both sides of
the corridor. A simple closed-form expression for the
optimal inter-AN distance is derived. In Section IV, the
effectiveness of the proposed analytic approach to
optimized AN placement is evaluated by simulations for
both linear and nonlinear paths. In Section V, our results
and those obtained when using the TSML algorithm [10]
are compared, showing that either approach to optimized
placement of ANs allows the MSE of the TN position
estimates to reach the CRLB. Finally, Section VI
concludes the paper.

II. CONIC LOCALIZATION USING FOUR ANS:
GENERAL FRAMEWORK

In the remainder of this paper, it is assumed that the
TN moves on the floor (e.g., of a warehouse). Without loss
of generality, let this plane be given by

P0 � {(x, y, z) ∈ R
3 : z = 0}. (1)

According to [15], the minimum number of ANs
needed by the PI method to estimate the TN position is
five. However, in the considered scenario, one of the

coordinates of the TN is known (z = 0) so this number
reduces to four. Suppose that the position estimate of the
TN is obtained by using the four closest ANs that are in
line-of-sight (LOS) with the TN. The ANs’ coordinates
are denoted as follows:

s1 = [x1, y1, z1]T s2 = [x2, y2, z2]T

s3 = [x3, y3, z3]T s4 = [x4, y4, z4]T .

In this section, the ANs are supposed to be freely
positioned in the space, while in Section III, a particular
case (all ANs positioned at the same height) will be
considered.

As soon as the TN receives signals from the four ANs,
it can localize itself (by either processing the received
signals on board or by sending the data to a server
that estimates its position). Let u = [x, y, 0]T and
û = [x̂, ŷ, 0]T be the true and estimated coordinates of the
TN, respectively. The true range (denoted as ri) and the
estimated range (denoted as r̂i) of the TN from the ith AN
(i ∈ {1, 2, 3, 4}) can be written respectively as:

ri = ||u − si || r̂i = ||û − si ||.
According to [16], the TOA measurements can be
described by an additive noise model, so that the estimated
range r̂i can be expressed as

r̂i = ri + νi (2)

where ν i is the range error. In [17], it is shown that, with
UWB signaling, the range error can be written as
follows:

νi = εi + β

where εi ∼ N (0, σ 2
i ); εi is independent of εj for j �= i; and

β is the synchronization bias (the same for all the ANs).1

One can thus write

ε ∼ N
(

0, diag
(
σ 2

1 , σ 2
2 , σ 2

3 , σ 2
4

))
(3)

where ε � [ε1, ε2, ε3, ε4]T . Denote the estimated and the
true range-differences between the first and jth AN,
respectively, as:

�̂1j � r̂j − r̂1 �1j � rj − r1 j ∈ {2, 3, 4}. (4)

All other possible range-differences can then be expressed
in terms of {�̂1j } and {�1j}. Inserting (2) into the
definitions (4) leads to

�̂1j = �1j + ε1j j ∈ {2, 3, 4} (5)

where ε1j � εj − ε1 is the error in the estimated
range-difference between the first and jth AN. From (3), it

1 A similar model, but for a different expression of the range error vi,
could be derived for other type of wireless communications, such as
WiFi.
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follows that

E
[
ε1j

] = E
[
εj

]− E
[
ε1
] = 0 j = 2, 3, 4

E
[
ε1j ε1k

] = E
[
εj εk

]+ E
[
ε2

1

] = σ 2
j δjk + σ 2

1

j, k = 2, 3, 4

where δjk is the Kronecker symbol and E is the
expectation operator. By defining

ε1 � [ε12, ε13, ε14]T (6)

it can be concluded that ε1 ∼ N (0, Q), where

Q =

⎛
⎜⎜⎝

σ 2
1 + σ 2

2 σ 2
1 σ 2

1

σ 2
1 σ 2

1 + σ 2
3 σ 2

1

σ 2
1 σ 2

1 σ 2
1 + σ 2

4

⎞
⎟⎟⎠ . (7)

With the PI method [15], the position estimate is
obtained by intersecting planes, with equations depending
on the reference ANs. More precisely, two triples of ANs
yield two planes, the intersection of which is a line where
the TN has to lie. Once the equation of this line is known,
it is sufficient to intersect it with the plane P0 in order to
obtain the estimated position of the TN. Considering, for
instance, the two triples of ANs given by {s1, s2, s3} and
{s1, s2, s4}, the two planes are given by [15]:

P (12j ) =
{

(x, y, z) ∈ R
3 :
(
x21�̂1j − xj1�̂12

)
x

+ (y21�̂1j − yj1�̂12
)
y + (z21�̂1j − zj1�̂12

)
z

= −1

2
�̂12�̂1j

(
�̂1j − �̂12

)+ 1

2

(
a2

1 − a2
2

)
�̂1j

−1

2

(
a2

1 − a2
j

)
�̂12

}
j ∈ {3, 4}

where xj1 � x1 − xj , yj1 � y1 − yj , zj1 � z1 − zj , and
a2

j � x2
j + y2

j + z2
j , with j ∈ {1, 2, 3, 4}.

Since it is assumed that the TN moves on the plane P0

defined in (1), it can thus be concluded that the vector

û[1,2] � [x̂, ŷ]T

of the estimated x and y coordinates of the TN has to
satisfy the following system of equations:

Â û[1,2] = b̂ (8)

where

Â =
(

x21�̂13 − x31�̂12 y21�̂13 − y31�̂12

x21�̂14 − x41�̂12 y21�̂14 − y41�̂12

)
(9)

and

b̂ = 1

2

(
�̂12�̂13

(
�̂12 − �̂13

)+ (a2
1 − a2

2

)
�̂13 − (a2

1 − a2
3

)
�̂12

�̂12�̂14
(
�̂12 − �̂14

)+ (a2
1 − a2

2

)
�̂14 − (a2

1 − a2
4

)
�̂12

)
. (10)

Similarly, the actual coordinates u[1,2] = [x, y]T of the TN
on P0 would satisfy the following system of equations:

Au[1,2] = b (11)

where A and b are obtained from Â and b̂ by substituting

the estimated range-differences
{
�̂1j

}
with the true ones{

�1j

}
.

From (5), one can write

Â = A + E b̂ = b + eb (12)

where

E �
(

x21ε13 − x31ε12 y21ε13 − y31ε12

x21ε14 − x41ε12 y21ε14 − y41ε12

)
(13)

and, for i ∈ {1, 2},[
eb

]
i
� 1

2
ε1i+2

[
�2

12 − 2�12�1i+2 + a2
1 − a2

2

]
−1

2
ε12
[
�2

1i+2 − 2�12�1i+2 + a2
1 − a2

i+2

]
+1

2
ε12ε1i+2

[
2�12 − 2�1i+2

]+ ε2
12�1i+2

+ε2
1i+2�12 + ε12ε1i+2(ε12 − ε1i+2) (14)

Assuming that the components of vector ε1 defined in (6)
are small (which is realistic with UWB signaling), a good
approximation of eb can be obtained by omitting nonlinear
perturbations in (14), namely nonlinear products of
elements of ε1. As will be shown in Section IV, this
assumption results in a localization performance
degradation. Therefore, it can be stated that

b̂ � b + εb (15)

where the ith component of εb is

[
εb

]
i
= 1

2

(
ε1i+2

[
�2

12 − 2�12�1i+2 + a2
1 − a2

2

]+
−ε12

[
�2

1i+2 − 2�12�1i+2 + a2
1 − a2

i+2

])
. (16)

Define

ψ � b̂ − Â u[1,2] = Â e (17)

where e � û[1,2] − u[1,2] is the difference between the true
position of the TN on P0 and its estimated position, i.e., e
is the position estimation error. Using (12) and (15), (17)
can be written as

ψ � b + εb −
(
A + E

)
u[1,2] = εb − E u[1,2] (18)

where the last equality follows from (11). Substituting
(13) and (16) into (18), the ith component of the vector ψ
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can be approximated as follows:

ψi � 1

2

[
ε1i+2

(
�2

12 − 2�12�1i+2
)

× ε12
(
�2

1i+2 − 2�12�1i+2
) ]

+ 1

2
ε1i+2

(
a2

1 − a2
2 − 2x21x − 2y21y

)
− 1

2
ε12
(
a2

1 − a2
i+2 − 2xi+21x − 2yi+21y

)
= 1

2

[
ε1i+2

(
�2

12 − 2�12�1i+2
)

− ε12
(
�2

1i+2 − 2�12�1i+2
)]

+ 1

2
ε1i+2

(
r2

1 − r2
2

)
− 1

2
ε12

(
r2

1 − r2
i+2

)
i = 1, 2.

Substituting (4) into the previous equation and after some
manipulation, one obtains the following approximate
expressions for the elements of vector ψ :

ψ1 � ε13 r3 (r1 − r2) − ε12 r2 (r1 − r3)

ψ2 � ε14 r4 (r1 − r2) − ε12 r2 (r1 − r4).

Using (4) and (6), the above equations can be written as
ψ � Rε1, where

R �
(

r2�13 −r3�12 0

r2�14 0 −r4�12

)
. (19)

Since E[ε1] = 0, it follows that E[ψ] = 0 and the
covariance matrix of ψ is

	 � E

[
ψ ψT

]
� R E

[
ε1ε

T
1

]
RT = R QRT

where Q is defined in (7).

From (17), assuming that det Â �= 0, the error e can
thus be written as

ε = Â
−1

ψ �
(
A + E

)−1
R ε1.

Neglecting, once again, nonlinear perturbations, the error
e can be approximated as follows:

e � A−1R ε1. (20)

Therefore, by defining

B � A−1 T � B R (21)

one can finally conclude that e ∼ N
(

0, C
)

, where

C = cov(e) � E

[
T ε1 εT

1 T T
]

= T QT T . (22)

The trace of C is the MSE of the position estimation and
can be expressed, as a function of T and Q, as follows:

T r(C)�σ 2
1 T r

(
T I

3
T T
)
+T r

(
T diag

([
σ 2

2 , σ 2
3 , σ 2

4

])
T T
)

(23)
where I

3
is a 3 × 3 matrix with all elements equal to 1.

Simple matrix calculation leads to the following

Fig. 1. Corridor in general industrial scenario where TN, represented
by black parallelepiped, moves—solid (black) lines on floor represent

projections of walls on P0, thus indicating width of corridor. Four
nearest ANs (denoted as AN1, AN2, AN3, AN4) and their distances

{ri}4
i=1 (dash-dotted blue lines) from TN are indicated.

approximation:

T r
(
C
)

�σ 2
1

[(
T11 + T12 + T13

)2+(T21 + T22 + T23
)2]

+ σ 2
2

(
T 2

11 + T 2
21

)
+ σ 2

3

(
T 2

12 + T 2
22

)
+ σ 2

4

(
T 2

13 + T 2
23

)
. (24)

In Section III, T r
(
C
)

will be explicitly calculated under

certain assumptions, and optimized placement of ANs will
be performed by the minimization of a proper function of

T r
(
C
)

III. AN APPLICATION: DYNAMIC POSITION
ESTIMATION WITH TN MOVING ALONG A
STRAIGHT LINE AND ANs UNIFORMLY
POSITIONED AT THE SAME HEIGHT

Suppose that the TN moves along a straight line2 in the
middle of a corridor of width ω, as shown in Fig. 1 so that
its position at time t can be expressed as

u(t) =
[
x(t),

ω

2
, 0
]T

.

We assume that the ANs are alternately positioned on the
two sides of the corridor and that they are regularly
spaced—this is realistic from an installation perspective
for large indoor (e.g., industrial) scenarios. In particular,
as shown in Fig. 1, we denote as 2δ the distance between
two consecutive ANs on the same side of the corridor
along the x–axis (so that δ is the difference in x–coordinate
between two consecutive ANs on opposite sides of the
corridor). Finally, we also assume that all the ANs are
placed at the same height ζ ≥ 0, i.e., on the same plane
(such as the ceiling of the warehouse) parallel to P0 (on
which the TN moves), given by

2 In Section IV, it will be shown that the proposed optimized placement
strategy provides accurate/satisfactory position estimates even if the TN
follows a linear path not in the middle of the corridor/a nonlinear path.
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Pζ � {(x, y, z) ∈ R
3 : z = ζ }.3 The above assumptions,

which may appear very stringent, are realistic in several
industrial scenarios, where shelving units identify straight
corridors, along which TNs (e.g., AGVs) move.

As the TN moves along its trajectory, the TN
dynamically selects the four closest ANs in LOS to
estimate its position, and thus, the framework outlined in
Section II can be applied. But for an initial transitory
(when 0 ≤ x(t) ≤ δ) and for the end of the corridor, the
considered AN configuration along the corridor is
periodic. We remark that the estimation strategy does not
change at the beginning and at the end of the corridor, as
the four nearest ANs are used. The only difference
consists in a different configuration on the ANs with
respect to the TN. Therefore, without loss of generality we
restrict our attention to the interval δ ≤ x(t) ≤ 2δ, for
which the coordinates of the four nearest ANs are given by

s1 = [0, 0, ζ ]T s2 = [δ, ω, ζ ]T

s3 = [2δ, 0, ζ ]T s4 = [3δ, ω, ζ ]T .

If ζ = 0, then all the ANs are located on the same plane
where the TN lies, and this scenario reduces to the one
considered in [14].

Given the width ω of the corridor and the height ζ of

the ANs, our goal is first to compute T r
(
C
)

and then to

find the distance δ∗ that minimizes a proper function of it.
In order to determine an expression for C, explicit
expressions of the distances between the TN and the ANs
are needed.

Denoting the position of the TN at a given instant as
[x̄, ω/2, 0]T , where δ ≤ x̄ ≤ 2δ, one can write:

r2
1 = x̄2 +

(ω

2

)2
+ ζ 2

r2
2 = (δ − x̄)2 +

(ω

2

)2
+ ζ 2

r2
3 = (2δ − x̄)2 +

(ω

2

)2
+ ζ 2

r2
4 = (3δ − x̄)2 +

(ω

2

)2
+ ζ 2.

(25)

Define4

η2 � 4

[(ω

2

)2
+ ζ 2

]
. (26)

Substituting (26) into (25) gives:

r1 = η

2

√
1+
(

2x̄

η

)2

r2 = η

2

√
1+
(

2(δ − x̄)

η

)2

r3 = η

2

√
1+
(

2(2δ − x̄)

η

)2

r4 = η

2

√
1+
(

2(3δ − x̄)

η

)2

.

(27)

3 It can be shown that, without knowing that the TN moves on a specific
plane, the assumption of all ANs located on the same plane would not
lead to a unique solution for the TN location problem.
4 Note that η in (26) reduces to the width of the corridor if ζ = 0.

If η > 4δ, then (since δ ≤ x̄ ≤ 2δ) the second-order Taylor
series expansion

√
1 + χ2 = 1 + χ2/2 + o

(
χ4
)

can be applied to (27), which gives

r1 � η

2
+ x̄2

η
r2 � η

2
+ (δ − x̄)2

η

r3 � η

2
+ (2δ − x̄)2

η
r4 � η

2
+ (3δ − x̄)2

η
.

(28)

Note that the approximate expressions (28) are more
accurate for larger η (i.e., larger ω and/or ζ ) which
corresponds to large indoor scenarios, one of our basic
assumptions. According to (26), the condition η > 4δ can
be written as

δ <
1

2

√
(ω/2)2 + ζ 2. (29)

Therefore, the upper bound for δ increases as the width ω

of the corridor and/or the height ζ of the ANs increase.
Substituting (28) into (4) gives:5

�12 � δ(δ − 2x̄)

η
�13 � 4δ(δ − x̄)

η
�14 � δ(9δ − 6x̄)

η
(30)

Using (30) and (9), the following approximate expression
of A can be derived:

A �

⎛
⎜⎜⎜⎝

−2
δ3

η
−4

δ(δ − x̄)ω

η

−6
δ3

η
−4

δ(2δ − x̄)ω

η

⎞
⎟⎟⎟⎠ (31)

so that

det A � −8ω
δ4

η2
(δ − 2x̄).

Since δ ≤ x̄ ≤ 2δ, it can be concluded that det A > 0 and,
therefore, the matrix B (21) and the error e (20) are well
defined.

Before calculating the covariance matrix C of e, an
explicit expression of T (and, therefore, of B and R) is
needed. From (31), it follows that

B � 1

δ − 2x̄

⎛
⎜⎝

η

2δ3
(2δ − x̄) − η

2δ3
(δ − x̄)

− 3η

4δω

η

4δω

⎞
⎟⎠ . (32)

5 The quantities in (30) are equal to the ones found in [14], where η is the
width of the corridor (because ζ = 0 in [14]).
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From (19), using (28) and (30), the entries of R can be
approximated as:

R11 � 4δ(δ − x̄)

[
1

2
+ (δ − x̄)2

η2

]

R12 � −δ(δ − 2x̄)

[
1

2
+ (2δ − x̄)2

η2

]

R21 � 3δ(3δ − 2x̄)

[
1

2
+ (δ − x̄)2

η2

]

R23 � −δ(δ − 2x̄)

[
1

2
+ (3δ − x̄)2

η2

]
.

(33)

The entries of matrix T defined in (21) can finally be
calculated:

T11 = B11R11 + B12R21 � − η

2δ2
(δ − x̄)

[
1

2
+ (δ − x̄)2

η2

]

T12 = B11R12 � − η

2δ2
(2δ − x̄)

[
1

2
+ (2δ − x̄)2

η2

]

T13 = B12R23 � η

2δ2
(δ − x̄)

[
1

2
+ (3δ − x̄)2

η2

]

T21 = B21R11 + B22R21 � − 3η

4ω

[
1

2
+ (δ − x̄)2

η2

]

T22 = B21R12 � 3η

4ω

[
1

2
+ (2δ − x̄)2

η2

]
(34)

T23 = B22R23 � − η

4ω

[
1

2
+ (3δ − x̄)2

η2

]
.

Using the above results, it is now possible to calculate

T r
(
C
)

.

In [17], it is shown that σ i (i ∈ {1, 2, 3, 4}) can be
approximately modeled as a linear function of the distance
between the ith AN and the TN:6

σi � 0.01 · ri + 0.08 [m]. (35)

Since we consider the four ANs nearest to the TN (so that
all {ri}4

i=1 are similar), it is expected that the standard
deviations {σi}4

i=1 of the range estimation errors associated
with the four closest ANs are similar. In Appendix A, it is
shown that the standard deviations {σi}4

i=1 can be
approximated as constant (for x̄ ∈ [δ, 2δ]) and equal to
each other. In particular, we denote the common value of
the standard deviations as σ . In the remainder of this
section, we show that the optimal inter-AN distance does
not depend on σ . Under the assumption that σi � σ for 1

6 The numerical values in (35) were derived in [17] using Channel Model
3 described in [18] and the energy detection receiver presented in [19],
which is composed of a band-pass filter followed by a square-law device
and an integrator, in which the integration interval is set equal to Ts =
1 s. We assume that the same energy detector receiver is used here.

≤ i ≤ 4, (7) reduces to

Q � σ 2

⎛
⎝2 1 1

1 2 1
1 1 2

⎞
⎠ .

Also, (24) becomes

T r
(
C
)

� σ 2
[(

T11 + T12 + T13
)2 + (T21 + T22 + T23

)2
+T 2

11 + T 2
12 + T 2

13 + T 2
21 + T 2

22 + T 2
23

]
. (36)

In Appendix B, it is shown that the trace of the covariance
matrix C can be written as

T r
(
C
)

� σ 2

4ω2η2δ4

6∑
i=0

Cix̄
i (37)

where the coefficients {Ci}6
i=0 depend on the position x̄ of

the TN, η (and, therefore, on the width ω of the corridor
and on the height ζ of the ANs), and δ. Explicit
expressions of the coefficients {Ci}6

i=0 are also given in
Appendix B.

Because of the geometry of the considered scenario,

T r
(
C
)

is a periodic function of x̄. Therefore, in order to

compute its average value, it is sufficient to evaluate it

over a period: δ ≤ x̄ ≤ 2δ. The average value of T r
(
C
)

over x̄ is given by:

μ(δ) � 1

δ

∫ 2δ

δ

T r
(
C
)

dx̄. (38)

In order to optimize the placement of ANs, our strategy
consists in finding the inter-AN distance δ that minimizes
the average MSE μ(δ) of the TN position estimates.

Inserting (37) into (38) and using the explicit
expressions of the coefficients in (37) (given in Appendix
B), the following expression for μ(δ) can be obtained:

μ(δ) � σ 2

4ω2η2

[
4δ4 +

(
76

35
ω2 + 8

3
η2

)
δ2 + 22

15
η2ω2

+ 5

4
η4 + 1

3
η4ω2δ−2

]
.

In order to minimize μ(δ), we set its derivative to zero.
Observing that

dμ

dδ
� σ 2

ω2η2

(
4δ3 +

(
38

35
ω2 + 4

3
η2

)
δ − 1

6
η4ω2δ−3

)
(39)

if we multiply both sides of the equation by δ3/(4η6) and
define

β � δ2/η2 (40)

it can be concluded that

dμ

dδ
= 0 ⇔̃ g(β) � β3 +

(
19

70
l2 + 1

3

)
β2 − 1

24
l2 = 0

(41)
where λ = ω/η and the approximate ∼ sign on top of the
equivalence is due to the fact that the expression on the

992 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 51, NO. 2 APRIL 2015



right-hand side of (39) is approximate. It will be shown
that all the approximations do not significantly degrade
the accuracy of the estimate of the optimal value for
δ. The cubic equation on the right hand side of
(41) can be solved analytically. More precisely,
defining b � 19l2/70 + 1/3, d � −l2/24, and
� � d2/4 + b3d/27, one explicit root of (41) is

β1 = 3

√
− b3

27
− d

2
+

√
� + 3

√
− b3

27
− d

2
−

√
� − b

3
.

(42)
If � > 0, then β1 is the only real solution of (41) and,
therefore, the correct solution is β∗ = β1. If � ≤ 0, then
all the solutions of (41) are real. In this case, one can
calculate the remaining two solutions β2 and β3 of (41) as
the solutions of the quadratic equation obtained by
dividing g(β) by β − β1, and then select β∗ from {β1, β2,
β3}. Note that, by definition (40), β∗ has to be positive,
and, for the considered problem, only one of the solutions
{βi}3

i=1 is positive. The reason for the latter is that the
derivative of g(β) is β(3β + 2b) which (since b > 0) is
always positive for β > 0 and since g(0) = d < 0, so g(β)
= 0 has only one positive solution. Therefore, we can
conclude that β∗ = max{β1, β2, β3}.

Finally, from (40) the optimal value for δ (denoted as
δ∗) is given by

δ∗ =
√

β∗η =
√

β∗(ω2 + 4ζ 2). (43)

As observed in [14], if ζ = 0, i.e., the ANs are located on
the same plane where the TN moves, the optimal value δ∗

is approximately half of the width of the corridor
(δ∗ � w/2).

IV. SIMULATION-BASED VALIDATION

The closed-form expression for δ∗ (43) is now
validated by simulations. The localization performance is
evaluated in terms of root mean square error (RMSE),
which is defined as follows:

RMSE �
√

E[(x̂ − x)2] + E[(ŷ − y)2].

Besides considering the scenario presented in Section III
(where the TN moves along a straight line in the middle of
a corridor of width ω), we will also consider other paths,
namely, linear paths not in the middle of the corridor
(identified by a parameter c described later) and a
nonlinear path. More precisely, if the AGV moves along a
straight line parallel to the walls of the corridor, its
position at time t can be expressed as [x(t), c ω, 0]T, where
c ∈ (0,1). The case in which the linear path is exactly in
the middle of the corridor corresponds to c = 0.5. It will
be shown by simulations that the optimized AN placement
for c = 0.5 is also “effective” for other values of c.

Simulation results are obtained by means of a Matlab
simulator, based on the one described in [17], in which the
standard IEEE 802.15.4a is implemented, using Channel
Model 3 described in [18] and the energy detection
receiver proposed in [19]. We remark that the simulator

TABLE I
Optimal Values of δ Predicted by (43) as the Height ζ of the ANs Varies
Between 0 and 10 m and the Width ω of the Corridor Varies Between 2

and 5 m

δ∗ (m)

ω = 2 m ω = 3 m ω = 4 m ω = 5 m

ζ = 0 m 0.95 1.42 1.89 2.37
ζ = 1 m 1.19 1.61 2.04 2.49
ζ = 2 m 1.60 2.00 2.40 2.80
ζ = 3 m 1.96 2.39 2.80 3.19
ζ = 4 m 2.27 2.76 3.19 3.60
ζ = 5 m 2.56 3.10 3.56 3.99
ζ = 6 m 2.81 3.41 3.91 4.36
ζ = 7 m 3.05 3.70 4.24 4.72
ζ = 8 m 3.27 3.97 4.54 5.05
ζ = 9 m 3.48 4.22 4.83 5.38
ζ = 10 m 3.67 4.46 5.11 5.68

Fig. 2. Optimal inter-AN distance δ∗ as function of ζ : values obtained
using closed-form expression (43) (solid lines) are compared with values
obtained numerically without any approximation (dotted lines). Various

values of ω are considered.

does not make any simplifying assumption (like those
needed in the formulation of the analytical framework).

Table I shows the optimal values, predicted by (43), of
the inter-AN distance, as the width ω of the corridor varies
between 2 m and 5 m and the height ζ of the ANs varies
between 0 m and 10 m. Observe that the optimal values δ∗

do not satisfy the condition (29) behind the approximate
expressions (28) for all cases. More precisely, the
condition (29) is fulfilled only for small values of ω and
large values of ζ . This is consistent with the assumption of
large industrial scenarios, where ANs may be attached to
the ceiling (which is usually high) and the width of the
corridors between shelves is usually kept as small as
possible, in order to increase the space dedicated to goods
storage.

We remark that, without the Taylor series
approximation (28), the values of δ∗ could have been
evaluated numerically. In Fig. 2, we compare the optimal
values δ∗ predicted by (43), as a function of ζ , with the
values obtained numerically without any
approximation—in the latter case, no closed-form
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Fig. 3. Considered paths of TN on xy-plane.

expression can be found. Various values of ω are
considered. It can be observed that, whenever the Taylor
approximation holds (i.e., large ζ and/or small ω), the
values of δ∗ predicted by (43) are very accurate. The
largest difference between the closed-form solution and
the numerical solution is approximately 0.4 m and
corresponds to the case where ω = 5 m and ζ = 0 m,
which is not a typical industrial scenario. In the remainder
of this section, the value δ∗ refers to that obtained
using (43).

We now investigate the applicability of the optimal
inter-AN distance δ∗ predicted by (43) (derived under the
assumption that the TN moves along a straight line in the
middle of the corridor) to different paths. We consider a
scenario where a TN moves in a 50 m-long corridor with
width ω = 3 m. The RMSE in the TN position estimates at
each TN position is obtained by averaging the results over
100 realizations. In Fig. 3, four different paths are shown.
More precisely, the solid line corresponds to the case
where c = 0.5 (the AGV moves along the middle line of
the corridor); the dash-dotted line corresponds to the case
where c = 0.7 (the AGV moves along a straight line 0.6 m
away from the middle line); the dashed line corresponds to
the case where c = 0.9 (the AGV moves along a straight
line 1.2 m away from the middle line, i.e., 0.3 m from a
wall). Finally, the dotted line corresponds to a
representative case in which the AGV moves along a
curvilinear path.

In Fig. 4, the RMSE in the TN position estimates is
shown, as a function of the travelled distance, as the TN
moves along each of the four paths for two different values
of the height ζ of the ANs: (a.) 5 m and (b.) 8 m. From
Table I, the optimal value δ∗ is 3.10 m for case (a.) and
3.97 m for case (b.). It can be observed that the use of the
optimal value δ∗ is “effective” for all three linear paths7:
the RMSE curves for the three cases are very close to each
other. In the case of the nonlinear path, the RMSE curve

7 We remark that, though δ∗ is optimal for c = 0.5, it may not be optimal
for other values of c.

Fig. 4. For each of four paths shown in Fig. 3, RMSE in TN position
estimates is shown as function of traveled distance, when: (a.) ζ = 5 m

and (b.) ζ = 8 m. In all cases, ω = 3 m and δ = δ∗.

Fig. 5. RMSE in TN position estimates when AGV moves along
straight line in middle of corridor (c = 0.5) when ω = 3 m: (a.) ζ = 5 m

and (b.) ζ = 8 m. In both cases, various values of δ (namely, δ∗, δ∗/3,
3δ∗) are considered.

obtained with δ∗ is similar to those of the linear paths for ζ

= 8 m (case b.), while it is higher for ζ = 5 m (case a.).
It is now of interest to investigate the effect of a

nonoptimal AN placement, i.e., when the actual inter-AN
distance δ is not δ∗, on the localization performance. In
Fig. 5, we investigate the effect when δ �= δ∗ assuming that
the AGV moves along a straight line in the middle of the
corridor (c = 0.5) for (a.) ζ = 5 m and (b.) ζ = 8 m. In
both cases, the considered values of δ are δ∗, δ∗/3, and
3δ∗. From Fig. 5, it can be observed that, as expected, the
lowest RMSE curve is obtained when the optimal value δ∗

is used. Also, a smaller value of δ leads to significant
peaks in the RMSE curve. On the other hand, increasing
the value of δ beyond δ∗ has a less significant impact on
the RMSE curve.
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TABLE II
Optimal Values of δ Numerically Evaluated when Using the TSML

Method as the Height ζ of the ANs Varies Between 0 and 10 m and the
Width ω of the Corridor Varies Between 2 and 5 m

δ∗ (m)

ω = 2 m ω = 3 m ω = 4 m ω = 5 m

ζ = 0 m 1.22 1.82 2.43 3.04
ζ = 1 m 1.41 1.98 2.55 3.14
ζ = 2 m 1.74 2.28 2.83 3.39
ζ = 3 m 2.04 2.61 3.15 3.70
ζ = 4 m 2.31 2.91 3.47 4.02
ζ = 5 m 2.55 3.20 3.78 4.34
ζ = 6 m 2.78 3.46 4.07 4.65
ζ = 7 m 2.99 3.71 4.35 4.95
ζ = 8 m 3.18 3.94 4.61 5.23
ζ = 9 m 3.37 4.17 4.87 5.51
ζ = 10 m 3.54 4.38 5.10 5.77

V. COMPARISON BETWEEN THE PI METHOD AND
THE TSML METHOD

In this section, we compare the values of δ∗ predicted
by (43) with the values numerically obtained when using
the TSML method [10]. This comparison is meaningful
because the TSML method can attain, as shown in [10],
the CRLB, but it does not lead to a closed-form expression
for δ∗. We also remark that the TSML method involves the
solution of a 3 × 3 system of equations for each position
estimate, while the PI method involves the solution of a 2
× 2 system of equations and is, therefore, more
computationally efficient.

Table II shows the optimal values of δ numerically
obtained with the TSML method. As in Table I, the width
ω of the corridor varies between 2 m and 5 m and the
height ζ of the ANs varies between 0 m and 10 m. By
comparing the results in Table I with those in Table II, it
can be observed that the optimal values for δ are very
similar for the two cases (especially for high values of ζ

and small values of ω, which correspond to the most
practical configurations, as stated in Section IV). Also, the
values obtained with the TSML method are very similar to
those of the PI method without any approximation, shown
in Fig. 2.

In Fig. 6, the MSE is shown as a function of the
travelled distance, for both PI and TSML methods, when
the TN moves along a corridor with width ω = 3 m. More
precisely, Fig. 6 (a.) corresponds to the case in which the
TN moves along the middle line of the corridor (c = 0.5),
while Fig. 6 (b.) corresponds to the case where the TN
moves along a straight line near a wall (c = 0.9). In both
cases, the height of the ANs ζ = 5 m and the inter-AN
distance δ = δ∗. It can be observed that the PI method and
the TSML method result in the same localization
accuracy. In Fig. 6, the CRLB on the MSE when δ = δ∗ is
also shown. According to [10], the CRLB on the
MSE can be expressed as the trace of the matrix

G � c2
(
�T Q−1�

)−1
, where c is the speed of sound

Fig. 6. MSE in TN position estimates for PI method (solid line) and
TSML method (dashed line) when TN moves along corridor with ω =

3 m and ζ = 5 m, δ = δ∗, and (a.) c = 0.5 and (b.) c = 0.9. Also, CRLB
when δ = δ∗ is plotted.

Fig. 7. Average MSE with PI method (solid line) and average CRLB
(dashed line), as function of δ, when TN moves along straight line: (a.) in
middle of corridor (c = 0.5) and (b.) near wall (c = 0.9). In both cases,

ω = 3 m and ζ = 5 m.

propagation in air, Q is defined in (7), and � is the

following 3 × 2 matrix:

� �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1 − x

r1
− x2 − x

r2

y1 − y

r1
− y2 − y

r2

x1 − x

r1
− x3 − x

r3

y1 − y

r1
− y3 − y

r3

x1 − x

r1
− x4 − x

r4

y1 − y

r1
− y4 − y

r4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

From Fig. 6, the PI method performs closely to the
TSML method and its MSE approaches CRLB (but for
border effects). It is of interest to investigate the effect
when δ �= δ∗. In Fig. 7, the average MSE is shown as a
function of δ when the TN moves along a straight line (a.)
in the middle of the corridor (c = 0.5) and (b.) near a wall
(c = 0.9). In both cases, the width of the corridor ω = 3 m
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and the height of the ANs ζ = 5 m. As expected, the
lowest average MSE is reached when δ = δ∗, the optimal
value of δ predicted by (43). For comparison purposes, in
Fig. 7 the average CRLB (over the entire path) is also
shown as a function of δ. Even though the lowest value of
the average CRLB is obtained when δ = δ∗, it can be
observed that the average CRLB has a “milder”
dependence on δ.

VI. CONCLUSION

In this work, we have proposed an analytical approach
to optimized ANs placement for efficient TDOA
UWB-based localization of a TN moving along a corridor
in large indoor scenarios. We have imposed the realistic
design constraints that the ANs are equally spaced and
placed at the same height (e.g., on the ceiling). Assuming
that the TN moves along a straight line in the middle of
the corridor, we have derived a closed-form expression for
the optimal distance between consecutive ANs that
minimizes the average MSE of the TN position estimates.
The validity of the closed-form expression has been
confirmed by simulations, which also show that the
proposed placement strategy is also “effective” even when
the TN follows other paths different from the linear one in
the middle of the corridor. Moreover, we have shown that
our approach allows the position estimate accuracy to
reach the CRLB.

APPENDIX A

For x̄ ∈ [δ, 2δ], it can be easily shown from (28) that

ri ∈ [rmin
1 , rmax

1 ] �
[

η

2
+ δ2

η
,
η

2
+ 4δ2

η

]
i ∈ {1, 4}

ri ∈ [rmin
2 , rmax

2 ] �
[

η

2
,
η

2
+ δ2

η

]
i ∈ {2, 3}. (44)

We now want to show that (1) {σi}4
i=1 are

approximately independent of x̄ as the TN moves in the
interval of interest and (2) σi � σj , for i,j ∈ {1, . . ., 4} and
i �= j. This will justify the assumption that {σi}4

i=1 are
considered approximately equal to a fixed value σ .

Let us consider σ1(x̄) (the same result holds due to
geometric symmetry for σ4(x̄)), and observe that since
σ1(x̄) ∈ [σ min

1 , σ max
1 ]∀x̄ ∈ [δ, 2δ], the following inequality

holds:

|σ1(x̄) − σ̄1| ≤ 1

2
(σ max

1 − σ min
1 ), (45)

where σ̄1 � (σ max
1 + σ min

1 )/2. Dividing (45) by σ̄1, one
obtains

|σ1(x̄) − σ̄1|
σ̄1

≤ 1

2

σ max
1 − σ min

1

σ̄1
∀x̄ ∈ [δ, 2δ] (46)

where the ratio on the left-hand side of (46) represents the
relative deviation of σ1(x̄) (∀x̄ ∈ [δ, 2δ]) from its average

value σ̄1. Observing from (35) and (28) that

σ max
1 = 0.01

(
η

2
+ 4δ2

η

)
+ 0.08

σ min
1 = 0.01

(
η

2
+ δ2

η

)
+ 0.08

(47)

it follows that

σ max
1 − σ min

1

σ̄1
=

6 δ2

η(
η + 5 δ2

η
+ 16

) = 6
η2

δ2

[
1 + 16

η

]
+ 5

.

(48)
For all the scenarios considered in the paper, it can be
shown that the values of η and δ∗ satisfy

η2

δ2

[
1 + 16

η

]
≥ 18. (49)

Substituting (48) into (46) and using (49), the following
upper bound for the relative deviation of σ1(x̄) from σ̄1 is
obtained:

|σ1(x̄) − σ̄1|
σ̄1

≤ 1

2
· 6

23
= 12.5% ∀x̄ ∈ [δ, 2δ]. (50)

Hence, σ1(x̄) can be considered as approximately constant
as the TN moves, i.e., σ1(x̄) � σ̄1. Since r4 assumes the
same range of values as r1, it can be concluded that
σ4(x̄) � σ̄1∀x̄ ∈ [δ, 2δ].

Let us now consider σ2(x̄) (a similar result holds for
σ3(x̄)). Similar to (46), the relative deviation of σ2(x̄) from
its average value σ̄2 is bounded above as follows:

|σ2(x̄) − σ̄2|
σ̄2

≤ 1

2

σ max
2 − σ min

2

σ̄2
∀x̄ ∈ [δ, 2δ] (51)

where σ̄2 � (σ max
2 + σ min

2 )/2. Observing from (35) and
(28) that

σ max
2 = 0.01

(
η

2
+ δ2

η

)
+ 0.08

σ min
2 = 0.01

η

2
+ 0.08

(52)

it follows that

σ max
2 − σ min

2

σ̄2
=

2 δ2

η(
η + δ2

η
+ 16

) = 2
η2

δ2

[
1 + 16

η

]
+ 1

.

(53)
Substituting (53) into (51) and using (49) one obtains:

|σ2 − σ̄2|
σ̄2

≤ 1

2
· 2

19
= 5%. (54)

It can thus be concluded that σ2(x̄) is approximately
constant as the TN moves in the interval of interest, i.e.,
σ2(x̄) � σ̄2∀x̄ ∈ [δ, 2δ]. Since r3 assumes the same
range of values as r2, it can also be concluded that
σ3(x̄) � σ̄2∀x̄ ∈ [δ, 2δ].

We now show that the two values σ̄1 and σ̄2 are very
close to each other. Using (47) and (52):

σ̄1

σ̄2
= (σ max

1 + σ min
1 )/2

(σ max
2 + σ min

2 )/2
(55)
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=
0.01

(
η + 5 δ2

η

)
+ 0.16

0.01
(
η + δ2

η

)
+ 0.16

(56)

= 1 +
4 δ2

η(
η + δ2

η

)
+ 16

. (57)

For all the scenarios considered in the paper, it can be
shown that the values of η and δ∗ satisfy

0 ≤
4 δ2

η(
η + δ2

η

)
+ 16

≤ 0.2.

Using this result in (55) gives

1 ≤ σ̄1

σ̄2
≤ 1.2 (58)

i.e.,
σ̄1 � σ̄2.

Combining the above results, one can assume that
σi � σ, ∀i ∈ {1, . . . , 4}, where

σ = σ̄1 + σ̄2

2
= 0.01

(
η

2
+ 3δ2

2η

)
+ 0.08.

APPENDIX B

The trace of the error covariance matrix defined in (22)
is given by (24). From (34), one finds that

T11 + T12 + T13 = B11 (R11 + R12) + B12 (R21 + R23)

T21 + T22 + T23 = B21 (R11 + R12) + B22 (R21 + R23) .

Substituting (32) and (33) into the above equations
gives

T11 + T12 + T13 � − (2δ − x̄)η

2δ2

[
1

2
+ x̄2

η2

]

T21 + T22 + T23 � − η

4ω

[
1

2
+ x̄2

η2

]
.

From the above equations and (34), one obtains:

(T11 + T12 + T13)2 + T 2
11 + T 2

12 + T 2
13

�
⎧⎨
⎩(δ − x̄)2

⎛
⎝[1

2
+ (δ − x̄)2

η2

]2

+
[

1

2
+ (3δ − x̄)2

η2

]2
⎞
⎠

+ (2δ − x̄)2

⎛
⎝[1

2
+ x̄2

η2

]2

+
[

1

2
+ (2δ − x̄)2

η2

]2
⎞
⎠
⎫⎬
⎭

(T21 + T22 + T23)2 + T 2
21 + T 2

22 + T 2
23

� η2

16ω2

⎧⎨
⎩
[

1

2
+ x̄2

η2

]2

+ 9

[
1

2
+ (δ − x̄)2

η2

]2

+ 9

[
1

2
+ (2δ − x̄)2

η2

]2

+
[

1

2
+ (3δ − x̄)2

η2

]2
⎫⎬
⎭ . (59)

Finally substituting (59) into (36) and after some
manipulation gives (37), where (37), where

C0 = 5

2
δ2η4ω2 + 26δ4η2ω2 + 146δ6ω2

+ 5

4
δ4η4 + 27

2
δ6η2 + 117

2
δ8

C1 = −
(

468δ5ω2 + 60δ3η2ω2 + 3δη4ω2

+ 15δ5η2 + 108δ7
)

C2 = η4ω2 + 56δ2η2ω2 + 606δ4ω2 + 5δ4η2 + 81δ6

C3 = −
(

24δη2ω2 + 408δ3ω2 + 30δ5
)

C4 =5δ4 + 158δ2ω2 + 4η2ω2, C5 =−36δω2, C6 =4ω2.
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