COMUNICAZIONI ELETTRICHE

Diploma Universitario in Ingegneria Informatica

ESERCIZIO 1: Si vuole progettare un sistema di comunicazione analogico che permetta la trasmissione di tre segnali $x_1(t), x_2(t)$ e $x_3(t)$, rispettivamente di bande $W_1=2$ KHz, $W_2=3$ KHz e $W_3=4$ KHz, su un canale affetto da rumore additivo Gaussiano bianco utilizzando un sistema a divisione di frequenza. A tal fine si consideri lo schema a blocchi di figura 1, in cui il modulatore FM presenta deviazione di frequenza $f_{\Delta}=10^4$ Hz, il modulatore PM una deviazione di fase $\phi_{\Delta}=10^{-2}$ rad e dove il modulatore AM opera una modulazione LSSB.

- 1. Disegnare gli schemi a blocchi dei tre modulatori, supponendo noti i valori delle frequenze portanti f_1 , f_2 ed f_3 (con $f_1 > f_2 > f_3$), illustrando il funzionamento dei singoli blocchi e scrivendo le espressioni analitiche dei segnali modulati.
- 2. Determinare lo spettro qualitativo del segnale complessivo, evidenziando le bande dei segnali modulati.
- 3. Dimensionare il valore delle portanti f_1 , f_2 ed f_3 in maniera da minimizzare l'occupazione spettrale.

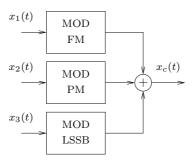


Figure 1: Schema a blocchi del sistema di trasmissione.

ESERCIZIO 2: In un sistema di trasmissione PAM in banda base, i simboli a_i emessi dalla sorgente di informazione sono equiprobabili, indipendenti ed appartengono all'alfabeto binario $\{1, -1\}$. L'impulso di trasmissione p(t) ha spettro a radice di coseno rialzato con roll-off $\alpha = 0.2$. Il rumore gaussiano bianco introdotto dal canale ha densità spettrale di potenza $N_0/2$ con $N_0 = 1/8$ V^2/Hz .

1. Ipotizzando il canale di trasmissione ideale, determinare la struttura del ricevitore ottimo e calcolare la probabilità d'errore sul simbolo.

QUESITO 1: Determinare la densità spettrale di potenza di un segnale PAM con simboli equiprobabili ed indipendenti, estratti dall'alfabeto $\{\pm A\}$ ed impulso formante

$$p(t) = \begin{cases} 1 & \text{per } |t| < \frac{T}{2} \\ 0 & \text{altrim.} \end{cases}$$

con $T = 10^{-6}$ s.

QUESITO 2: Disegnare le forme d'onda della parte in fase ed in quadratura di un segnale modulato 4-QAM, con impulso formante NRZ e simboli trasmessi $\{+1, \jmath, -\jmath, -1\}$.