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Abstract—In this paper, we investigate the relation between
the quadrature amplitude modulation (QAM) input informati on
rates (IRs) of multi-carrier (MC) and single carrier (SC) systems
transmitted over inter-symbol interference (ISI) channels with
additive white Gaussian noise (AWGN). In particular, considering
uniform power spectrum transmission, we conjecture that, for
a given channel impulse response, the IR corresponding to
an SC input distribution is higher than that corresponding to
an MC input distribution. We give an intuitive justification of
our conjecture and confirm it, by means of numerical results,
considering two sets of randomly generated channels.

I. I NTRODUCTION

Multi-carrier (MC) modulation for dispersive additive white
Gaussian noise (AWGN) channels is known to achieve the
channel capacity by means of water-filling power allocation
and Gaussian input distribution [1]. Water-filling, nevertheless,
needs channel knowledge at the transmitter, which has to
be obtained through a feedback channel. In the absence of
channel knowledge, a reasonable choice is to transmit a
uniform power spectrum in the allocated system bandwidth.
This situation may arise, for example, in the case of broadcast
channels, or whenever power spectrum shaping techniques
entail a prohibitive computational complexity.

The choice of the modulation technique (either single-
carrier, SC, or MC), the particular constellation, as well as
the possible spectral shaping technique, have an impact on
the distribution at the input of the channel, and this affects, in
return, the information rate (IR) of the system. In [2]–[5],a
numerical method for computing upper and lower bounds and
asymptotically accurate estimates of the IR for inter-symbol
interference (ISI) channels with arbitrary Markov chain inputs
is given. This method allows unprecedented accuracy in the
computation of the IR of finite memory channels. In [6],
[7], the authors propose upper and lower bounds for the IR
of SC systems where independent and identically distributed
(i.i.d.) symbols, chosen from an arbitrary constellation,are
transmitted over ISI channels.

In this paper, we conjecture the existence of a novel lower
bound for the IR of SC systems with uniform input power
spectrum transmission over an ISI channel. In particular, we
focus on quadrature amplitude modulation (QAM). We show,
by means of numerical results, that, for fixed channel signal-to-
noise ratio (SNR) and transmitted power with uniform spectral
distribution, the IR of an SC scheme is higher than that of
an MC scheme using the same QAM modulation on every

subcarrier. This conclusion is not verified if water-fillingand
bit-loading techniques are considered in MC schemes.

The paper outline is as follows. In Section II, we describe
the considered system model. In Section III, after briefly
surveying previously derived results, we conjecture the novel
inequality relating the IRs of SC and MC schemes. In Sec-
tion IV, we present numerical results supporting our con-
jectured bound. In Section V, the performance improvement
of MC schemes, obtained with water-filling power spectrum
allocation and bit-loading, is investigated. In Section VI, some
concluding remarks are drawn.

II. PRELIMINARY CONSIDERATIONS ANDSYSTEM MODEL

In this paper, we consider two systems classes transmitting
i.i.d. QAM symbols over an ISI channel as shown in Fig. 1.
Fig. 1 (a) refers to a SC system, where{hk} denotes the
impulse response of the channel. The input symbols{xk}
are drawn i.i.d. from a QAM constellation,{wk} is an i.i.d.
sequence of zero-mean Gaussian samples, i.e., the noise sam-
ples and{yk} is the channel output. Fig. 1 (b) refers to a MC
system, the only difference with respect to the SC system being
the presence of an inverse discrete Fourier transform (IDFT)
block performing an (ideally infinite)1 orthogonal frequency
division multiplexing (OFDM) modulation. The output of the
MC system is the sequence of samples{zk}.

In the case of a SC system, the output sample at epochk
can be expressed as follows:

yk =

L
∑

l=0

hlxk−l + wk (1)

whereL+1 is the number of consecutive nonzero samples in
the channel impulse response. The channel output at epochk
in the case of a MC system can be written as

zk =

L
∑

l=0

hlx̃k−l + wk (2)

wherex̃k denotes the sample output by the MC modulator at
epochk. In this paper, we focus on ideal MC modulation, i.e.,
each subchannel can be considered as an AWGN channel with
an attenuation which depends on the subchannel index. This

1We assume that in each subcarrier the channel can be considered flat. This
condition is satisfied in the limit for an infinite number of zero-bandwidth
subcarriers.
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Fig. 1. Considered communication system models: (a) SC and (b) MC.

can be obtained using, for example, OFDM systems with a
suitably large number of carriers.

The IR of a channel is given by the following expression [1],
[6]:

I(X ;Y) = lim
n→∞

1

n
I(y(n); x(n)) = h(Y) − h(Y|X ) (3)

wherex
(n) = (x0, . . . , xn−1), y

(n) = (y0, . . . , yn−1), h(Y)
denotes the (differential) entropy rate of the channel output
processY = {yk}, and h(Y|X ) denotes the (differential)
entropy rate of the channel output given the channel input.
In particular,h(Y|X ) is equal to the differential entropy of
the noise processW , namely,h(W) = log 2πeσ2, whereσ2

denotes the per-dimension variance of the noise sample. The
IR in (3), in the case of SC modulation, may be evaluated using
Monte Carlo simulation techniques [2]–[5], since its analytical
evaluation is, in general, a formidable task. We will refer to
the IR of an SC scheme using the notationISC.

In the case of a MC channel, (3) simplifies to the following
integral expression, which assumes the use of an infinite
number of carriers:

IMC =
1

2π

∫ 2π

0

IQAM[γ(ω)] dω (4)

where IQAM(·) is the IR, as a function of the SNR, of a
memoryless AWGN channel with the considered QAM input
constellation andγ(ω) is the SNR at the receiver as a function
of the frequency and is given by

γ(ω) =
Es

N0
|H(ω)|2 (5)

where Es is the average transmitted symbol energy,N0 =
E{|wk|2} is the monolateral noise power spectrum andH(·)
denotes the channel frequency response. In the following the
system SNR will be defined as the ratioEs/N0.2

2We remark that the same SNR definition was used in [8], although it
was erroneously stated that SNR was the ratio between the averagereceived
sample energy andN0. The two definitions, i.e., referring to average received
and transmitted sample enery, are equivalent in the case of normalized channel
impulse response energy and uniform transmitted power spectrum.

Provided that each subchannel exhibits an almost flat fre-
quency response, the IR of a MC channel can be approximately
computed considering a finite number of channels as follows:

IMC ≃ 1

N

N−1
∑

i=0

IQAM[γ(2πi/N)] . (6)

III. A C ONJECTUREDLOWER BOUND FOR THEIR OF SC
CHANNELS

The IR of a SC scheme, given by expression (3), has been
thoroughly investigated in several works. In [7], the authors
give a survey of existing lower and upper bounds and propose
new lower bounds forISC. In particular, both upper and lower
bounds forISC in scenarios with ISI channels are given in
terms of the IR of memoryless AWGN channels with the same
input distribution:

ISC ≤ I(xk; ξxk + wk) (7)

ISC ≥ I(xk; ρxk + wk) (8)

where

ξ , max
0≤λ≤π

|H(λ)|

for the upper bound and

ρ , exp
1

2π

∫ π

0

ln |H(λ)|2 dλ

for the lower bound.3 It can be easily shown that MC and SC
schemes yield the same IR in the case of memoryless AWGN
channel [8]. As a consequence, the IRsI(xk; ξxk + wk) and
I(xk; ρxk + wk) in (7) and (8), respectively, can also be
interpreted as the IRs of two memoryless AWGN channels
with MC input. Another bound provided in [7] is the so-called
minimum mean square error (MMSE) lower bound, which
states that

ISC ≤ I(x + ν; x)

whereν is a properly defined non-Gaussian noise term. In [7],
a conjectured bound is also provided on the basis of the MMSE
lower bound:

ISC ≤ I(x + ν̂; x)

where ν̂ is a Gaussian random variable withVar{ν̂} =
Var{ν}.

Our goal is to derive a novel lower bound forISC. In
particular, we want to relateISC with the IR of a channel
with the same i.i.d. input process transmitted by means of a
MC modulation scheme. In other words, we want to relate
ISC andIMC.

Let us consider the received signal in the frequency domain.
Assuming DFT-based demodulation with DFT block length
equal toN ,4 the signal at the output of the demodulator, in

3Note that both bounds refer to an ISI channel with real taps.
4We remark that DFT isolates perfectly separated channels inthe frequency

domain only asymptotically, i.e., for a number of subcarriers that tends to
infinity.
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Fig. 2. ISC andIMC, as functions of the SNR, considering an ISI channel
with impulse response(1, 2, 1)/

p

(6). The channel frequency response,
which presents a spectral zero at frequencyπ, is also shown inside the figure.

the case of SC modulation is given by

ỹk =
1

N

N
∑

i=0

yie
−j2πki/N

=
1

N

N
∑

i=0

L
∑

l=0

hlxi−le
−j2πki/N +

1

N

N
∑

i=0

wie
−j2πki/N

=
1

N

N
∑

i=0

L
∑

l=0

hlxi−le
−j2πki/N + w̃k (9)

where{hk} is the channel impulse response andw̃k has the
same distribution ofwk. If the channel impulse response length
L+1 is much smaller thanN , by periodicizing both{hk} and
{xk} with periodN , it is possible to accurately approximate
(9) with the following:

ỹk =
1

N
Hk

N
∑

i=0

xie
−j2πki/N + w̃k (10)

whereHk denotes thek-th element of the length-N DFT of the
channel impulse response. This approximation impacts onlyon
the samples at the border of the block, which should depend
also on adjacent blocks [6]. We remark that, since a DFT is
an invertible operation, the IRI(Y;X ) is equal toI(Ỹ ;X ).
Therefore, in the following we will use (10) to draw come
considerations on the IR of the SC scheme. In the case of MC
modulation, the demodulator output becomes

z̃k =
1

N

N
∑

i=0

zie
−j2πki/N

= Hkxk + w̃k . (11)

The frequency domain representations (10) and (11) suggest
the presence of a bottleneck for the IR of MC schemes. In
fact, whereas each received SC sampleỹk depends on all
transmitted symbols{x0, . . . , xN−1}, the received MC sample
z̃k depends only on the transmitted symbolxk. Therefore,
in the MC case the maximum contribution of a subcarrier
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Fig. 3. ISC andIMC, as functions of the SNR, considering a channel with
impulse response(2, 1)/

p

(5). The channel frequency response is also shown
inside the figure.

to the total IR is limited by the logarithm of the constella-
tion cardinality, regardless of the particular attenuation (or
amplification) of the subchannel. This is not the case for
SC systems, since each sampleỹk in (10) depends on every
symbol in the sequence and may contribute to the overall IR
up to the total number of transmitted bits. In this sense, an SC
scheme transmits the entire message through every subchannel
and the receiver may exploit this “frequency diversity” by
performing optimum decision based on all subchannel outputs.
In particular, subchannels with high SNR do not undergo the
limitations due to the constellation cardinality sufferedby the
subchannels in MC schemes. We can then state our conjectured
bound as follows:

ISC ≥ IMC (12)

whereISC andIMC have the expressions given by (3) and (4),
respectively. Note that expression (4) holds for a QAM input
distribution. However, our conjecture is that (12) holds for any
input constellation.

IV. N UMERICAL EVIDENCE OF THE CONJECTURED

BOUND

In order to get insights into the relation between the
IRs of MC and SC schemes, we preliminarily evaluateISC

and IMC considering ISI channels with impulse responses
(1, 2, 1)/

√

(6) and (2, 1)/
√

(5). The corresponding results
are shown in Fig. 2 and 3, respectively. The frequency re-
sponses of the channels are also shown in the same figures.
The (1, 2, 1)/

√

(6) channel has a spectral zero at angular
frequency equal toπ, whereas the(2, 1)/

√

(5) channel has
a frequency response strictly larger than zero. Clearly, inboth
scenarios the SC curve is higher than the MC curve.

The impact of the presence of a spectral zero onIMC is
further investigated in Fig. 4, whereIMC is evaluated for
ISI channels with impulse responses(1, 1)/

√
2, (1, 2, 1)/

√
6,

(1, 3, 3, 1)/
√

20 and (1, 4, 6, 4, 1)/
√

70 associated with a 1st,
2nd, 3rd, and 4th order spectral zero at angular frequency equal
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Fig. 4. IMC, as a function of the SNR, considering several ISI channels
with a (multiple) spectral zero at angular frequency equal to π.

to π, respectively. In particular,IMC approaches its maximum
value with the following approximate law:

IMC(SNR) ≃ Imax

(

1 − αnSNR−
β

n

)

(13)

wheren is the order of the spectral zero,αn is a parameter
which depends onn, β is a constant, andImax is the logarithm
of the cardinality of the considered constellation. As one can
see from Fig. 4, the approximate expression (13) is very tight
at large SNR values.

In order to verify our conjecture (12), we randomly generate
40 real ISI channels and 40 complex ISI channels, all with
length-3 impulse responses. The channel taps are i.i.d. zero
mean and unit variance Gaussian samples, either real or
complex. Each channel impulse response is normalized to
unit energy, in order to allow a fair comparison between
different channels. In all cases, 16-QAM is the modulation
format of choice. In the MC case,IMC is computed by
numerical integration of (4)—we point out, however, that the
approximate computation based on (6), consideringN = 64
or N = 1024 subchannels, entails a negligible difference. In
the SC case,ISC is computed using the algorithm in [5], and
transmitting106 QAM symbols. The considered SNR range
is between -12 dB and 30 dB. In Fig. 5,ISC is shown as a
function of IMC, for various real channels and SNR values.
The(ISC, IMC) point corresponding to a specific channel-SNR
pair is represented by a single cross in the plot. For comparison
purposes, the curveISC = IMC is also shown. Clearly, the
results show that, in the considered scenarios,ISC ≥ IMC. In
particular, the difference seems larger in the medium-highIR
region, i.e., just before the saturation at the value4 = log2 16.
The validity of the conjectured bound (12) is confirmed, in the
presence of complex ISI channels, by the results in Fig. 6.

In Fig. 7, the differenceISC − IMC is shown, for each
real ISI channel, as a function of the SNR. As expected,
the difference is always non-negative. Furthermore, thereis
a common behavior followed by every channel, summarized
in the following remarks.

• At low SNR, the difference between the IRs of SC and
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Fig. 6. ISC, as a function ofIMC, for 40 randomly generatedcomplex
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MC schemes is negligible. This is due to the fact that
in the low power regime every symmetric input provides
the same performance.

• In the medium SNR region, where the transition from low
spectral efficiency to almost maximum spectral efficiency
is observed, the difference betweenISC andIMC becomes
largest. This is the region where the difference between
SC and MC input distribution has its maximum impact.
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• In the high SNR region, since the IRs of both SC and MC
schemes saturate at the logarithm of the cardinality of
the used constellations, the difference becomes minimal.
However, depending on the channel, this saturation may
occur at very high SNR values. In particular the chan-
nels characterized by deep notches or highly attenuated
frequency ranges exhibit a slow convergence to the max-
imum IR value, in agreement with the observation, made
at the beginning of this section, regarding the presence
of spectral zeros.

In Fig. 8, the differenceISC − IMC is shown, for each
complex channel, as a function of the SNR. The results
confirm those obtained for the real channels. In particular,
for complex channels the difference between the IRs of SC
and MC schemes is smaller compared to the case with real
channels. This is due to the fact that, with the considered
channel tap statistics, real channels may present, with higher
probability with respect to complex ones, deep spectral atten-
uations or quasi-zeros. In general, channels characterized by
strongly attenuated spectral regions exhibit a larger difference
betweenISC andIMC.
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V. POWER SPECTRUM ALLOCATION AND BIT-LOADING

In order to reduce the difference between the IRs of MC and
SC schemes, two strategies can be followed. The first strategy
consists in increasing the cardinality of the constellation. This
allows to effectively exploit all the information that the high
SNR MC subchannels may convey. In practice, if none of the
MC subchannels is characterized by an SNR sufficiently high
to saturate its memoryless IR curve, the difference between
the IRs of SC and MC schemes is minimal, as can be seen in
the low SNR region. In particular, numerical analysis shows
that, increasing the cardinality of the constellation, fora given
SNR, closes the gap betweenIMC andISC.

A second strategy consists of applying a water-filling tech-
nique to obtain an optimal transmit spectral shaping [1]. Usu-
ally water-filling is applied together with a suitable algorithm
for per-channel constellation cardinality allocation, also known
as bit loading. Typically, bit-loading algorithms allocate in
each channel the highest possible number of bits that guar-
antees a given operational bit error rate (BER). In order to
make a fair comparison between uniform input power SC and
MC schemes with water-filling, however, we use a bit-loading
algorithm (first introduced in [8]) which optimally allocates a
given fixed number of bits to be transmitted by maximizing
the overall system IR.5 This allows to fix the signal space
cardinality, thus limiting the system spectral efficiency.In
Fig. 9, ISC is shown as a function of theIMC−WF of the MC
scheme with water-filling and the above mentioned bit-loading
algorithm, considering the above described 40 channels with
3 complex valued taps impulse response. The number of
subcarriers is 64 and the average number of bits per subcarrier
is 4. For comparison purposes, the lineISC = IMC−WF is also

5For simplicity, increments of 1 bit per dimension are considered, by
restricting to square QAM constellations.
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shown. The algorithm using bit-loading and water-filling has
slightly better IR performance than the uniform-input power
spectrum SC scheme. However, the performance increase is
smaller than the average performance increase of SC schemes,
with respect to MC schemes, shown in Fig. 5. In practice, SC
schemes seem to achieve a close-to-optimum performance.

VI. CONCLUSIONS

In this paper, we have conjectured a lower bound on IR for
SC schemes transmitting an i.i.d. input through an ISI AWGN
channel. In particular, the bound states that SC schemes have
larger IR than the corresponding MC schemes, with the same
input constellation and uniform input power spectrum. An
intuitive justification of the bound, on the basis of an implicit
diversity effect used by SC schemes, has been given. The
conjectured bound has been numerically investigated using80
randomly generated ISI channels with Gaussian taps. Our con-
jecture suggests that the SC modulation should be preferredto
MC modulation whenever a feedback channel is not available,
the channel is dispersive and may exhibit spectral nulls (or
quasi-nulls), and the channel impulse response enables feasible
SC receivers. In the presence of a proper bit-loading, however,
MC schemes completely recover the IR loss with respect to
SC schemes. Alternatively, a MC scheme with uniform input
power can be used if large coding rates are not of interest.
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