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Motivation
Why a course on Per-Survivor Processing (PSP)?

PSP is useful to communication system designers thanks to its broad
applicability in coping with hostile transmission environments, such as
those of many current applications

PSP is technically elegant and intellectually appealing. As many interesting
ideas, it is general, intuitive and conceptually straightforward. It is a
nice example of a recent research result which may be worth describing in a
structured advanced University course in the area of digital transmission
theory and techniques

PSP is intriguing from the scientific and historical viewpoints. Like many
other ideas, PSP has been reinvented independently by many researchers
over the last decades, with different contexts and formulations each time. Its
conceptual roots can be found in earlier general theoretical results, but
this fact was fully understood only after its invention
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Foreword

Unfortunately, this course might be unclear (and likely will !)

Please, feel free to ask questions. Doing so you will help:∗

; Yourself understanding what is going on

↪→ Your colleagues understanding questions they had not even thought of

� The instructor realizing what is unclear and should be better explained

You will also:

 Avoid falling behind (if you do in the first lectures, you will hardly
recover)

# Contribute to make the lectures more stimulating and pleasant

∗Arrows by LATEX and AMSLATEX
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Outline

1. Review of detection techniques

2. Detection under parametric uncertainty

3. Per-Survivor Processing (PSP): concept and historical review

4. Classical applications of PSP

4.1 Complexity reduction

4.2 Linear predictive detection for fading channels

4.3 Adaptive detection

5. Advanced applications of PSP

Prerequisite: A course in Digital Transmission Theory

3



Riccardo Raheli — Introduction to Per-Survivor Processing — c© 2004 by CNIT, Italy

1. Review of detection techniques

Outline

1. Review of detection techniques

2. Detection under parametric uncertainty

3. Per-Survivor Processing (PSP): concept and historical review

4. Classical applications of PSP

4.1 Complexity reduction

4.2 Linear predictive detection for fading channels

4.3 Adaptive detection

5. Advanced applications of PSP

4



Riccardo Raheli — Introduction to Per-Survivor Processing — c© 2004 by CNIT, Italy

General model of transmission systems
... how about storage systems?

coding

channel

parameter

estimation

coded modulation

channelmodulation demod decoding

demodulation and decoding

outin

Focus on: demodulation and decoding
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Principal channel models

Additive White Gaussian Noise (AWGN) channel

Static dispersive channel

Flat fading channel

Dispersive fading channel

Phase uncertain channel

Like-signal (or cochannel) interference channel

Nonlinear channel

Transition noise channel

Combinations
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AWGN channel

� ��� �

� � � � � � � �

r(t) = s(t) + w(t)

w(t): circular complex AWGN
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Static dispersive channel

� ��� �

� � � � � ��� �

� ��� �

r(t) = s(t) ? c(t) + w(t)

c(t): channel impulse response
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Flat fading channel

� ��� �

� � � �� � � �

� ��� �
r(t) = s(t)f (t) + w(t)

f (t): circular complex Gaussian random process
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Dispersive fading channel

∆τ1 ∆τ2

s(t)

f0(t) f1(t) f2(t)

r(t)

w(t)

r(t) =

L∑

l=0

fl(t)s(t − τl) + w(t) τl = τ0 +

l∑

i=1

∆τi

fl(t): independent circular complex Gaussian random processes

The l-th dominant propagation path has delay τl
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Phase-uncertain channel

� ��� �
��� �
	 �� �� � � ��  � ��

� ��� �

� � � �

r(t) = s(t)ej[2πν(t)t+θ(t)] + w(t)

ν(t): frequency shift

θ(t): phase shift

Special cases:

– Phase noncoherent channel (ν(t) = 0, θ(t) = θ)

– Frequency offset (or Doppler shift) channel (ν(t) 6= 0, θ(t) = θ)

– Phase noisy channel (ν(t) = 0, θ(t) is a Wiener random process)
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Principal channel models
Overview

∆τ1 ∆τ2

s(t)

c(t)
s(t) r(t)

w(t)

f0(t) f1(t) f2(t)

r(t)

w(t)r(t)s(t)

w(t)f(t)

w(t)

(a) (b)

(c) (d)

s(t) r(t)

s(t)

ej[2πν(t)t+θ(t)]

(e)

r(t)

w(t)
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Statistical Detection Theory
Optimal detection of M -ary signals

� �� �� � � �� � �� � ��	 � �� 
�

�� ��� � � � � �

m ∈ {mi}M
i=1 s(t) ∈ {si(t)}M

i=1 r(t) m̂ ∈ {mi}M
i=1

Probabilistic modeling ⇒ Optimal decision (detection) strategy

Minimize P (m 6= m̂):

⇒ maximize: P (m = m̂) = E {P [m = m̂|r(t)]}
⇒ maximize: P [m = m̂|r(t)] ∀r(t) (positive)

For m̂ = mi, P [m = m̂|r(t)] = P [m = mi|r(t)] (APP)

⇒ MAP strategy: m̂ = argmax
mi

P [m = mi|r(t)]︸ ︷︷ ︸
P [mi|r(t)]
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Statistical Detection Theory
Computation of the APPs

�� �� � ��

�� 	�
 �

Discretization (finite dimensionality) ⇒ Sufficient statistic

APPs: P (mi|r) =
p(r|mi)P (mi)

p(r)
∼ p(r|mi)P (mi)

∼ : monotonic relationship with respect to the variable of interest

MAP strategy: m̂ = argmax
mi

P (mi|r) = argmax
mi

p(r|mi)P (mi)

Statistical information:

P (mi) : information source

p(r|mi) : overall system (transmitter, channel, discretizer)
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Statistical Detection Theory
Geometric interpretation

D5

D2D3

D1

D4

Decision region:

Di = {r : P (mi|r) = max
mk

P (mk|r)}

Signal detection is a geometric game
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Statistical Detection Theory
Special case: Strategy for the AWGN channel

Discretization: signal space spanned by {si(t)}M
i=1 is relevant:

rk =

∫ T

0
r(t)ϕ∗

k(t)dt with {ϕk(t)}Q
k=1 (basis)

{m = mi} ⇒ r(t) = si(t) + w(t) ⇒ r = si + w

APPs (but for a factor):

p(r|mi)P (mi) =
1

(πσ2)Q
exp

[
− 1

σ2
||r − si||2

]
P (mi)

∼ −||r − si||2 + σ2 ln P (mi)

∼ Re
(
rTs∗i

)
− 1

2
||si||2 +

1

2
σ2 ln P (mi)

= Re

[∫ T

0
r(t)s∗i (t)dt

]
− 1

2

∫ T

0
|si(t)|2dt +

1

2
σ2 ln P (mi)
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Statistical Detection Theory
Special case: Receiver for the AWGN channel

Re(·)

Re(·)

Re(·)

t = T

t = T

t = T

m̂

r(t)

s∗
2
(T − t)

s
∗

1
(T − t)

s∗
M

(T−t)

C1

C2

CM

argmax
mi

...
...

...

...

Ci =
1

2
σ2 ln P (mi) −

1

2

∫ T

0
|si(t)|2dt

{si(t)}M
i=1 and σ2 must be known (unless ML)
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Statistical Detection Theory
Special case: Decision regions for the AWGN channel

s1 s2 s3 s4

d

s5 s6 s7 s8

s9 s10 s11 s12

s13 s14 s15 s16

Decision regions are polytopes

2D example: 16QAM (quadrature amplitude modulation)
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Statistical Detection Theory
Problem 1

Let the observation vector be the concatenation of two subvectors

rT = (rT
1 , rT

2 )

and assume the following condition is satisfied

p(r2|r1,mi) = p(r2|r1) ∀mi

Show that vector r2 is irrelevant, given r1, in the decision problem and
can be discarded (Theorem of irrelevance)

Hint: formulate the MAP detection strategy in terms of the
conditional joint pdf of these vectors and use chain factorization
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Statistical Detection Theory
Problem 2

Consider an M -ary signaling scheme with signal set {si(t)}M
i=1

Assuming signal si(t) is sent, the received signal at the output of an
AWGN phase noncoherent channel is

r(t) = si(t) ejθ + w(t)

where θ is uniformly distributed over 2π

A. Determine a discretization process of the received signal which provides a
sufficient statistic for MAP detection

Hint: Extend the results for the simple AWGN channel

B. Derive the non coherent MAP strategy

C. Give examples of signal sets suitable for non coherent detection
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Review of detection techniques
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Systems with memory
Where does this memory come from?

Any practical system transmits by periodical repetitions of M -ary signaling
acts (log2 M bits/signaling period or bits/channel use)

In memoryless systems different signaling acts do not influence each other

In systems with memory the detection process may benefit from the
observation of the received signal over “present,” “past,” and possibly
“future” signaling periods

Memory arises if (e.g.):

– Channel coding is employed for error control

– The transmission channel is dispersive (Inter-Symbol Interference (ISI))

– The transmission channel includes stochastic parameters, such as a phase
rotation or a complex fading weight

– The channel additive Gaussian noise is colored, i.e., its power spectral
density is not constant
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Systems with memory
General system model

�� � � �� � � � �� � �

�� 	 � �� 


� �� ��

� 
 �� �� � �

��� �� � � � � �� � � �

� � �� 
 	 �� � �

� � �

�� � � �� � �

Information sequence: a = aK−1
0 = (aK−1, . . . , a1, a0)

T

Transmitted signal: s(t, a)

Received signal: r(t) = x(t, a) + n(t)

Notation: x
k2
k1

= (xk2
, . . . , xk1+1, xk1

)T

Detection strategy? (What is a message?)
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Sequence and symbol detection
What is a message?

MAP sequence detection

â = argmax
a

P [a|r(t)] = argmax
a

P (a|r)

MAP symbol detection

âk = argmax
ak

P [ak|r(t)] = argmax
ak

P (ak|r)

r(t) is observed over the entire information bearing interval T0 ⊃ (0,KT )

Performance is similar and tends to be equal for high SNR

Complexity is different: sequence detection is less complex

Symbol APPs are the route to iterative detection

Discretization is the key to the computation of the APPs. One or more
discrete observables per information symbol may be used

24
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Causal systems
The viewpoint of detection

A system is causal if:
p(rk

0 |a) = p(rk
0 |ak

0)

This property involves the cascade of encoder, modulator, channel, and signal
discretizer

It is formulated in terms of statistical dependence of the discrete observable
sequence on the information sequence

Any physical system is causal

25
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MAP sequence detection
Computation of the APPs

Let a = aK−1
0 and r = rK−1

0

For a causal system, the APPs are:

P (a|r) ∼ p(r|a)P (a) =

K−1∏

k=0

p(rk|rk−1
0 , a)P (ak)

=

K−1∏

k=0

p(rk|rk−1
0 , ak

0)P (ak) (causality)

∼
K−1∑

k=0

[
ln p(rk|rk−1

0 , ak
0) + ln P (ak)

]

︸ ︷︷ ︸
branch metrics

The sequence metric can be recursively computed in terms of branch
metrics

Implementation requires a tree search (sequence ↔ path)
26



Riccardo Raheli — Introduction to Per-Survivor Processing — c© 2004 by CNIT, Italy

Path-search algorithms
On a tree diagram

time →

An example of binary tree:

Branch metric:

ln p(rk|r
k−1

0 , ak, a
k−1

0 ) + ln P (ak)

ak = −1

ak = +1

Branch metrics depend on the entire previous path history:

⇒ unlimited memory (complexity is exponential with K)

Tree reduced-search (approximate) algorithms:

– M-algorithm, T-algorithm (breadth-first)

– Fano-algorithm (single-stack algorithm) (depth-first)

– Jelinek-algorithm (stack algorithm) (metric-first)

27
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Finite-memory causal systems
The viewpoint of detection

A system is causal and finite memory if:

p(rk|rk−1
0 , ak

0) = p(rk|rk−1
0 , ak

k−C, µk−C)

C is a suitable integer (finite memory parameter)

µk−C is a suitable state, at epoch k − C, of the encoder/modulator

In the computation of the APPs (or metrics), the system can be modeled as a
Finite State Machine (FSM)

Minimal folding condition: the tree folds into a trellis diagram

Path search can be implemented efficiently
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Causality and finite memory
A pictorial view

rk−3rk−4rk−5 rk−2 rk−1 rk+1rk rk+2

ak−3ak−4ak−5 ak−2 ak−1 ak+1ak ak+2 . . .

. . .

. . .

. . .

Not allowed because of finite memory

Not allowed because of causality

C = 3

p(rk|rk−1
0 , ak

0) = p(rk|rk−1
0 , ak

k−3)

29
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Path-search algorithms
On a trellis diagram

time →

An example of binary trellis:

ak = +1

ln p(rk|r
k−1

0 , ak, a
k−1

k−C
, µk−C

︸ ︷︷ ︸

σk

) + ln P (ak)

Branch metric:

ak = −1

Augmented trellis state:

σk = (ak−1
k−C, µk−C)

Finite-memory branch metrics:

γk(ak, σk) = ln p(rk|rk−1
0 , ak, σk) + ln P (ak)
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Viterbi algorithm
Basic recursions

I Path metric:

Γk(σk) =

k∑

i=0

γi(ai, σi) =

k∑

i=0

[
ln p(ri|ri−1

0 , ai, σi) + ln P (ai)
]

I Path metric update step (Add-Compare-Select):

Γk+1(σk+1) = max
(ak,σk):σk+1

[Γk(σk) + γk(ak, σk)]

I Survivor update step: the survivor of the maximizing state is extended
by the label ak of the winning branch
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Viterbi algorithm
Add-Compare-Select: a pictorial view

ak = −1

ak = +1

survivors at k+1

k k+1k−1
survivors at k

= max
(ak ,σk):σk+1

[Γk(σk) + γk(ak, σk)]

Γk+1(σk+1)

Candidates:
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MAP symbol detection
Computation of the APPs (1)

By (conditional) marginalization:

P (ak|r) =
∑

ak−1
k−C

∑

µk−C

P (ak, a
k−1
k−C︸ ︷︷ ︸

ak
k−C

, µk−C|r)

∼
∑

ak−1
k−C

∑

µk−C

p(r|ak
k−C, µk−C)P (ak

k−C, µk−C)

By (conditional) chain factorization:

p(r|ak
k−C, µk−C) = p(rk−1

0 , rk, r
K−1
k+1 |ak

k−C, µk−C)

= p(rK−1
k+1 | rk−1

0 , rk︸ ︷︷ ︸
rk
0

, ak
k−C, µk−C) p(rk|rk−1

0 , ak
k−C, µk−C)

· p(rk−1
0 |ak

k−C, µk−C)

Three factors: future given the past and present, present given the past,
and past, respectively
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MAP symbol detection
Computation of the APPs (2)

By causality and finite memory, the first and third factors are:

p(rK−1
k+1 |rk

0 , a
k
k−C, µk−C) = p(rK−1

k+1 |rk
0 , a

k
k−C+1, µk−C+1)

p(rk−1
0 |ak

k−C, µk−C) = p(rk−1
0 |ak−1

k−C, µk−C)

By independence of the information symbols:

P (ak
k−C, µk−C) = P (ak)P (ak−1

k−C, µk−C)
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MAP symbol detection
Computation of the APPs (3)

The APPs can be rearranged as:

P (ak|r) ∼
∑

ak−1
k−C

∑

µk−C

p(rk−1
0 |ak−1

k−C, µk−C)P (ak−1
k−C, µk−C)︸ ︷︷ ︸

ᾱk(ak−1
k−C,µk−C)

· p(rk|rk−1
0 , ak

k−C, µk−C)P (ak)︸ ︷︷ ︸
γ̄k(ak

k−C,µk−C)

· p(rK−1
k+1 |rk

0 , a
k
k−C+1, µk−C+1)︸ ︷︷ ︸

β̄k+1(a
k
k−C+1,µk−C+1)

=
∑

ak−1
k−C

∑

µk−C

ᾱk(ak−1
k−C, µk−C︸ ︷︷ ︸

σk

)γ̄k(ak
k−C, µk−C︸ ︷︷ ︸

(ak,σk)

)β̄k+1(a
k
k−C+1, µk−C+1︸ ︷︷ ︸

σk+1(ak,σk)

)

=
∑

σk

ᾱk(σk) γ̄k(ak, σk) β̄k+1[σk+1(ak, σk)]
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MAP symbol detection
The key quantities

Augmented trellis state:
σk = (ak−1

k−C, µk−C)

Branch metrics (in the metric or logarithmic domain):

γk(ak, σk) = ln γ̄k(ak, σk) = ln p(rk|rk−1
0 , ak

k−C, µk−C) + ln P (ak)

Exponential of branch metrics (in the probability domain):

γ̄k(ak, σk) = eγk(ak,σk) = p(rk|rk−1
0 , ak

k−C, µk−C)P (ak)

These are exactly the quantities introduced in MAP sequence detection

What about ᾱk(σk) and β̄k+1(σk+1)?

36
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MAP symbol detection
Forward recursion

By averaging, chain factorization, and causality:

ᾱk+1(σk+1) = p(rk
0 |ak

k−C+1, µk−C+1)P (ak
k−C+1, µk−C+1)

=
∑

(ak−C,µk−C):σk+1

p(rk
0 |ak

k−C, µk−C)P (ak
k−C, µk−C)

=
∑

(ak−C,µk−C):σk+1

p(rk|rk−1
0 , ak

k−C, µk−C)P (ak)︸ ︷︷ ︸
γ̄k(ak,σk)

· p(rk−1
0 |ak

k−C, µk−C)︸ ︷︷ ︸
p(rk−1

0 |ak−1
k−C,µk−C)

P (ak−1
k−C, µk−C)

︸ ︷︷ ︸
ᾱk(σk)

=
∑

(ak,σk):σk+1

γ̄k(ak, σk) ᾱk(σk)
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MAP symbol detection
Backward recursion

By averaging, independence of the information symbols, chain factorization,
and finite memory:

β̄k(σk) = p(rK−1
k |rk−1

0 , ak−1
k−C, µk−C)

=
∑

ak

p(rK−1
k |rk−1

0 , ak
k−C, µk−C) P (ak|rk−1

0 , ak−1
k−C, µk−C)︸ ︷︷ ︸

P (ak)

=
∑

ak

p(rK−1
k+1 |rk

0 , a
k
k−C, µk−C)︸ ︷︷ ︸

p(rK−1
k+1 |rk

0 ,a
k
k−C+1,µk−C+1)︸ ︷︷ ︸

β̄k+1[σk+1(ak,σk)]

p(rk|rk−1
0 , ak

k−C, µk−C)P (ak)︸ ︷︷ ︸
γ̄k(ak,σk)

=
∑

ak

β̄k+1[σk+1(ak, σk)] γ̄k(ak, σk)
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Forward-Backward (BCJR) algorithm
Basic recursions

I APPs:

P (ak|r) ∼
∑

σk

ᾱk(σk) γ̄k(ak, σk) β̄k+1[σk+1(ak, σk)]

I Forward recursion:

ᾱk+1(σk+1) =
∑

(ak,σk):σk+1

γ̄k(ak, σk) ᾱk(σk)

I Backward recursion:

β̄k(σk) =
∑

ak

β̄k+1[σk+1(ak, σk)] γ̄k(ak, σk)

I With suitable initialization
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MAP symbol detection
Comparison with MAP sequence detection

Processing the “exponential metrics” γ̄k(ak, σk) in the FSM trellis diagram is
sufficient (again!)

Sum-product algorithm (complexity is much larger than Viterbi)

The entire observation rK−1
0 must be processed before the APPs can be

computed

Block processing (or approximations): latency delay
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Memoryless systems
Sequence and symbol detection coincide

For memoryless systems, C = 0 and the state variable µk vanishes:

p(rk|rk−1
0 , ak

0) = p(rk|rk−1
0 , ak)

Sequence detection:

P (a|r) ∼ p(r|a)P (a) =

K−1∏

k=0

[
p(rk|rk−1

0 , ak)P (ak)
]

Symbol detection:

P (ak|r) ∼
∑

ak−1
0

∑

aK−1
k+1

p(r|a)P (a) =
∑

ak−1
0

∑

aK−1
k+1

K−1∏

i=0

p(ri|ri−1
0 , ai)P (ai)

= p(rk|rk−1
0 , ak)P (ak)

∑

ak−1
0

∑

aK−1
k+1

K−1∏

i=0
i6=k

p(ri|ri−1
0 , ai)P (ai)

︸ ︷︷ ︸
independent of ak

⇒ âk = argmax
ak

p(rk|rk−1
0 , ak)P (ak)
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Forward-Backward (BCJR) algorithm
Max-log-MAP approximation: APPs

We could equivalently formulate the algorithm in the logarithmic (or metric)
domain:

ln P (ak|r) ∼ ln
∑

σk

ᾱk(σk) γ̄k(ak, σk) β̄k+1[σk+1(ak, σk)]

= ln
∑

σk

eαk(σk)+γk(ak,σk)+βk+1[σk+1(ak,σk)]

' max
σk

{αk(σk) + γk(ak, σk) + βk+1[σk+1(ak, σk)]}

where αk(σk) = ln ᾱk(σk) and βk+1(σk+1) = ln β̄k+1(σk+1)

For large |x − y| ⇒ ln(ex + ey) ' max(x, y) and by extension:

ln(ex1 + ex2 + · · · + exn) ' max(x1, x2, . . . , xn)
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Forward-Backward (BCJR) algorithm
Max-log-MAP approximation: FB recursions

αk+1(σk+1) = ln ᾱk+1(σk+1) = ln
∑

(ak,σk):σk+1

γ̄k(ak, σk) ᾱk(σk)

' max
(ak,σk):σk+1

[γk(ak, σk) + αk(σk)]

βk(σk) = ln β̄k(σk) = ln
∑

ak

β̄k+1[σk+1(ak, σk)] γ̄k(ak, σk)

' max
ak

{βk+1[σk+1(ak, σk)] + γk(ak, σk)}
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Forward-Backward (BCJR) algorithm
Max-log-MAP approximation: key features

Forward and backward recursions can be implemented by two Viterbi
algorithms running in direct and inverse time

αk(σk) and βk(σk) can be interpreted as forward and backward survivor
metrics

The max-log-MAP algorithm is computationally efficient, at the cost of a
slight degradation in performance

Various degrees of approximations have been studied (intermediate between
the “full-complexity” forward-backward algorithm and the max-log-MAP
approximation)
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Forward-Backward (BCJR) algorithm
Max-log-MAP approximation: a pictorial view

Forward survivor metrics αk(σk) = ln ᾱk(σk)

Backward survivor metrics βk+1(σk+1) = ln β̄k+1(σk+1)

max
σk

{αk(σk) + γk(ak, σk) + βk+1[σk+1(ak, σk)]}
∣

∣

∣

ak=+1

max
σk

{αk(σk) + γk(ak, σk) + βk+1[σk+1(ak, σk)]}
∣

∣

∣

ak=−1

k k+1
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Summary of MAP detection

I For causal finite-memory systems:

p(rk|rk−1
0 , ak

0) = p(rk|rk−1
0 , ak, σk)

I In the computation of the APPs, the system can be modeled as a Finite
State Machine (FSM) with state σk. The underlying FSM model is
identical for sequence and symbol detection

I Branch metrics (our focus in the following):

γk(ak, σk) = ln p(rk|rk−1
0 , ak, σk) + ln P (ak)

I MAP sequence detection can be implemented efficiently by the Viterbi
algorithm

I MAP symbol detection can be implemented by a sum-product
forward-backward algorithm (complex)

I The max-log-MAP approximation of the forward-backward algorithm can
be implemented efficiently by means of two Viterbi algorithms running in
direct and inverse time
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MAP sequence and symbol detection
Problem 3

Assuming a system is causal and finite memory:

A. Work out the derivation of the Viterbi algorithm for MAP sequence
detection

B. Work out the derivation of the forward-backward algorithm for MAP
symbol detection

Rederive the main recursions in each case
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Max-log-MAP algorithm
Problem 4

Let
max∗ (x1, x2, . . . , xn) = ln(ex1 + ex2 + · · · + exn)

A. Show that

max∗ (max∗ (x1, x2), x3) = max∗ (x1, x2, x3)

B. Show that

max∗ (x1, x2) = max(x1, x2) + ln(1 + e−|x1−x2|)

C. Show that the exact forward-backward algorithm can be formulated
replacing the max(·, ·) operator with max∗ (·, ·) in the max-log-MAP
approximation

D. Comment on the computational complexity of the exact formulation of
the forward-backward algorithm in item C.
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MAP detection for systems with memory
Examples of application

Linear modulation on static dispersive channel

Linear modulation on flat fading channel
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Linear modulation on static dispersive channel
System overview
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Linear modulation on static dispersive channel
System model

Model of discrete observable:

rk =

L∑

l=0

flck−l + wk

{fl}L
l=0: white-noise discrete equivalent of the ISI channel

{ck}: code sequence

{wk}: i.i.d. Gaussian noise sequence with variance σ2
w

Coding rule: {
ck = o(ak, µk)

µk+1 = t(ak, µk)

µk: encoder state

System state:

σk = (ak−1, ak−2, . . . , ak−L, µk−L) (C = L)
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Linear modulation on static dispersive channel
Computation of the branch metrics

Conditional statistics of the observation:

p(rk|rk−1
0 , ak

0) = p(rk|ak
0) (conditionally independent observations)

= p(rk|ak, σk) =
1

πσ2
w

exp

[
− |rk − xk(ak, σk)|2

σ2
w

]

xk(ak, σk) =

L∑

l=0

flck−l

Branch metrics:

γk(ak, σk) = ln p(rk|ak, σk) + ln P (ak)

∝ −|rk − xk(ak, σk)|2 + σ2
w ln P (ak)

∝ Re
[
rkx

∗
k(ak, σk)

]
− 1

2
|xk(ak, σk)|2 +

1

2
σ2

w ln P (ak)

∝ : proportionality plus a constant term
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Linear modulation on static dispersive channel
Problem 5

Consider uncoded transmission of binary symbols ak ∈ {±1} through a
static dispersive channel with white-noise discrete equivalent

(f0, f1, f2) =
1√
6

(1, 2, 1)

A. Define a suitable system state and draw the relevant trellis diagram

B. Express explicitly the branch metrics as a function of the received signal
sample rk for any possible transition

Assume the received sequence is

(r0, r1, r2, r3, r4, r5, r6, r7) = (1.7, 1.2, 1.1, 0.3,−0.2,−1.1, 0.7, 0.4)

and the initial state is σ0 = (+1, +1)

C. Use the Viterbi algorithm to detect the MAP sequence {â(V A)
k }7

k=0

D. Use the max-log-MAP algorithm to approximately detect the sequence of

MAP symbols {â(FB)
k }7

k=0
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Linear modulation on flat fading channel
System overview
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Discretization provides a sufficient statistic if f (t) is constant (i.e., a random
variable). It is a good approximation if f (t) varies very slowly (small Doppler
bandwidth)

In general, one sample per signaling interval is not sufficient. Oversampling,
e.g., two (or more) samples per symbol, provides a sufficient statistic
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Linear modulation on flat fading channel
System model

Model of discrete observable:

rk = fk ck + wk

{fk}: circular complex Gaussian random sequence

{ck}: code sequence

{wk}: i.i.d. Gaussian noise sequence with variance σ2
w

Coding rule: {
ck = o(ak, µk)

µk+1 = t(ak, µk)

µk: encoder state

Conditional statistics of the observation are Gaussian
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Linear modulation on flat fading channel
Does a FSM model hold? (1)

Conditional statistics of the observation:

p(rk|rk−1
0 , ak

0) =
1

πσ̄2
k(ak

0)
exp

[
− |rk − r̄k(ak

0)|2

σ̄2
k(ak

0)

]

Conditional mean
r̄k(ak

0) = E{rk|rk−1
0 , ak

0}

Conditional variance

σ̄2
k(ak

0) = E{|rk − r̄k(ak
0)|2 |rk−1

0 , ak
0}

They depend on the fading autocovariance sequence
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Linear modulation on flat fading channel
Does a FSM model hold? (2)

For Gaussian random variables, the conditional mean (i.e., the mean square
estimate) is linear in the observation

r̄k(ak
0) = E{rk|rk−1

0 , ak
0} =

k∑

i=1

pi(a
k
0) rk−i ' ck

k∑

i=1

p′i
rk−i

ck−i

The sequence-dependent linear prediction coefficients of the observation at
time k can be approximated as

pi(a
k
0) ' ck

p′i
ck−i

for high SNR

where {p′i}k
i=1 are the linear prediction coefficients of the fading process

E{fk|fk−1
0 } =

k∑

i=1

p′ifk−i

The conditional mean depends on all the previous code symbols:

⇒ unlimited memory
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Linear modulation on flat fading channel
Special case: slow fading

Constant fading (random variable): fk = f

rk = f ck + wk

Conditional mean:

r̄k(ak
0) = E{rk|rk−1

0 , ak
0} ' ck

1

k

k∑

i=1

rk−i

ck−i
for high SNR

depends on all the previous code symbols ⇒ unlimited memory
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Linear modulation on static dispersive channel
Problem 6

Consider the flat fading model

rk = fk ck + wk

with negligible noise power σ2
w ' 0

A. Show that the linear prediction coefficients of the observation and fading
processes are related by

pi(a
k
0) ' ck

p′i
ck−i

i = 1, 2, . . . , k

B. Show that for slow (constant) fading

p′i '
1

k

Hint: Use the fading model in the conditional mean
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Review of detection techniques
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2. Detection under parametric uncertainty

Outline

1. Review of detection techniques

2. Detection under parametric uncertainty

3. Per-Survivor Processing (PSP): concept and historical review

4. Classical applications of PSP:

4.1 Complexity reduction

4.2 Linear predictive detection for fading channels

4.3 Adaptive detection

5. Advanced applications of PSP
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Detection for systems with unlimited memory
Preliminaries

Channel models described in terms of stochastic parameters (even
time-invariant) yield systems with unlimited memory

Optimal sequence or symbol detection algorithms can be exactly implemented
only by resorting to some type of exhaustive search accounting for all
possible transmission acts

Implementation complexity increases exponentially with the length of
transmission, i.e., the number of transmitted information symbols K

Optimal detection is implementable only for very limited transmission
lengths (not of practical interest, even for packet transmissions: e.g.,
MK = 48 = 216 = 65536)

⇒ Design suitable approximate, hence suboptimal, detection algorithms
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Estimation-Detection decomposition
A suboptimal solution

Idea of “decomposing” the functions of data detection and parameter
estimation:

1. Derive the detection algorithms under the assumption of knowledge, to a
certain degree of accuracy, of some (channel) parameters

2. Devise an estimation algorithm for extracting information about these
parameters

This approach is viable alternative if a statistical characterization of the
parameter is not available or not usable because of constrained
implementation complexity

A statistical characterization is not available if static (or slow varying)
parameters are modeled as unknown deterministic quantities
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Estimation-Detection decomposition
System model
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θ̂k denotes an estimate of a parameter vector θk, at the k-th time-discrete
instant

The estimation process observes explicitly the received signal r(t) and
possibly the detected data sequence â
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Estimation-Detection decomposition
Some remarks

Conceptual advantage of decoupling the detection and estimation problems

Implementation advantage of physically simplifying the receiver

This decomposition has been used for decades, e.g., in synchronization, i.e.,
estimation of timing epoch, carrier phase or carrier frequency (of interest in
virtually any passband communication system)

Logical ad-hoc solution: no claim of optimality can be made, in general.
Optimality, i.e., minimal error probability, can only be attained if the
statistical information about the parameter is known and exploited directly
in the detection process.

Time-varying parameters can be viewed as static in the detection
process. Their time variations must be tracked by the estimation function,
provided they are slow. Rate of variation is critical
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Parameter-conditional finite memory
A conceptual framework for Estimation-Detection decomposition

Assume information lossless discretization with a = aK−1
0 and r = rK−1

0 (for
time-varying parameters, more samples per symbol may be necessary)

Let us collect some undesired (or nuisance) parameters into a vector θk, in
general time-varying

The observation conditional statistics obey:

p(rk|rk−1
0 , ak

0 ,θk) = p(rk|rk−1
0 , ak, σk,θk)

where the system state is

σk = (ak−1
k−C; µk−C)

C is the residual channel memory (i.e., assuming knowledge of the parameter)

The system can be modeled as a Finite State Machine (FSM) conditionally
upon the parameter
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Parameter-conditional finite memory
An example: Linear modulation on flat fading channel

Model of discrete observable:

rk = fk ck + wk

{fk}: circular complex Gaussian random sequence

{ck}: code sequence

{wk}: i.i.d. Gaussian noise sequence with variance σ2
w

The system is not finite memory

⇒ Viewing fk as a nuisance parameter:

p(rk|rk−1
0 , ak

0 , fk) = p(rk|ck, fk) =
1

πσ2
w

exp

[
− |rk − fkck|2

σ2
w

]

The system is conditionally finite memory because the code symbols are the
output of a finite state machine

For an uncoded system (ck = ak), the observation is conditionally memoryless
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Parameter-conditional finite memory
Some remarks

I By a clever choice of the nuisance parameters, it is possible to transform
the transmission system into conditionally finite-memory.

I This property holds conditionally on the undesired parameters; hence,
only if they are known. It is the route to a decomposed
estimation-detection design

I One can assume that some undesired parameters are known in devising
the detection algorithms, thus avoiding intractable complexity, and devote
some implementation complexity to the estimation of these undesired
parameters.

I The parameter-conditional finite memory property suggests to view the
presence of stochastic or unknown deterministic parameters as
parametric uncertainty affecting the detection problem.
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Parameter estimation
The “dual” problem

The parameter estimation problem can be viewed as the “dual” of the
detection problem.

The “undesired” parameters become parameters of interest, whereas the
“parameters” of interest in the detection process, namely the data symbols,
are now just nuisance (or undesired) parameters.

Like the knowledge of the undesired parameters simplifies the detection
problem, the possible knowledge of the data sequence may facilitate the
estimation of the nuisance parameters.

An exact knowledge of the data symbols may reduce the “degree of
randomness” of the received signal and facilitate the estimation of the
parameters of interest
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Parameter estimation
Data-aided parameter estimation

In coded systems the transmitted signal is modulated by the code sequence:
knowledge of this sequence may be helpful in parameter estimation

We assume the code sequence is a data sequence aiding the parameter
estimation process.

The data sequence is known during the (initial) training mode: preamble,
midamble, postamble

During the transmission of the training sequence there is no transfer of
information: training must be limited

In long term tracking of the channel parameters, detected data can be used:
decision-directed estimation

Non-data-aided estimation is more complex: requires averaging over the
data
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Parameter estimation
A pictorial example
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Data-aided parameter estimation
A general formulation

Formal definition of a causal data-aided estimator of parameter θk:

θ̂k = gk−l

(
rk
0 , c

k−d
0

)

g(·) denotes the functional dependence on the observation rk
0 and the aiding

data sequence ck−d
0

Causality upon the observation: at time k, only rk
0 is observable

Causality upon the data-aiding sequence:

At time k, the most recent available data symbol is ck−d, where d is the
decision delay

In decision-directed mode causality requires d ≥ 1

l denotes the estimation delay (θ̂k ' θk−l)

l − d is the estimation lag (l < d: prediction)
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Causal data-aided parameter estimation
A pictorial view
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Feedforward parameter estimation
Open-loop processing

The aiding data sequence is assumed ideally known (training)

Feedforward data-aided parameter estimator:

θ̂k = p
(
rk
k−ν, c

k−d
0

)

Explicit function of the ν + 1 most recent signal observations (and the aiding
data sequence)

Feedforward processing of the discrete observable (if linear: FIR filter)

The “loop“ is “open“ because the previous parameter estimates (not the
data!) are not used in the current estimation
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Feedback parameter estimation
Closed-loop processing

The aiding data sequence is assumed ideally known (training)

Feedback data-aided parameter estimator:

θ̂k = q
(
θ̂

k−1
k−ξ, r

k
k−ν, c

k−d
0

)

Explicit function of ξ previous estimates and ν + 1 most recent signal
observations (and the aiding data sequence)

Feedback processing of the previous parameter estimates and feedforward
processing of the discrete observable (if linear: IIR filter)

The “loop“ is “closed“ because the previous parameter estimates (not the
data!) are used in the current estimation

ξ = 1, 2: first, second order loops (most typical)
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Joint detection and estimation
Combination of detection and estimation functions

Define the branch metrics on the basis of the parameter-conditional finite
memory p.d.f., with the true parameter vector θk replaced by its estimate θ̂k:

γk(ak, σk) = ln p(rk|rk−1
0 , ak, σk, θ̂k) + ln P (ak)

Proper definition of trellis state σk is necessary

The parameter estimate is obtained using a data-aided estimator:

θ̂k = gk−l

(
rk
0 , c

k−d
0

)

⇒ Which code sequence c can be used for parameter estimation?
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Joint detection and estimation
Final versus preliminary decisions

During training the data sequence is readily available

Tracking can be based on previous data decisions: decision-directed mode

The detection scheme outputs data decisions with a delay D

E.g., detection delay of the Viterbi algorithm (survivor merge)

E.g., processing delay of the forward-backward algorithm (possible latency
due to the packet duration)

The detection delay of the sequence aiding in parameter estimation should be
small because it directly carries over to a delay in the parameter estimate:

Preliminary or tentative decisions with delay d < D
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Joint detection and estimation
System model
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D : “final” decision delay

d : “preliminary” or “tentative” decision delay

{ˆ̂ck−d} : sequence of tentative decisions
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Joint detection and estimation
Summary

I Branch metrics:

γk(ak, σk) = ln p(rk|rk−1
0 , ak, σk, θ̂k) + ln P (ak)

I Data-aided parameter estimator:

θ̂k =





gk−l

(
rk
0 , c

k−d
0

)
training

gk−l

(
rk
0 ,

ˆ̂ck−d
0

)
tracking

I In the tracking mode, preliminary decisions are used
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Detection under parametric uncertainty
Examples of application

Linear modulation on phase-uncertain channel

Linear modulation on dispersive fading channel
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Linear modulation on phase-uncertain channel
Synchronization-Detection decomposition

Model of discrete observable (usual notation):

rk = ejθk ck + wk

θk : channel-induced phase rotation

{ck} : code sequence with FSM model of state µk

{wk} : i.i.d. Gaussian noise sequence with variance σ2
w

Unlimited memory (observation not even conditionally Gaussian)

Considering θk as undesired, the parameter-conditional finite-memory
property is verified:

p(rk|rk−1
0 , ak

0 , θk) = p(rk|ak, µk, θk)

=
1

πσ2
w

exp

[
− |rk − ejθk ck(ak, µk)|2

σ2
w

]

ck(ak, µk) : code symbol branch label
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Linear modulation on phase-uncertain channel
Feedback phase synchronization

A data-aided phase estimate θ̂k can be obtained through a first order
Phase-Locked Loop (PLL), where η controls the loop bandwidth:

θ̂k+1 = θ̂k + η Im
{
r̄k+1−d c∗k+1−d

}

r̄k = rk e−jθ̂k : phase-synchronized observation

The estimated phase is inherently delayed by d instants

In the training mode, d can be chosen arbitrarily, except for the causality
condition upon the observation which imposes d ≥ 0. d = 0 is convenient to
minimize the estimation delay

In the decision-directed tracking mode:

θ̂k+1 = θ̂k + η Im
{

r̄k+1−d
ˆ̂c∗k+1−d

}

The tentative decision delay must comply with the causality condition upon
the detected data, which implies d ≥ 1.
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Linear modulation on phase-uncertain channel
Joint detection and synchronization

The estimated phase can be used in place of the true unknown phase in the
computation of the branch metrics:

γk(ak, µk) = ln p(rk|ak, µk, θ̂k) + ln P (ak)

∝ −|rk − ejθ̂k ck(ak, µk)|2 + σ2
w ln P (ak)

= −|r̄k − ck(ak, µk)|2 + σ2
w ln P (ak)

The detection and synchronization functions can be based on the
phase-synchronized observation

r̄k = rk e−jθ̂k
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Linear modulation on phase-uncertain channel
Problem 7

Consider the model of discrete observable

rk = ejθ ck + wk

where θ is the overall phase rotation induced by the channel. Let θ̂ be a

phase estimate and define the phase-synchronized observation r̄k = rk e−jθ̂

A. Derive an explicit expression of the mean square error (MSE)

E{|r̄k − ck|2} as a function of θ̂

B. Obtain an estimate of θ minimizing the MSE

C. Formulate a data-aided iterative stochastic gradient algorithm for
minimizing the MSE

D. Comment on the functional relationship of the obtained synchronization
scheme with a first-order PLL

Hint: Define a stochastic gradient by differentiating the MSE with
respect to θ̂ and discarding the expectation
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Linear modulation on dispersive fading channel
System model

Model of discrete observable (slow fading):

rk =

L∑

l=0

fl,k ck−l + wk = fT
k ck + wk

fk = (f0,k, f1,k, . . . , fL,k)T : overall time-varying discrete equivalent impulse
response at the k-th instant, circular complex Gaussian random vector

ck = (ck, ck−1, . . . , ck−L)T : code sequence with FSM model of state µk

Unlimited memory (observation is conditionally Gaussian)
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Linear modulation on dispersive fading channel
Estimation-Detection decomposition

Considering fk as undesired, the system is parameter-conditionally
finite-memory:

γk(ak, σk) = ln p(rk|rk−1
0 , ak

0 , fk) + ln P (ak)

= ln p(rk|ak, σk, fk) + ln P (ak)

= ln

{
1

πσ2
w

exp

[
−
|rk − fT

k ck(ak, σk)|2
σ2

w

]}
+ ln P (ak)

∝ −|rk − fT
k ck(ak, σk)|2 + σ2

w ln P (ak)

σk = (ak−1, ak−2, . . . , ak−L; µk−L) : system state

ck(ak, σk) = [ck(ak, µk), ck−1(ak−1, µk−1), . . . , ck−L(ak−L, µk−L)]T :
code symbol vector uniquely associated with the considered trellis branch
(ak, σk), in accordance with the coding rule
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Linear modulation on dispersive fading channel
Feedback parameter estimation

Least Mean Squares (LMS) adaptive identification:

f̂k+1 = f̂k + β (rk+1−d − f̂T
k ck+1−d) c∗k+1−d

β compromises between adaptation speed and algorithm stability

During the decision-directed tracking mode:

f̂k+1 = f̂k + β (rk+1−d − f̂T
k

ˆ̂ck+1−d)
ˆ̂c∗k+1−d

ˆ̂ck+1−d = (ˆ̂ck+1−d, ˆ̂ck−d, . . . , ˆ̂ck+1−d−L)T

d ≥ 1 to comply with the causality condition upon the data

Branch metrics:

γk(ak, σk) ∝ −|rk − f̂T
k ck(ak, σk)|2 + σ2

w ln P (ak)

87



Riccardo Raheli — Introduction to Per-Survivor Processing — c© 2004 by CNIT, Italy

Linear modulation on dispersive fading channel
Problem 8

Consider the model of discrete observable

rk = fTck + wk

where f is the overall discrete equivalent channel impulse response. Let f̂

be an estimate of the channel response. Assume the code symbols are
zero-mean and uncorrelated

A. Derive an explicit expression of the mean square error (MSE)
E{|rk − fTck|2} as a function of f̂

B. Formulate a data-aided iterative stochastic gradient algorithm for
minimizing the MSE

C. Comment on the functional relationship of the obtained identification
scheme and the LMS algorithm

Hint: Define a stochastic gradient by differentiating the MSE with
respect to f̂ and discarding the expectation
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Joint detection and estimation
Error propagation

A decision-feedback mechanism characterizes the decision-directed tracking
phase: decisions are used for parameter estimation and, hence, for detecting
the successive data

Error propagation may take place, namely wrong data decisions may
negatively affect the parameter estimate and cause further decision errors

This effect is usually non catastrophic but it affects the overall performance
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Joint detection and estimation
Optimization of the tentative decision delay

Preliminary decisions with delay d < D can be considerably worse than the
final decisions. E.g., in the Viterbi algorithm, decisions with reduced delay
d < D are affected by the probability of unmerged survivors

⇒ Large values of tentative decision delay d may be best

The delay d of the aiding data sequence yields a delay in the parameter
estimate which may affect the detection quality when the true parameter is
time-varying

⇒ Small values of d may be best, possibly the minimal value d = 1.

Good values of tentative decision delay d must be the result of a trade-off
between two conflicting requirements

⇒ In practice, one would have to experiment several values of d and select a
good compromise value (minimize error propagation)
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Detection under parametric uncertainty
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3. Per-Survivor Processing: concept
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Per-Survivor Processing (PSP)
A step toward a unification of estimation and detection

The Estimation-Detection decomposition is a general suboptimal design
approach to force a finite-memory property and achieve feasible detection
complexity

Optimal processing is not compatible with the decomposition approach and
would require a unified detection function (often of infeasible complexity)

Per-Survivor Processing is an alternative general design approach which still
exploits the forced finite-memory property but reduces the degree of
separation between the detection and estimation functions

In this technique, the code sequences associated with each survivor are used
as the aiding data sequence for a set of per-survivor estimators of the
unknown parameters
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Per-Survivor Processing
A formal description

Let σk be the trellis state descriptive of the overall parameter-conditional
finite state machine which models the transmission system

Let c̆k−1
0 (σk) denote the code sequence associated with the survivor of

state σk

Per-survivor estimates of the parameter vector θk based on a data-aided
estimator can be expressed as

θ̆k(σk) = gk−l

[
rk
0 , c̆

k−d
0 (σk)

]

These per-survivor estimates can be used in the computation of the branch
metrics:

γk(ak, σk) = ln p(rk|rk−1
0 , ak, σk, θ̆k(σk)) + ln P (ak)
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Per-Survivor Processing
Some remarks

I The structure of the branch metrics is inherently different, with respect to
the previous cases, in the fact that it also depends on the state σk
through the parameter estimate

I There is now a data-aided parameter estimator per trellis state. This
estimator uses the data sequence associated with the survivor of this
state as aiding sequence. The resulting parameter estimates, one per
state, are inherently associated with the survivor sequences—hence,
the terminology “per-survivor processing”

I Compared to a conventional decomposed estimation-detection scheme
based on tentative decisions, the complexity of per-survivor processing is
larger
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Per-Survivor Processing
System model

discret detection

PSP-based detection

r(t)

decoding

θ̆k(σk) c̆k−d(σk)

âk−Drk

parameter
estimation

A “tentative” block diagram: a set of parameter estimators observe the
received sequence rk and are aided by the survivor sequences c̆k−d

0 (σk). A

corresponding set of per-survivor parameter estimates θ̆k(σk) are passed to
the detection block
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Per-Survivor Processing
A pictorial description: branch metrics computation
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The metrics of branches reaching the same state are computed using different
values of the parameter.
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Per-Survivor Processing
A pictorial description: evolution of the parameter estimates

“universal” estimation

θ̂k−1 θ̂k θ̂k+1

σk

PSP-based estimation

σk−1

σk+1

θ̆k−1(σk−1)

θ̆(σk)

θ̆(σk+1)

In the “universal” scheme, only one parameter estimate is used for
computation of all the branch metrics at the k-th step

In the PSP-based scheme the parameter estimates evolve along the survivors
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Per-Survivor Processing
An intuitive rationale

Whenever the incomplete knowledge of some quantities prevents us from
calculating a particular branch metric in a precise and predictable form, we use
estimates of those quantities based on the data sequence associated with the
survivor leading to that branch. If any particular survivor is correct (an event
of high probability under normal operating conditions), the corresponding
estimates are evaluated using the correct data sequence. Since at each stage
of decoding we do not know which survivor is correct (or the best), we extend
each survivor based on estimates obtained using its associated data sequence.

Roughly speaking, the best survivor is extended using the best data sequence
available (which is the sequence associated to it), regardless of our temporary
ignorance as to which survivor is the best.

99



Riccardo Raheli — Introduction to Per-Survivor Processing — c© 2004 by CNIT, Italy

Per-Survivor Processing
Is a delay d necessary?

The best survivor is extended according to its associated data sequence,
despite the fact that we do not know which survivor is the best at the current
time (we will know the best survivor after D further steps)

There are no reasons for delaying the aiding data sequence of the best survivor
beyond the minimal delay d = 1 complying with the causality condition

Since all survivors eventually merge, the quality of the data sequences
associated to all survivors improves for increasing values of d

⇒ The minimal value d = 1 offers the best overall performance because it
attains simultaneously good quality of the aiding data sequence and a small
delay in the parameter estimate

⇒ PSP allows one to design receivers particularly robust when the undesired
parameters are time-varying
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Per-Survivor Processing
Error propagation

PSP is a mechanism for virtually using “final” decisions for aiding the
parameter estimation (with no delay!)

Only errors in the final decisions, the so-called error events, are “fed back” to
the parameter estimator of the best survivor

As the aiding data sequence along the best survivor is of best possible quality,
the effects of error propagation are reduced (compared with the traditional
scheme that uses tentative decisions)

Parameter estimators of other survivors use data sequences of worse quality,
but they do not affect future decisions provided these survivors are later
discarded
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Linear modulation on phase-uncertain channel
PSP-based detection and phase synchronization

Branch metrics:

γk(ak, µk) ∝ −|rk e−jθ̆k(µk) − ck(ak, µk)|2 + σ2
w ln P (ak)

Phase estimate update recursion:

θ̆k+1(µk+1) = θ̆k(µk) + η Im
{

rk+1−d e−jθ̆k(µk) c̆∗k+1−d(µk)
}

c̆∗k+1−d(µk) is the code symbol at epoch k + 1 − d in the survivor sequence
of state µk

The phase estimate update recursions must take place along the branches
which extend the survivor of state µk, i.e., after the usual add-compare-select
step at time k

Remember: d = 1 for best performance
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Linear modulation on dispersive fading channel
PSP-based detection and channel estimation

Branch metrics:

γk(ak, σk) ∝ −|rk − f̆k(σk)Tck(ak, σk)|2 + σ2
w ln P (ak)

Channel estimate update recursions:

f̆k+1(σk+1) = f̆k(σk) + β
[
rk+1−d − f̆k(σk)T c̆k+1−d(σk+1)

]
c̆∗k+1−d(σk+1)

c̆k+1−d(σk+1) = [c̆k+1−d(σk+1), c̆k−d(σk+1), . . . , c̆k+1−d−L(σk+1)]
T

Channel estimate update recursions must take place over those branches
(σk → σk+1) which comply with the Viterbi algorithm add-compare-select
step at time k

Remember: d = 1 for best performance
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Per-Survivor Processing
Hybrid version

The survivor merge is normally a few steps backward from current time

Only the most recent code symbols should be searched for in the survivor
history; earlier symbols can be reliably based on preliminary decisions

Formulation:
θ̆k(σk) = gk−l

[
rk
0 ,

ˆ̂ck−d
0 , c̆k−1

k−d+1(σk)
]
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Per-Survivor Processing
A pictorial description: Hybrid version

� � � �

� ��� � �	 � 
 
 � � �� � �� �� � �� � � �

For d = 3, the computation of the branch metrics is based on 2 elements of
the survivor sequences and the remaining elements of the tentative decision
sequence (red survivor is best at current time)
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Per-Survivor Processing
Reduced-estimator version

In PSP, the number of parameter estimators equals the number of survivors

In a conventional decomposed design, there is one parameter estimator

What is in between?

The number N of parameter estimators can be adjusted independently of the
number S of survivors: 1 ≤ N ≤ S (N = 1 ⇒ tentative decisions;
N = S ⇒ PSP):

– Select the best survivor and the N best survivors;

– Extend each of the N best survivors using its associated parameter
estimate;

– Extend each of the remaining S −N survivors using the parameter estimate
associated with the best survivor;

– Update each of the N parameter estimates along the extensions of the N
best survivors.
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Per-Survivor Processing
A pictorial description: Reduced-estimator version

2

4 2

1 3

(a)

2

3 1

1 3

2

3 1

4

4 4

(b)
Figure reproduced from:

– R. Raheli, G. Marino, P. Castoldi, “Per-survivor processing and tentative decisions: what is
in between?,” IEEE Trans. Commun., pp. 127-129, Feb. 1996.
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Per-Survivor Processing
Update-first version

The temporal sequence: ACS step followed by parameter update can be
inverted

Update-first version of PSP:

1. The per-survivor parameter update recursions are run along all possible
candidate survivors

2. The branch metrics are computed using these updated parameter
estimates

3. The ACS step is performed

In this version, there is one parameter estimator per candidate (complexity is
larger)

PSP allows d = 0 in parameter estimation (in a scheme based on tentative
decisions this would violate the causality condition)
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Per-Survivor Processing
A pictorial description: Update-first version
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The computation of the branch metrics is based on the candidate sequences
(i.e., survivors plus their possible evolutions)

The ACS step follows on the basis of these branch metrics
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Per-Survivor Processing
Application to reduced-search (sequential) algorithms

Per-survivor processing can be directly applied to any tree or trellis
reduced-search algorithm, also referred to as sequential detection algorithms

Reduced-search algorithms may be used to search a small part of a large FSM
trellis diagram or non-FSM tree diagram

The M-algorithm keeps a list of M best paths: at each step, each path is
extended in all possible way, say N ; from the resulting list of MN paths, the
best M are retained for further extension (breadth-first)

Depth-first and metric-first algorithms keep one or more paths and
backtrack whenever the retained paths are judged of insufficient quality,
according to some criterion

An alternative terminology could be Per-Path Processing, or P3
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Per-Survivor Processing
A pictorial description: Application to M-algorithm
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M = 2 Branch metrics based on maintaned paths (survivors)
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Per-Survivor Processing
Application to list Viterbi algorithms

The Viterbi algorithm detects the “best” MAP (or ML) path or sequence

Nothing is known about the second, third, etc. best paths

List Viterbi algorithms release the ordered list of V best paths by maintaining
V survivors per state

These algorithms may be used in concatenated coding schemes: whenever the
outer code detects an error, the second, third, etc. sequence at the output of
the inner decoder can be tried out

Per-survivor processing can be readily applied to list Viterbi algorithms by
associating a parameter estimator to each survivor
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Per-Survivor Processing: concept
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3. Per-Survivor Processing: historical review
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Historical review
The beginning and afterwards ...

The general concept of per-survivor processing was understood and proposed
in the early nineties as a generalization of per-survivor DFE-like ISI
cancellation techniques of reduced-state sequence detection (RSSD), also
known as (delayed) decision-feedback sequence detection (DFSD)

RSSD and DFSD appeared and established in the late eighties, except for
isolated seminal contributions which date back to the seventies

In the early nineties, a number of independent research results appeared in
diverse technical areas which could be interpreted as special cases of the
general PSP concept (not yet known)

During the nineties (and currently) PSP has emerged as a broad approach to
detection in hostile transmission environments

As we will see, sometimes PSP arises naturally from the analytical
development itself, when devising detection algorithms
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Trans. Commun., pp. 428-436, May 1989.

– P. R. Chevillat, E. Eleftheriou, “Decoding of Trellis-Encoded Signals in the Presence of
Intersymbol Interference and Noise,” IEEE Trans. Commun., pp. 669-676, July 1989.

– M. V. Eyuboǧlu, S. U. H. Qureshi, “Reduced-State Sequence Estimation for Coded
Modulation on Intersymbol Interference Channels,” IEEE J. Sel. Areas Commun., pp.
989-995, Aug. 1989.

– A. Svensson, “Reduced state sequence detection of full response continuous phase
modulation,“ IEE Electronics Letters, pp. 652 -654, 1 May 1990.
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Reduced-state sequence detection
There was earlier work ...

– F. L. Vermeulen and M. E. Hellman, ”Reduced state Viterbi decoders for channels with
intersymbol interference,’ in Proc. IEEE Int. Conf. Commun. (ICC ’74), Minneapolis,
MN, June 1974, pp. 37B1-37B4.

– F. L. Vermeulen, ”Low complexity decoders for channels with intersymbol interference,”
Ph.D. dissertation, Dep. Elect. Eng., Stanford Univ., Aug. 1975.

– G. J. Foschini, “A reduced state variant of maximum likelihood sequence detection
attaining optimum performance for high signal-to-noise ratios,” IEEE Trans. Inform.
Theory, pp. 553-651, Sept. 1977

– A. Polydoros, “Maximum-likelihood sequence estimation in the presence of infinite
intersymbol interference,” Master’s Thesis, Graduate School of State University of New
York at Buffalo, Dec. 1978.

– A. Polydoros, D. Kazakos, “Maximum-Likelihood Sequence Estimation in the Presence of
Infinite Intersymbol Interference,” in Proc. ICC ’79, June 1979.
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Independent results interpretable as PSP
When the time has come ...

Sequence detection for a time-varying statistically known channel:
– J. Lodge, M. Moher, “ML estimation of CPM signals transmitted over Rayleigh flat fading

channels,” IEEE Trans. Commun., pp. 787-794, June 1990.
– D. Makrakis, P. T. Mathiopoulos, D. P. Bouras, “Optimal decoding of coded PSK and

QAM signals in correlated fast fading channels and AWGN: a combined envelope, multiple
differential and coherent detection approach,” IEEE Trans. Commun., pp.63-75,
Jan. 1994.

Joint ML estimation of a deterministic channel and data detection:
– R. Iltis, “A Bayesian MLSE algorithm for a priori unknown channels and symbol timing,”

IEEE J. Sel. Areas Commun., April 1992.
– N. Seshadri, “Joint data and channel estimation using blind trellis search techniques,”

IEEE Trans. Commun., Feb.-Apr. 1994.
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Independent results interpretable as PSP
When the time has come ... (cntd)

Adaptive sequence detection with tracking of a time-varying deterministic
channel:
– Z. Xie, C. Rushforth, R. Short, T. Moon, “Joint signal detection and parameter estimation

in multiuser communications,” IEEE Trans. Commun., Aug. 1993.
– H. Kubo, K. Murakami, T. Fujino, “An adaptive MLSE for fast time-varying ISI channels,”

IEEE Trans. Commun., pp, 1872-1880, Feb.-Apr. 1994.

Trellis coded quantization (source encoding):
– M. W. Marcellin, T. R. Fischer, “Trellis coded quantization of memoryless Gauss-Markov

sources,” IEEE Trans. Commun., Jan. 1990.

Joint sequence detection and carrier phase synchronization:
– A. J. Macdonald and J. B. Anderson, “PLL synchronization for coded modulation,” in

Proc. ICC ’91, June 1991.
– A. Reichman and R. A. Scholtz, “Joint phase estimation and data decoding for tcm

systems,” in Proc. First Intern. Symp. Commun. Theory and Applications,
Scotland, U.K., Sept. 1991.
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Earlier work
... and beforehand

Analog FM demodulation with discrete phase approximation based on the
Viterbi algorithm (there are no data !)

In an extended-memory version, a procedure similar to PSP was proposed

– C. Cahn, “Phase tracking and demodulation with delay,” IEEE Trans. Inform. Theory,
Jan. 1974.
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The roots
Generalized likelihood

Model the parameter as deterministic or random with unknown distribution

Joint ML parameter estimation and sequence detection viewed as a
composite hypotheses test:

â = argmax
a

{
max

θ

p (r|a,θ)

}

︸ ︷︷ ︸
⇒ θ̂ (a)

⇒ A per-hypothesis parameter estimate is obtained as a side result

– H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I. New York:
John Wiley & Sons, 1968.
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The roots
Estimation-Correlation detection

Detection of M -ary random signals in AWGN: s(t) is conditionally Gaussian,
given mi
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⇒ Per-hypothesis conditional mean square estimate of s(t)

For deterministic signals: s(t) ∈ {si(t)}M
i=1 ⇒ ŝi(t) = si(t)

– T. Kailath, “Correlation detection of signals perturbed by a random channel,” IRE Trans.
Inform. Theory, June 1960.

– T. Kailath, “A general likelihood ratio formula for random signals in Gaussian noise,”
IEEE Trans. Inform. Theory, May 1969.
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Further references on PSP
... this is not an exhaustive list ...

– A. N. D’Andrea, U. Mengali, and G. M. Vitetta, “Approximate ML decoding of coded PSK
with no explicit carrier phase reference,” IEEE Trans. Commun., pp. 1033-1039,
Feb.-Apr. 1994.

– Q. Dai, E. Shwedyk, “Detection of bandlimited signals over frequency selective Rayleigh
fading channels,” IEEE Trans. Commun., pp. 941-950, Feb.-Apr. 1994.

– J. Lin, F. Ling, J. Proakis, “Joint data and channel estimation for TDMA mobile channels,”
Plenum Intern. J. Wireless Inform. Networks, vol. 1, no. 4, pp. 229-238, 1994.

– X. Yu, S. Pasupathy, “Innovations-based MLSE for Rayleigh fading channels,” IEEE
Trans. Commun., pp. 1534-1544, Feb.-Apr. 1995.

– G. M. Vitetta, D. P. Taylor, “Maximum likelihood decoding of uncoded and coded PSK
signal sequences transmitted over Rayleigh flat-fading channels,” IEEE Trans.
Commun., vol. 43, pp. 2750-2758, Nov. 1995

– K. Hamied, G. Stüber, “An adaptive truncated MLSE receiver for Japanese personal digital
cellular,” IEEE Trans. Veh. Techn., Feb. 1996.

– G. M. Vitetta, D. P. Taylor, U. Mengali, “Double filtering receivers for PSK signals
transmitted over Rayleigh frequency-flat fading channels,” IEEE Trans. Commun., vol.
44, pp. 686-695, June 1996.
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Further references on PSP
... this is not an exhaustive list ... (cntd)

– M. E. Rollins, S. J. Simmons, “Simplified per-survivor Kalman processing in fast
frequency-selective fading channels,” IEEE Trans. Commun., pp. 544-553, May 1997.

– B. C. Ng, S. N. Diggavi, A. Paulray, “Joint structured channel and data estimation over
time-varying channels,” in Proc. IEEE Globecom, 1997.

– A. Anastasopoulos, A. Polydoros, “Adaptive soft-decision algorithms for mobile fading
channels,” European Trans. Telecommun.., vol. 9, no. 2, pp. 183-190, Mar-Apr. 1998.

– K. M. Chugg, “Blind acquisition characteristics of PSP-based sequence detectors,” IEEE
J. Sel. Areas Commun., vol. 16, pp. 1518-1529, Oct. 1998.

– F. Rice, B. Cowley, M. Rice, B. Moran, “Spectrum analysis using a trellis algorithm,” in
Proc. IEEE Intern. Conf. Signal Process. (ICTS ’98), Oct. 1998.
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4. Classical applications of PSP

4.1 Complexity reduction

Outline

1. Review of detection techniques

2. Detection under parametric uncertainty

3. Per-Survivor Processing (PSP): concept and historical review

4. Classical applications of PSP:

4.1 Complexity reduction

4.2 Linear predictive detection for fading channels

4.3 Adaptive detection

5. Advanced applications of PSP

125



Riccardo Raheli — Introduction to Per-Survivor Processing — c© 2004 by CNIT, Italy

Reduction of trellis state-complexity
Motivation

Consider a FSM system model based on some finite memory property
(strict-sense or conditional)

Detection schemes are based on branch metrics: γk(ak, σk)

System state: σk = (ak−1, ak−2, . . . , ak−L; µk−L) (C = L)

Encoder state: µk

Coding rule:

{
ck = o(ak, µk)

µk+1 = t(ak, µk)

Number of FSM states: S = ScM
L

Example: Sc = M = L = 4 ⇒ S = 4 × 44 = 4 × 28 = 1024

⇒ State-complexity may be large!
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Reduction of trellis state-complexity
An alternative definition of system state

Assume an invertible coding rule

Solving for given (ck−1, µk)
{

o(ak−1, µk−1) = ck−1
t(ak−1, µk−1) = µk

⇒ (ak−1, µk−1)

input seq.: . . . ak−L ak−L+1 . . . ak−2 ak−1 ak . . .

state seq.: . . . µk−L µk−L+1 . . . µk−2 µk−1 µk . . .

code seq.: . . . ck−L ck−L+1 . . . ck−2 ck−1 ck . . .

System state can be equivalently defined as:

σk = (µk; ck−1, ck−2, . . . , ck−L)

State transition and corresponding branch metrics can be equivalently defined
as (ck, σk) and γk(ck, σk), respectively
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Reduction of trellis state-complexity
Genie-aided trellis folding

Suppose at each epoch k a genie passed a group of correct code symbols
c̃k−Q−1, . . . , c̃k−L to the branch metric computer (Q ≤ L)

Genie-aided branch metrics could be defined as γk(ck, σ̃k) for each state σk
whose first Q + 1 entries coincide with those in

σ̃k = (µk; ck−1, . . . , ck−Q, c̃k−Q−1, . . . , c̃k−L)

The group of states

σk = (µk; ck−1, . . . , ck−Q︸ ︷︷ ︸
fixed

, ck−Q−1, . . . , ck−L) ∀ck−Q−1, . . . , ck−L

would have identical path metrics and could be folded into a reduced state

ωk = (µk; ck−1, ck−2, . . . , ck−Q)
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Reduction of trellis state-complexity
Folding by memory truncation

Path search could be equivalently performed in a folded trellis diagram with
this reduced (also partial, folded or super) state

ωk = (µk; ck−1, ck−2, . . . , ck−Q)

Genie-aided branch metrics in the reduced-state trellis:

γ̃k(ck, ωk) = γk(ck, σ̃k(ωk))

A pseudo state is defined as

σ̃k(ωk) = (µk; ck−1, . . . , ck−Q︸ ︷︷ ︸
ωk

, c̃k−Q−1, . . . , c̃k−L)

where (c̃k−Q−1, . . . , c̃k−L) is the genie information

Effective genie-aided truncation of the system memory: Q ≤ L

Reduced number of states: S′ = ScM
Q ≤ S = ScM

L

⇒The full-state trellis folds into a reduced-state trellis
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Reduction of trellis state-complexity
A pictorial description of trellis folding
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Reduction of trellis state-complexity
Interpretation of trellis folding by memory truncation

The code symbols (c̃k−Q−1, . . . , c̃k−L) can be viewed as an undesired set
of parameters

A parameter-conditional reduced memory property holds

The Estimation-Detection decomposition can be (again) the route to the
approximation of the branch metrics in the presence of this special parametric
uncertainty

The genie information (c̃k−Q−1, . . . , c̃k−L) must be estimated in order to
implement detection schemes with reduced state-complexity

Curiosity: we do not need a data-aided parameter estimator but only the
aiding code sequence

We can use tentative decisions or per-survivor processing
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Reduction of trellis state-complexity
Branch metrics based on tentative-decision feedback

Branch metrics in the original full-state trellis: γk(ck, σk)

Branch metrics in the reduced-state trellis:

γ̃k(ck, ωk) = γk(ck, σ̃k(ωk))

The pseudo state is defined as

σ̃k(ωk) = (µk; ck−1, . . . , ck−Q︸ ︷︷ ︸
ωk

, ˆ̂ck−Q−1, . . . , ˆ̂ck−L)

ˆ̂ck−Q−1, . . . , ˆ̂ck−L are preliminary decisions on the code sequence
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Reduction of trellis state-complexity
Branch metrics based on PSP

Branch metrics in the original full-state trellis: γk(ck, σk)

Branch metrics in the reduced-state trellis:

γ̃k(ck, ωk) = γk(ck, σ̃k(ωk))

The pseudo state is defined as

σ̃k(ωk) = (µk; ck−1, . . . , ck−Q︸ ︷︷ ︸
ωk

, c̆k−Q−1(ωk), . . . , c̆k−L(ωk))

c̆k−Q−1(ωk), . . . , c̆k−L(ωk) are the code symbols in the survivor of state ωk

The pseudo state depends on ωk through the feedback of survivor symbols as
well
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Linear modulation on static dispersive channel
Branch metrics in a reduced-state trellis

Branch metrics in the original full-state trellis (S = ScM
L states)

γk(ck, σk) = −
∣∣∣∣rk − fkck −

L∑

l=1

flck−l(σk)

∣∣∣∣
2

+ σ2
w ln P [ak(ck, σk)]

Branch metrics in the reduced-state trellis (S ′ = ScM
Q states)

γ̃k(ck, ωk) = γk(ck, σ̃k(ωk))

= −
∣∣∣∣rk − fkck −

Q∑

l=1

flck−l(ωk) −
L∑

l=Q+1

flc̆k−l(ωk)

∣∣∣∣
2

+ σ2
w ln P [ak(ck, ωk)]

ck−1(ωk), . . . , ck−Q(ωk) are code symbols uniquely associated with state ωk

c̆k−Q−1(ωk), . . . , c̆k−L(ωk) are code symbols in the survivor of state ωk
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Reduction of trellis state-complexity
Folding by set partitioning

State-complexity reduction can also be achieved replacing the code symbols
ck−i in the “full” state

σk = (µk; ck−1, ck−2, . . . , ck−L)

with subsets of the code symbol alphabet (or constellation)

Define a reduced state

ωk = (µk; Ik−1(1), Ik−2(2), . . . , Ik−L(L))

At epoch k, for i = 1, 2, . . . , L:

Ik−i(i) ∈ Ω(i) are subsets of the code constellation A
Ω(i) are partitions of the code constellation A
A given reduced state specifies only the constellation subsets Ik−i(i)

ck−i ∈ Ik−i(i) are code symbols compatible with the given state
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Reduction of trellis state-complexity
Folding by set partitioning (cntd)

Let Ji = card{Ω(i)} and M ′ = card{A} (1 ≤ Ji ≤ M ′)

The reduced state is well-defined if current state ωk and subset Ik(1) (which
the current symbol ck belongs to) uniquely specify the successive state

ωk+1 = (µk+1; Ik(1), Ik−1(2), . . . , Ik−L+1(L))

Ω(i) must be a further partition of Ω(i + 1)

The partition depths Ji must satisfy the condition

J1 ≥ J2 ≥ · · · ≥ JL

If Q is such that JQ > 1 and JQ+1 = · · · = JL = 1, the definition of partial
state can be simplified

ωk = (µk; Ik−1(1), Ik−2(2), . . . , Ik−Q(Q))

For J1 = · · · = JQ = M ′, memory truncation arises as a special case
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Reduction of trellis state-complexity
An example: partition of an 8-PSK constellation
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Reduction of trellis state-complexity
An example: definition of partial states

Full-complexity state for uncoded transmission and L = 2

σk = (ak−1, ak−2) S = ML = 82 = 64

1. Partial state by memory truncation with Q = 1 (also J1 = 8, J2 = 1)

ω′
k = ak−1 S′ = MQ = 81 = 8

2. Partial state by set partition with

Ω(1) = C = {C0, C1, C2, C3} (J1 = 4)

Ω(2) = B = {B0, B1} (J2 = 2)

ω′′
k = (Ik−1(1), Ik−2(2)) S′′ = J1J2 = 4 × 2 = 8

3. Partial state by set partition with

Ω(1) = Ω(2) = C = {C0, C1, C2, C3} (J1 = J2 = 4)

ω′′′
k = (Ik−1(1), Ik−2(2)) S′′′ = J1J2 = 4 × 4 = 16

138



Riccardo Raheli — Introduction to Per-Survivor Processing — c© 2004 by CNIT, Italy

Reduction of trellis state-complexity
Folding by set partitioning: some remarks

Set partition should follow the partition rules used in Trellis Coded
Modulation (TCM)

If J1 < M ′, parallel transitions may be present (they are in the uncoded
case)

If J1 < M ′, state transitions and corresponding branch metrics are defined as
(Ik(1), ωk) and γ̃k(Ik(1), ωk), respectively

139



Riccardo Raheli — Introduction to Per-Survivor Processing — c© 2004 by CNIT, Italy

Reduction of trellis state-complexity
Folding by set partitioning: branch metrics

Branch metrics in the original full-state trellis: γk(ck, σk)

Branch metrics in the reduced-state trellis:

γ̃k(Ik(1), ωk) = max
ck∈Ik(1)

γk(ck, σ̃k(ωk))

The pseudo state σ̃k(ωk) must be compatible with ωk: ck−i ∈ Ik−i(i)

Missing information can be based on tentative decisions or PSP

PSP-based pseudo state:

σ̃k(ωk) = (µk; c̃k−1(ωk), . . . , c̃k−Q(ωk), c̆k−Q−1(ωk), . . . , c̆k−L(ωk))

c̃k−1(ωk), . . . , c̃k−Q(ωk) are code symbols compatible with state ωk to be
found in the survivor history of state ωk

c̆k−Q−1(ωk), . . . , c̆k−L(ωk) are code symbols in the survivor of state ωk
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Linear modulation on static dispersive channel
Folding by set partitioning: branch metrics

Branch metrics in the original full-state trellis (S = ScM
L states)

γk(ck, σk) = −
∣∣∣∣rk − fkck −

L∑

l=1

flck−l(σk)

∣∣∣∣
2

+ σ2
w ln P [ak(ck, σk)]

Branch metrics in the reduced-state trellis

γ̃k(Ik(1), ωk) = max
ck∈Ik(1)

γk(ck, σ̃k(ωk))

= max
ck∈Ik(1)

−
∣∣∣∣rk − fkck −

Q∑

l=1

flc̃k−l(ωk) −
L∑

l=Q+1

flc̆k−l(ωk)

∣∣∣∣
2

+ σ2
w ln P [ak(ck, ωk)]

c̃k−1(ωk), . . . , c̃k−Q(ωk) are code symbols compatible with state ωk to be
found in the survivor history of state ωk

c̆k−Q−1(ωk), . . . , c̆k−L(ωk) are code symbols in the survivor of state ωk
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Reduction of trellis state-complexity
Problem 9

Consider a linear modulation for transmitting uncoded binary symbols
ak ∈ {±1} through the static dispersive channel with white-noise
discrete equivalent considered in Problem 5

A. Define a reduced system state by memory truncation and draw the
relevant trellis diagram

B. Express explicitly the branch metrics as a function of the received signal
sample rk for any possible transition in the reduced trellis

Assume the received sequence is

(r0, r1, r2, r3, r4, r5, r6, r7) = (1.7, 1.2, 1.1, 0.3,−0.2,−1.1, 0.7, 0.4)

and the initial “full” state is σ0 = (+1, +1)

C. Use the Viterbi algorithm to approximately detect the MAP sequence
{âk}7

k=0

D. Would it be possible to define a different reduced system state by set
partitioning?
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A case-study: TCM on ISI channel
System model: encoder
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Information and code bits: a
(i)
k and c

(j)
k

Gross spectral efficiency: 3 bit/s/Hz (to be reduced by the bandwidth
expansion factor 1 + α = 1.3 ⇒ net spectral efficiency is 2.3 bit/s/Hz)
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TCM on ISI channel
System model: set partition and mapping rule
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2 bits per parallel transition (code trellis)
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TCM on ISI channel
System model: channel response

Model of discrete observable:

rk =

L∑

l=0

flck−l + wk

{fl}L
l=0: white-noise discrete equivalent of the ISI channel

{wk}: i.i.d. Gaussian noise sequence.

{ck}: code sequence
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L must be large enough to
accommodate the significant pulses

L = 3 may be sufficient for the
considered channel
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TCM on ISI channel
Definition of partial states

0. Full-complexity state for L = 3

σk = (µk; ck−1, ck−2, ck−3) S = ScM
L = 4 × 83 = 4 × 29 = 2048

1. Partial state by memory truncation with Q = 1 (J1 = 16, J2 = J3 = 1)

ω′
k = (µk; ck−1) S′ = ScM

Q = 4 × 81 = 32

2. Partial state by set partition with

Ω(1) = D = {D0, D1, . . . , D7} (J1 = 8)

Ω(2) = Ω(3) = A (J2 = J3 = 1)

ω′′
k = (µk; Ik−1(1)) S′′ = Sc

J1

2
= 4 × 4 = 16
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TCM on ISI channel
Definition of partial states (cntd)

3. Partial state by set partition with

Ω(1) = Ω(2) = C = {C0, C1, C2, C3} (J1 = J2 = 4)

Ω(3) = A (J3 = 1)

ω′′′
k = (µk; Ik−1(1), Ik−2(2)) S′′′ = Sc

J1

2

J2

2
= 4 × 2 × 2 = 16

4. Partial state by set partition with

Ω(1) = = C = {C0, C1, C2, C3} (J1 = 4)

Ω(2) = Ω(3) = A (J2 = J3 = 1)

ω′′′′
k = (µk; Ik−1(1)) S′′′′ = Sc

J1

2
= 4 × 2 = 8

5. Partial state by memory truncation with Q = 0 (code trellis)

ω′′′′′
k = µk S′′′′′ = Sc = 4
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TCM on ISI channel
Performance vs. complexity for RSSD

4 5 6 7 8 9 10 11 12
Eb /N0 (dB)

10
-4

10
-3

10
-2

10
-1

B
E

R

(4,1)
(4,2)
(4,3)
(4,4) 
(16,4)
(16,16)
(32,32)
No ISI

• TC-16QAM

• 4-tap channel

• reduced-estimator PSP
with (S,N )

• S = 2048: full combined
code/ISI trellis

• S = 32: reduced combined
code/ISI trellis (case 1)

• S = 16: reduced combined
code/ISI trellis (case 2)

• S = 4: code trellis (case 5)

• Reference curve for no ISI
Figure reproduced from:

– R. Raheli, G. Marino, P. Castoldi, “Per-survivor processing and tentative decisions: what is in
between?,” IEEE Trans. Commun., pp. 127-129, Feb. 1996. 148
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Reduced-search algorithms
Motivation

Reduced-search (or sequential) algorithms may be used to search a small part
of a large FSM trellis diagram or non-FSM tree diagram

As opposed to state-complexity reduction, the original full-complexity trellis
(or tree) diagram is searched in a partial fashion

These algorithms date back to the pre-Viterbi algorithm era. They were first
proposed for decoding convolutional codes. The denomination “sequential”
emphasizes the “novelty” compared to the then-established algebraic
decoding of block codes

These algorithms can be applied to any system characterized by large memory
or state complexity (if a FSM model hold)

If optimal processing is infeasible, any type of suboptimal processing may
deserve our attention. Ranking of suboptimal solutions is difficult because of
lacking of reference criteria

RSSD must be considered but an alternative among many others
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Reduced-search algorithms
A general formulation of breadth-first detection

Assume a FSM model hold and let S be the number of states (full-size trellis)

Partition the S states into C (disjoint) classes

Mantain B paths per class selecting those which maximize the APPs under
the constraint imposed by the partition rule and class structure

The resulting search algorithm may be denoted as SA(B,C)

Special cases:

B > 1 and C = S ⇒ list Viterbi algorithms with B survivors per state

B = 1 and C = S ⇒ classical Viterbi algorithm

B = 1 and C < S ⇒ RSSD with C states

B > 1 and C < S ⇒ list RSSD with B survivors per state and C states

B = M and C = 1 ⇒ M-algorithm
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Reduced-search algorithms
A general formulation of breadth-first detection (cntd)

Whenever C < S, PSP allows the branch metrics to be defined

PSP also allows the above formalization to be applied when an FSM model
does not hold (S → ∞)

Define the complexity level as the total number of paths being traced, i.e.,
BC

Imposing a constraint on complexity, i.e., BC ≤ η, constrained optimality
can be defined

According to this criterion, the M-algorithm is considered the constrained
optimal search algorithm

– T. Aulin, “Breadth-first maximum likelihood sequence detection: basics,” IEEE Trans.
Commun., pp. 208-216, Feb. 1999.
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Complexity reduction
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Complexity reduction
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4. Classical applications of PSP

4.2 Linear predictive detection for fading channels

Outline

1. Review of detection techniques

2. Detection under parametric uncertainty

3. Per-Survivor Processing (PSP): concept and historical review

4. Classical applications of PSP:

4.1 Complexity reduction

4.2 Linear predictive detection for fading channels

4.3 Adaptive detection

5. Advanced applications of PSP
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Linear modulation on flat fading channel
System model

Model of discrete observable:

rk = fk ck + wk

{fk}: circular complex Gaussian random sequence

{ck}: code sequence

{wk}: i.i.d. Gaussian noise sequence with variance σ2
w

Coding rule: {
ck = o(ak, µk)

µk+1 = t(ak, µk)

µk: encoder state

Conditional statistics of the observation are Gaussian
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Linear modulation on flat fading channel
Does a FSM model hold?

Conditional statistics of the observation:

p(rk|rk−1
0 , ak

0) =
1

πσ̄2
k(ak

0)
exp

[
− |rk − r̄k(ak

0)|2

σ̄2
k(ak

0)

]

Conditional mean
r̄k(ak

0) = E{rk|rk−1
0 , ak

0}

Conditional variance

σ̄2
k(ak

0) = E{|rk − r̄k(ak
0)|2 |rk−1

0 , ak
0}

The conditional mean and variance depend on the entire previous code
sequence:

⇒ unlimited memory
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Linear predictive detection
Markov assumption

These receivers are based on the approximation

p(rk|rk−1
0 , ak

0) ' p(rk|rk−1
k−ν, a

k
0)

where integer ν > 0 must be sufficiently large

Intuitive motivation: “old” observations do not add up much information to
the current observation, given the immediately preceding ones

If this condition were strictly met, the random sequence rk would be Markov
of order ν, conditionally upon ak

0

This Markov assumption is never verified in an exact sense for realistic fading
models. Even assuming a Markov fading model, thermal noise destroys the
Markovianity in the observation.

The quality of this approximation depends on the autocovariance sequence of
the fading process fk and the value of ν, which is an important design
parameter
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Linear predictive detection
Problem 10

Assume a first-order autoregressive fading model

fk+1 =

√
1 − ρ2 fk + ρ vk

0 ≤ ρ ≤ 1 is a constant

{vk} is an i.i.d. zero-mean Gaussian sequence with variance σ2
v

A. Show that the fading sequence is Markov of first order

Assume f0 is Gaussian with variance σ2
v

B. Show that {fk} is a stationary Gaussian sequence

C. Check if the conditional observation {rk} satisfies a Markov property.
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Linear predictive detection
Conditional observation

For Markovian observation, we may concentrate on

p(rk|rk−1
k−ν, a

k
0) =

1

πσ̂2
k(ak

0)
exp

[
− |rk − r̂k(ak

0)|2

σ̂2
k(ak

0)

]

The conditional mean and variance

r̂k(ak
0) = E{rk|rk−1

k−ν, a
k
0}

σ̂2
k(ak

0) = E{|rk − r̂k(ak
0)|2 |rk−1

k−ν, a
k
0}

are the ν-th order mean-square prediction of current observation rk, given the
previous ν observations and the information sequence, and the relevant
prediction error, respectively

Note the difference with respect to the previously introduced notation r̄k(ak
0)

and σ̄2
k(ak

0), which denoted similar quantities given the entire previous

observation history rk−1
0 (k-th order prediction at time k)
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Linear predictive detection
Linear prediction

For zero-mean Gaussian random sequences, the conditional mean (i.e., the
mean-square prediction) is linear in the observation

r̂k(ak
0) = E{rk|rk−1

k−ν, a
k
0} =

ν∑

i=1

pi,k(ak
0) rk−i

At time k, the linear prediction coefficients pi,k and the mean-square

prediction error σ̂2
k are the solution of the (linear) matrix equation (Wiener-Hopf)

Rk(ak
0) p = q

where
Rk(ak

0) = E
{
rk
k−ν

(
rk
k−ν

)H
∣∣∣ ak

0

}

p = [1,−p1,−p2, . . . ,−pν]T

q = (σ̂2, 0, . . . , 0︸ ︷︷ ︸
ν zeros

)T

The observation correlation matrix Rk(ak
0) incorporates the dependence on

the data sequence ak
0 and vectors p and q include the unknowns
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Linear predictive detection
Finite-memory condition

Given the flat fading model, the observation vector can be expressed as

rk
k−ν = Ck fk

k−ν + wk
k−ν

where Ck = diag(ck
k−ν)

Rk(ak
0) = E

{
rk
k−ν

(
rk
k−ν

)H
∣∣∣ ak

0

}

= E
{[

Ck fk
k−ν + wk

k−ν

] [
(fk

k−ν)H CH
k + (wk

k−ν)H
] ∣∣∣ ak

0

}

= Ck FCH
k + σ2

w I = R(ck, ζk)

and F = E
{
fk
k−ν

(
fk
k−ν

)H
}

is the fading correlation matrix, which does not

depend on k assuming stationary fading

The dependence of Rk(ak
0) on the information sequence can be compacted

into the code sequence ck
k−ν, hence in a suitably defined transition with state

ζk = (µk; ck−1, ck−2, . . . , ck−ν)
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Linear predictive detection
Finite-memory condition (cntd)

Since
Rk(ak

0) = R(ck, ζk)

a similar dependence characterizes the prediction coefficients, the conditional
mean and variance, and the entire conditional statistics of the observation

pi(a
k
0) = pi(ck, ζk)

r̂k(ak
0) = r̂k(ck, ζk) =

ν∑

i=1

pi(ck, ζk) rk−i

σ̂2
k(ak

0) = σ̂2(ck, ζk)

p(rk|rk−1
k−ν, a

k
0) = p(rk|rk−1

k−ν, ck, ζk)

where unnecessary time indexes can be dropped assuming a stationary fading
regime

We may conclude that

Markov assumption ⇒ finite memory
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Linear predictive detection
Problem 11

Assume {xk} is a stationary time-discrete random process with
autocorrelation sequence E{xk+mx∗k} = ρm

Let x̂k =
∑ν

i=1 pixk−i denote the linear prediction of xk, given the
previous ν samples xk−1, xk−2, . . . , xk−ν. The prediction coefficients
{pi}ν

i=1 minimize the mean-square prediction error σ̂2 = E{|xk − x̂k|2}
A. Show that the prediction coefficients {pi}ν

i=1 and the minimum

prediction error σ̂2 are the solution of the Wiener-Hopf equation

X p = q

where
X = E

{
xk

k−ν

(
xk

k−ν

)H
}

p = [1,−p1,−p2, . . . ,−pν]T

q = (σ̂2, 0, . . . , 0︸ ︷︷ ︸
ν zeros

)T

B. Show that the linear prediction coincides with the mean-square prediction
when {xk} is a zero-mean Gaussian sequence 163
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Linear predictive detection
Branch metrics

The resulting branch metrics are

γk(ck, ζk) = ln p(rk|rk−1
k−ν, ck, ζk) + ln P [ak(ck, ζk)]

∝ − |rk − r̂k(ck, ζk)|2
σ̂2(ck, ζk)

− ln σ̂2(ck, ζk) + ln P [ak(ck, ζk)]

= − |rk −
∑ν

i=1 pi(ck, ζk) rk−i|2
σ̂2(ck, ζk)

− ln σ̂2(ck, ζk) + ln P [ak(ck, ζk)]

They are based on linear predictions r̂k(ck, ζk) of the current observation rk
based on the previous observations and path-dependent prediction
coefficients
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Linear predictive detection
An interpretation

Based on the conditional Gaussianity of the observation and the Markov
assumption, we can concentrate on the Gaussian p.d.f. p(rk|rk−1

k−ν, ck, ζk)

The conditional mean r̂k(ck, ζk) and variance σ̂2(ck, ζk) can be viewed as
system parameters to be estimated

1. Adopt a linear feedforward data-aided parameter estimator of order ν (see
Section 2)

2. Use a set of estimators by associating one estimator to each trellis path

3. Compute the estimation coefficients in order to minimize the
mean-square estimation error with respect to the random variable rk,
conditionally on the path data sequence

⇒ The resulting estimator is the described path-dependent linear predictor

Linear prediction of rk based on the previous observations is a form of
PSP-based feedforward parameter estimation

We obtained it naturally in the derivation of the detection algorithm
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Linear predictive detection
Alternative formulation of the branch metrics

The observation prediction can be expressed as

r̂k(ck, ζk) = E{rk|rk−1
k−ν, ck, ζk} = E{fkck + wk|rk−1

k−ν, ck, ζk}

= ckE{fk|rk−1
k−ν, ck, ζk} = ckf̂k(ck, ζk)

f̂k(ck, ζk) =

ν∑

i=1

p′′i (ck, ζk)
rk−i

ck−i(ζk)

f̂k(ck, ζk) denote path-dependent linear predictions of the fading coefficient
at time k, based on previous observations

p′′i (ck, ζk) are path-dependent linear prediction coefficients of the fading
process based on previous observations of noisy fading-like path-dependent
sequences {ri/ci(ζk)}k−1

i=k−ν

⇒ pi(ck, ζk) = p′′i (ck, ζk)
ck

ck−i(ζk)
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Linear predictive detection
Alternative formulation of the branch metrics (cntd)

The mean-square prediction error of observation and fading are similarly
related by

σ2(ck, ζk) = E{|rk − r̂k(ck, ζk)|2|rk−1
k−ν, ck, ζk}

= E{|fkck + wk − ckf̂k(ck, ζk)|2|rk−1
k−ν, ck, ζk}

= |ck|2ε2(ck, ζk) + σ2
w

ε2(ck, ζk) = E{|fk − f̂k(ck, ζk)|2|rk−1
k−ν, ck, ζk}

The branch metrics can be expressed as

γk(ck, ζk) = − |rk − ckf̂k(ck, ζk)|2
|ck|2ε2(ck, ζk) + σ2

w
− ln

[
|ck|2ε2(ck, ζk) + σ2

w

]

+ ln P [ak(ck, ζk)]
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Linear predictive detection
An interpretation of the alternative formulation

The observation model rk = fkck + wk satisfies a parameter-conditional
finite memory property by viewing fk as an undesired parameter (see
Section 2)

For estimating this parameter we could:

1. Adopt a linear feedforward data-aided parameter estimator of order ν (see
Section 2)

2. Use a set of estimators by associating one estimator to each trellis path

3. Compute the estimation coefficients in order to minimize the
mean-square estimation error with respect to the random variable rk/ck,
conditionally on the path data sequence

⇒ The resulting estimator is exactly the described path-dependent linear
predictor

Linear prediction of fk based on the previous observations is a form of
PSP-based feedforward parameter estimation
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Linear predictive detection
Computation of the fading prediction coefficients

The fading prediction coefficients p′′i (ck, ζk) and mean-square prediction error

ε2(ck, ζk) are the solution of the following Wiener-Hopf equation
(
F + σ2

wC̃k

)
p′′ = q′′

where
F = E

{
fk
k−ν

(
fk
k−ν

)H
}

C̃k = diag
(

1
|ck|2

, 1
|ck−1|2

, . . . , 1
|ck−ν|2

)

p′′ =
[
1,−p′′1 ,−p′′2 , . . . ,−p′′ν

]T

q′′ = (ε2 +
σ2

w
|ck|2

, 0, . . . , 0︸ ︷︷ ︸
ν zeros

)T

The dependence of the solution on the hypothetical sequence is only through
the moduli of the code symbols

For code symbols with constant modulus, the solution is path-independent
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Linear predictive detection
Special case: Coded PSK

For code symbols with constant modulus |ck| = 1 (e.g., PSK), the fading
prediction coefficients p′′i and mean-squared prediction error ε2 are
path-independent

The branch metrics simplify as

γk(ck, ζk) = − |rk − ckf̂k(ζk)|2 + (ε2 + σ2
w) ln P [ak(ck, ζk)]

= −
∣∣∣∣rk − ck

ν∑

i=1

p′′i
rk−i

ck−i(ζk)

∣∣∣∣
2

+ (ε2 + σ2
w) ln P [ak(ck, ζk)]

This solution is remarkably similar to what we would obtain in a decomposed
estimation-detection design by estimating the “undesired” parameter fk
according to PSP

The (Gaussian) prediction error variance ε2 affects the “overall” thermal noise
power
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Linear predictive detection
Problem 12

Consider the mean-square prediciton of fk given the previous ν fading

samples fk−1
k−ν and let {p′i}ν

i=1 denote the linear prediction coefficients for
this problem

A. Show that the fading prediction coefficients {p′′i (ck, ζk)}ν
i=1 equal

{p′i}ν
i=1 in the limit of vanishing noise power

Consider the first-order autoregressive fading model described in
Problem 10 in a stationary regime and a constellation of unit-modulus
code symbols

B. Show that the ν-th order prediction coefficients {p′i}ν
i=1 satisfy p′1 = ρ,

p′2 = · · · = p′ν = 0

C. Show that the ν-th order prediction coefficients {p′′i }ν
i=1 are not zero for

σ2
w 6= 0
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Linear predictive detection
State-complexity reduction

The state-complexity of a linear predicition receiver can be naturally
decoupled from the prediction order ν by means of state reduction techniques

For simplicity we consider folding by memory truncation, but set partitioning
could be used as well

Let Q < ν denote the memory parameter to be taken into account in the
definition of reduced trellis state

ωk = (µk; ck−1, ck−2, . . . , ck−Q)

The branch metrics can be obtained by defining a pseudo state

ζ̃k(ωk) = (µk; ck−1, . . . , ck−Q︸ ︷︷ ︸
ωk

, c̆k−Q−1(ωk), . . . , c̆k−ν(ωk))

c̆k−Q−1(ωk), . . . , c̆k−L(ωk) are the code symbols in the survivor of state ωk
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Linear predictive detection
State-complexity reduction: branch metrics

The branch metrics in the reduced-state trellis can be defined as usual
according to

γ̃k(ck, ωk) = γk(ck, ζ̃k(ωk))

For coded PSK the branch metrics are

γ̃k(ck, ωk) = − |rk − ckf̂k(ζ̃k(ωk))|2 + (ε2 + σ2
w) ln P [ak(ck, ωk)]

= −
∣∣∣∣rk − ck

Q∑

i=1

p′′i
rk−i

ck−i(ωk)
− ck

ν∑

i=Q+1

p′′i
rk−i

c̆k−i(ωk)

∣∣∣∣
2

+ (ε2 + σ2
w) ln P [ak(ck, ωk)]

The prediction order ν and assumed memory Q are design parameters to be
jointly optimized by experiment to yield a good compromise between
performance and complexity
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Linear predictive detection
Performance vs. ideal CSI

•QPSK (M = 4)

• time-varying flat Rayleigh fading

•BT : max Doppler rate

• ν = 10, Q = 2 (16 states)

• Periodically inserted pilot symbols
(one every 9 data symbols)

• Reference curve for ideal
channel state information (CSI)

Figure reproduced from:

– G. M. Vitetta, D. P. Taylor, “Maximum likelihood decoding of uncoded and coded PSK signal
sequences transmitted over Rayleigh flat-fading channels,” IEEE Trans. Commun., vol. 43,
pp. 2750-2758, Nov. 1995 174
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Linear predictive detection
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Linear predictive detection
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4. Classical applications of PSP

4.3 Adaptive detection
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Adaptive detection
Motivation

Channel model parameters can be time-varying (e.g., carrier phase, timing
epoch, and channel impulse response)

A receiver based on the estimation-detection decomposition must be able to
track these time variations, provided they are not too fast

The receiver must adapt itself to the time-varying channel conditions

PSP may be useful in adaptive receivers:

a) The per-survivor estimator associated with the best survivor is derived from
data information which can be perceived as high-quality zero-delay decisions

⇒ Useful in fast time-varying channels

b) Many hypothetical data sequences are simultaneously considered in the
parameter estimation process

⇒ Acquisition without training (blind) may be facilitated
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Adaptive detection
PSP-based feedforward parameter estimation

Assume a parameter-conditional FSM model with state σk

PSP-based feedforward data-aided parameter estimator at time k

θ̆k(σk) = p
[
rk−1
k−ν, c̆

k−1
0 (σk)

]

Function of the ν most recent signal observations rk−1
k−ν and the per-survivor

aiding data sequence c̆k−1
0 (σk)

Branch metrics at time k

γk(ak, σk) = ln p
[
rk|rk−1

0 , ak, σk, θ̆k(σk)
]

+ ln P (ak)

Update of the parameter estimator at time k + 1

θ̆k+1(σk+1) = p
[
rk
k−ν+1, c̆

k
0(σk+1)

]

These estimates are simply recomputed for the new observation vector
rk
k−ν+1 and each new survivor sequence c̆k

0(σk+1)

An example is the linear predictive receiver for fading channels 179
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Adaptive detection
PSP-based feedback parameter estimation

Assume a parameter-conditional FSM model with state σk

PSP-based feedback data-aided parameter estimator θ̆k(σk)

Branch metrics

γk(ak, σk) = ln p
[
rk|rk−1

0 , ak, σk, θ̆k(σk)
]

+ ln P (ak)

Update of the parameter estimator

θ̆k+1(σk+1) = q
[
θ̆

k
k−ξ+1(σk), rk

k−ν+1, c̆
k
0(σk+1)

]

These estimates are computed for the ν most recent observations rk
k−ν+1

and each new survivor sequence c̆k
0(σk+1)

The previous ξ parameter values θ̆
k
k−ξ+1(σk) are those associated with the

survivors of states σk in the transitions (σk → σk+1) selected during the ACS
step

Feedback parameter estimation is usually implied in adaptive receivers 180



Riccardo Raheli — Introduction to Per-Survivor Processing — c© 2004 by CNIT, Italy

Adaptive detection
Tentative decisions can be used

In feedforward and feedback parameter estimation, tentative decisions ˆ̂ck
0

can be used in place of the survivor data sequences c̆k
0(σk+1) for updating

the parameter estimate

The parameter estimate becomes universal, i.e., identical for all survivors

Formally, the updating recursions yield identical estimates for all survivors

The parameter estimator becomes external to the detection block

During training the correct data sequence would be used
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Tracking of a dispersive time-varying channel
System model and notation

Model of linearly modulated discrete observable (slow variation)

rk =

L∑

l=0

fl,k ck−l + wk = fT
k ck + wk

fk = (f0,k, f1,k, . . . , fL,k)T : overall time-varying discrete equivalent impulse
response at the k-th instant

ck = (ck, ck−1, . . . , ck−L)T : code sequence with FSM model of state µk

σk = (ak−1, ak−2, . . . , ak−L; µk−L) : system state

ck(ak, σk) = [ck(ak, µk), ck−1(ak−1, µk−1), . . . , ck−L(ak−L, µk−L)]T :
code symbol vector uniquely associated with the considered trellis branch
(ak, σk), in accordance with the coding rule
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Tracking of a dispersive time-varying channel
LMS adaptive identification

Least Mean Squares (LMS) adaptive identification

f̂k+1 = f̂k + β (rk+1−d − f̂T
k ck+1−d) c∗k+1−d

β compromises between adaptation speed and algorithm stability

Branch metrics

γk(ak, σk) = −|rk − f̂T
k ck(ak, σk)|2 + σ2

w ln P (ak)

In the (tentative) decision-directed tracking mode

f̂k+1 = f̂k + β (rk+1−d − f̂T
k

ˆ̂ck+1−d)
ˆ̂c∗k+1−d

ˆ̂ck+1−d = (ˆ̂ck+1−d, ˆ̂ck−d, . . . , ˆ̂ck+1−d−L)T

d ≥ 1 to comply with the causality condition upon the data
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Tracking of a dispersive time-varying channel
PSP-based LMS adaptive identification

Branch metrics

γk(ak, σk) = −|rk − f̆k(σk)Tck(ak, σk)|2 + σ2
w ln P (ak)

Channel estimate update recursions

f̆k+1(σk+1) = f̆k(σk) + β
[
rk − f̆k(σk)T c̆k(ak, σk)

]
c̆∗k(ak, σk)

c̆k(ak, σk) = [c̆k(ak, σk), c̆k−1(σk), . . . , c̆k−L(σk)]T

The parameter estimate update recursions must take place along the
transitions (σk → σk+1) which extend the survivors of states σk, i.e., those
selected during the ACS step at time k
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Adaptive detection
LMS tracking of a dispersive fading channel
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Figure reproduced from:

– R. Raheli, A. Polydoros, C. K. Tzou, “Per-survivor processing: a general approach to MLSE
in uncertain environments,” IEEE Trans. Commun., pp. 354-364, Feb.-Apr. 1995. 185
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Adaptive detection
LMS tracking of a dispersive fading diversity channel
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Joint detection and phase synchronization
System model

Model of linearly modulated discrete observable (slow variation)

rk = ejθk ck + wk

θk : channel-induced phase rotation

{ck} : code sequence with FSM model of state µk

{wk} : i.i.d. Gaussian noise sequence with variance σ2
w

First order data-aided Phase-Locked Loop (PLL)

θ̂k+1 = θ̂k + η Im
{

rk+1−d e−jθ̂k c∗k+1−d

}

η controls the loop bandwidth
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Joint detection and phase synchronization
Decision-directed phase tracking

Branch metrics

γk(ak, µk) = −|rke
−jθ̂k − ck(ak, µk)|2 + σ2

w ln P (ak)

ck(ak, σk) : code symbol branch label

PLL phase-update (feedback) recursion

θ̂k+1 = θ̂k + η Im
{

rk+1−d e−jθ̂k ˆ̂c∗k+1−d

}

The tentative decision delay must comply with the causality condition upon
the detected data, which implies d ≥ 1.
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Joint detection and phase synchronization
PSP-based phase tracking

Branch metrics:

γk(ak, µk) = −|rk e−jθ̆k(µk) − ck(ak, µk)|2 + σ2
w ln P (ak)

Phase estimate update recursion:

θ̆k+1(µk+1) = θ̆k(µk) + η Im
{
rk e−jθ̆k(µk) c̆∗k(ak, µk)

}

c̆∗k(akµk) is the code symbol associated with the transition (ak, µk)

The phase estimate update recursions must take place along the transitions
(µk → µk+1) which extend the survivors of states µk, i.e., those selected
during the ACS step at time k
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Adaptive detection
Joint TCM decoding and phase synchronization
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Adaptive detection
Phase acquisition of PLL and VT

• TC-8PSK (4 states)

• 1st order PLL

• 1st order vector tracker (VT)

•With system in lock, a phase step
∆φ is applied at time zero

• Phase evolution is monitored until
the phase error reduces to ±10◦

• Acquisition time in symbol
periods vs. ∆φ

•Es/N0 = 10 dB

•BEQT = 10−2

Figure reproduced from:

– A. N. D’Andrea, U. Mengali, and G. M. Vitetta, “Approximate ML decoding of coded PSK
with no explicit carrier phase reference,” IEEE Trans. Commun., pp. 1033-1039, Feb.-Apr.
1994. 191
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Adaptive detection
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5. Advanced applications of PSP
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Iterative detection
Motivation

Iterative, or turbo, detection/decoding was first proposed as a suboptimal
algorithm for decoding special very powerful channel codes, widely known as
turbo codes

Turbo codes are a parallel concatenation of simple component recursive
convolutional codes through a long permuter, or interleaver

The principle of iterative detection/decoding can be applied to any parallel or
serial concatenation of FSM models:

a) Each FSM model is detected/decoded by means of a suitable soft-input
soft-output (SISO) module accounting for that model

b) The soft-outputs of the various modules are passed to other modules, which
refine the detection/decoding process in a next iteration

c) The process can be iterated several times and usually converges in a few steps

Since the channel can be typically modeled as a FSM, exactly or
approximately, joint iterative detection of the received signal and decoding of
a possible channel code can be performed
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Iterative detection
Soft-input soft-output (SISO) modules

A SISO module processes the soft-information received from other modules
and combines it with the possible observation of the channel output

The input soft-information can be accounted for by assigning proper values to
the a priori probabilities of the information or code symbols

⇒ This is the reason for having so diligently accounted for these probabilities
in the various branch-metric expressions

In non-iterative detection, we are allowed to eliminate the a priori symbol
probabilities from the very beginning, on the basis of the reasonable
assumption that they have equal values (hence, they are irrelevant)

The output soft-information is computed on the basis of the APPs of the
possible information or code symbols
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Iterative detection
PSP-based SISO modules

A SISO module computes the APPs of the information symbols by means of
a forward-backward (FB) or soft-output Viterbi algorithm

Soft-output Viterbi algorithms estimate a reliability value of any decision by
comparing the metrics of best paths to those of their competitors

The max-log approximation of the FB algorithm allows a direct application of
PSP to the two counter-running Viterbi algorithms (in direct and inverse time)

Soft-output Viterbi algorithms can be readily augmented with PSP

These remarks entitle us to exploit any possible application of PSP in the
soft-output modules used in iterative decoding, e.g. for:

Complexity reduction

Linear predictive detection

Adaptive detection
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Concatenation of code and ISI channel
Reduced-state iterative detection/decoding
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Concatenation of code and ISI channel
Reduced-state iterative detection/decoding

0 1 2 3 4 5 6 7 8 9 10 11
Eb/N0 [dB]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

ζ ’=2, L=4, Q=1
ζ ’=4, L=4, Q=2
ζ ’=8, L=4, Q=3
ζ=16, L=4, Q=4
No ISI

 1 iteration

 6 iterations

• Outer rate-1/2 16-state recursive
systematic convolutional code (RSC)

• Code generators:
G1 = (23)8 and G2 = (35)8

• 64 × 64 pseudo-random interleaver

• BPSK

• Known static ISI

• ζ ′ = number of states in reduced-state
trellis

• 1 and 6 iterations

• Reference curve for ideal channel

Figure reproduced from:

– G. Colavolpe, G. Ferrari, R. Raheli, “Reduced-state BCJR-type algorithms,” IEEE J. Select.
Areas Commun., vol. 19, pp. 848-859, May 2001. 198



Riccardo Raheli — Introduction to Per-Survivor Processing — c© 2004 by CNIT, Italy

Concatenation of code and fading channel
Linear-predictive iterative detection/decoding
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Concatenation of code and fading channel
Linear-predictive iterative detection/decoding
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Noncoherent detection
Motivation

In virtually any bandpass transmission system, the carrier phase reference is
not known by the receiver

In coherent detection this phase reference must be recovered by the receiver,
provided it is sufficiently stable, according to the synchronization-detection
decomposition

Noncoherent detection assumes complete absence of knowledge about the
phase reference—an effective approach if the phase is unstable

A nonchoerent channel introduces unlimited memory in the
signal—suboptimal detection algorithms are in order
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Noncoherent detection
Unlimited memory

Discrete channel model

rk = cke
jθ + wk

The conditional p.d.f. of the observation is

p(rk|rk−1
0 , ak

0) =
p(rk

0 |ak
0)

p(rk−1
0 |ak−1

0 )
=

e−(|rk|2+|ck|2)/σ2
w

πσ2
w

I0

[
2

σ2
w

∣∣(rk
0)Hck

0

∣∣
]

I0

[
2

σ2
w

∣∣(rk−1
0 )Hck−1

0

∣∣
]

In fact

p(rk
0 |ak

0) =
1

2π

∫ 2π

0
p(rk

0 |ak
0 , θ)dθ

=
1

2π(πσ2
w)k+1

∫ 2π

0
e−(||rk

0−ck
0e

jθ||2)/σ2
w dθ

=
1

2π(πσ2
w)k+1

e−(||rk
0 ||2+||ck

0 ||2)/σ2
w

∫ 2π

0
e(2Re{(rk

0)Hck
0e

jθ})/σ2
w dθ

=
1

(πσ2
w)k+1

e−(||rk
0 ||2+||ck

0 ||2)/σ2
w I0

[
2

σ2
w

∣∣(rk
0)Hck

0

∣∣
]
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Noncoherent detection
Feedforward PSP-based phase estimation

Data-aided mean-square phase estimate based on N most recent observations
rk−1
k−N

e−jθ̂ =
(rk−1

k−N )Hck−1
k−N∣∣(rk−1

k−N )Hck−1
k−N

∣∣

Branch metrics:

γk(ck, µk) = −
∣∣rk e−jθ̆k(µk) − ck

∣∣2 + σ2
w ln P [ak(ck, µk)]

∝ Re
{
rkc

∗
k e−jθ̆k(µk)} − |ck|2

2
+

1

2
σ2

w ln P [ak(ck, µk)]

=
Re

{
rkc

∗
k · (rk−1

k−N )H c̆k−1
k−N (µk)

}
∣∣(rk−1

k−N )H c̆k−1
k−N (µk)

∣∣ − |ck|2
2

+
σ2

w

2
ln P [ak(ak, µk)]

The trellis state µk can be augmented to include part of the phase memory

ωk = (µk; ck−1, ck−2, . . . , ck−Q) Q ≤ N
203



Riccardo Raheli — Introduction to Per-Survivor Processing — c© 2004 by CNIT, Italy

Feedforward phase estimation
Problem 13

Consider the random-phase discrete channel model

rk = cke
jθ + wk

Define a feedforward data-aided phase estimate θ̂ based on the previous
N observations by minimizing the mean-square error

E
{∥∥rk−1

k−N − ck−1
k−Nejθ̂

∥∥2
∣∣∣ck−1

k−N

}

A. Show that this estimate must verify the condition

e−jθ̂ =
(rk−1

k−N )Hck−1
k−N∣∣(rk−1

k−N )Hck−1
k−N

∣∣

B. Show that the result in part A coincides with the data-aided
maximum-likelihood phase estimate based on the previous N observations
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Noncoherent sequence detection
Feedforward PSP-based phase estimation
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Figure reproduced from:

– G. Colavolpe, R. Raheli, “On noncoherent sequence detection of coded QAM”, IEEE
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Detection in MIMO systems
Motivation

Multiple-input multiple-output (MIMO) systems arise in a number of
current scenarios:

a) Multiuser detection, or code division multiple access (CDMA), when the
user of interest is interfered by other users due to non-orthogonal or
non-synchrounous codes

b) Receive- and transmit-diversity systems, e.g., the well known space-time
coded systems for fading channels

c) Orthogonal frequency division multiplexing (OFDM) currently used as
a modulation scheme in many systems (xDSL, DAB, DVB, WLAN, . . . ),
just to mention a few

d) Information storage, such as magnetic or optical memories, e.g., due to the
multitrack interference in magnetic recording systems
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Detection in MIMO systems
The basic approach

MIMO systems are multidimensional versions of transmission (or storage)
systems and can be described by a suitable vector or matrix notation

In some cases the increased system dimensionality can be exploited, e.g. in
space-time coding

Most detection techniques can be applied to MIMO systems in a conceptually
straightforward manner by a proper notational extension

The complexity may be an issue due to the increased dimensionality (not only
notationwise)
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Detection in MIMO systems
General system model

encoder det./dec.

MAP

MIMO

channel
MIMO

MIMO

(ST)...

... ...

C RA ̂A

...

A : input information matrix (N × K) (or N ′ × K)

C : code matrix (N × K)

R : received matrix (M × K)

Â : detected information matrix (N × K) (or N ′ × K)

Rows and columns may represent the “space” and time dimensions, respectively

Notation: for an (N ×K) matrix X, nXk is element (n, k), nX is the n-th

row, Xk is the k-th column, and
n2
n1X

k2
k1

is an (n2−n1)× (k2−k1) submatrix
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Detection in MIMO systems
MAP strategies

MAP block detection
Â = argmax

A
P (A|R)

MAP sequence detection

nÂ
K−1
0 = argmax

nA
K−1
0

P (nA
K−1
0 |R)

MAP symbol detection

nÂk = argmax
nAk

P (nAk|R)

Finite memory systems

p(Rk|Rk−1
0 ,Ak

0) = p(Rk|Rk−1
0 ,Ak, σk)

where vectors Rk and Ak are the signal received and the information
transmitted at time k (i.e., over “space”), respectively, and σk is a suitably
defined system state
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