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Abstract

In this paper, we consider serially concatenated
schemes with outer novel and efficient Low Density
Parity Check (LDPC) codes and inner modulations ef-
fective against channel impairments, or LDPC coded
modulations. With a pragmatic approach, we show how
to design LDPC codes tailored for simple and robust
modulation formats, like Differentially Encoded (DE)
modulations. The LDPC codes are optimized through
the use of a recently proposed analysis technique based
on EXtrinsic Information Transfer (EXIT) charts. In
particular, we optimize the degree distributions of the
LDPC codes, obtaining significant insights into the
impact of such distributions on the performance of
the proposed concatenated schemes. The EXIT chart-
based optimization is confirmed by numerical simula-
tions, considering Differential M-ary Phase Shift Key-
ing (DMPSK) at the transmitter side, and iterative
demodulation/decoding at the receiver side. The ob-
tained optimized codes show poor performance if not
concatenated with the inner DE. The analysis of the
optimized codes shows that the decoding complexity
of these codes is lower, with respect to that of stan-
dard LDPC codes, i.e., optimized for the additive white
Gaussian noise (AWGN) channel.

1. Introduction

New channel coding techniques, like Turbo Codes
(TC) [1] and Low Density Parity Check (LDPC) codes
(originally invented in [2], and recently rediscovered [3])
are finding increasing applications in practical commu-
nication systems. In particular, TC have been thor-
oughly investigated, expecially with regard to their in-
ternal structure, consisting of well known convolutional
encoders [4] and interleavers. Based on their simple
internal structure, the parametric space of TC is dis-
crete, in the sense that TC design parameters are re-
lated to the component convolutional codes (and the
interleaver). This prevents the use of simple code opti-

mization algorithms. LDPC codes, on the other hand,
offer a practical way of optimization over a continuous
space of design parameters, i.e., the degree distribu-
tions, which correspond to polynomials with positive
real coefficients. In [5], it is shown how to partition
the set of all LDPC codes in equivalence classes on
the basis of their degree distributions. In [6], the au-
thors optimize LDPC codes for transmissions over a
Multi-Input Multi-Output (MIMO) channel through a
MIMO modulator, in correspondence of which there is,
at the receiver side, a Soft-Input Soft-Output (SISO)
demodulator.

The goal of this paper is to show that there exist
good LDPC codes to be used with modulations robust
to phase uncertainties, typically present at the detec-
tor input in bandpass systems, and how to design such
codes. As an example, in a coherent system, the detec-
tor has to deal with phase ambiguities due to the sym-
metry of the signal constellation. Indeed, experience
shows that the use of a code designed for communica-
tion over the Binary Input Additive White Gaussian
Noise Channel (BI-AWGN), i.e., the most investigated
channel for LDPC codes, yields poor performance in
the presence of an inner coded modulator [7]. In this
paper, we concentrate on conventional Differential En-
coding (DE) for M-ary Phase Shift Keying (MPSK)
because of its well known robustness against most com-
mon channel impairments and its wide range of appli-
cations.

The proposed optimization technique is based on
the approach presented in [6] and on the use of EXtrin-
sic Information Transfer (EXIT) charts, originally in-
troduced in [8] for the convergence analysis of TC. This
approach can take into account channel impairments,
which are usually neglected in other simpler and ap-
proximated analysis methods. The obtained “ad-hoc”
LDPC codes optimized for DE perform in the near-
capacity region, confirming the validity of our design
methodology.

The paper outline is as follows. In Section 2, we
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briefly introduce the necessary background. In Sec-
tion 3, the considered transmission system is presented
and discussed. In Section 4, we introduce the EXIT
chart-based analysis of the convergence behavior of the
decoding process. In this section, we also make some
remarks about the necessity of ad-hoc optimization of
LDPC codes and we outline how to use this technique
to design good LDPC codes to be used with a generic,
possibly coded, modulation format. In Section 5, we
investigate, on the basis of numerical simulations, the
behavior of serially concatenated schemes with outer
LDPC codes and inner DE-PSK. Section 6 concludes
the paper.

2. Background

In this section, we first introduce LDPC codes and
a classification method. We then describe an approxi-
mate analysis technique for iterative decoders, based on
EXIT charts, which leads to great simplifications with
respect to other analysis methods such as those based
on density evolution [9] or Monte Carlo simulations.

2.1. LDPC Codes and Degree Distributions

In linear block codes, a vector of bits y is a code-
word iff Hy = 0, in which H is a binary matrix known
as parity check matrix. In [2], LDPC codes are intro-
duced as linear block codes whose parity check matrix
H is sparse. In [2], it is also shown how to define a
graph, in a one-to-one correspondence with H , consist-
ing of two kinds of nodes (also known as bipartite graph
or Tanner graph). Each node of the first kind, called
check node, is associated with a row of H ; each node
of the second kind, called variable node, is associated
with a column of H . A variable node is connected to
a check node if there is a “1” at the intersection of the
respective row and column of H . This graphical in-
terpretation of a linear block code was used in [2] as
the basis to obtain an asymptotically (in the codeword
length) optimal decoding algorithm, in which each node
sends and receives real-valued messages through the
graph branches. This algorithm has recently been de-
scribed as a particular instance of a broader class of
graph-based algorithms also known as sum-product al-
gorithms [10].

Following the notation in [5], a node has degree
d if it has d branches departing from it. The de-
gree distributions of a code, indicated as λ(x) and
ρ(x), are polynomials defined as ρ(x) ,

∑

j ρjx
j−1

and λ(x) ,
∑

i λix
i−1 respectively, where ρj is the

fraction of branches in the graph connected to degree-
j check nodes and λi is the fraction of branches in
the graph connected to degree-i variable nodes. The
polynomial ρ(x) is also known as the check node de-
gree distribution and λ(x) is also known as the vari-

able node degree distribution. These polynomials can
be used to represent ensembles of codes, whose be-
havior becomes statistically equivalent, for increasing
codeword length [5, 9]. Hence, optimization can be
performed over these continuous-valued polynomials,
assuming that the codeword length is sufficiently large.

Since {ρj} and {λi} correspond to fractions of the
number of branches, they must satisfy the following
conditions:

0 ≤ ρj ≤ 1 j ≥ 1

0 ≤ λi ≤ 1 i ≥ 1
∑

∞

j=1 ρj = 1
∑

∞

i=1 λi = 1 .

(1)

A coefficient ρj of a check node degree distribution can
be equivalently interpreted as the probability of find-
ing a degree-j check node when picking at random one
branch of the graph entering into the check nodes, and
similarly for a coefficient λi.

In [5], the following linear constraint on the degree
distributions, guaranteeing a given code rate R, is in-
troduced:

∞
∑

j=1

ρj

j
= (1−R)

∞
∑

i=1

λi

i
. (2)

The constraint (2) will be embedded in the optimiza-
tion algorithm presented in Section 4.

2.2. SISO detectors and EXIT Charts

A SISO detector for a specific channel is a block
which computes, based on the a priori probabilities of
the transmitted symbols, their a posteriori probabili-
ties, given some constraints on the received signal (or
sequence) due to the channel or the transmitter struc-
ture. A common example of a SISO detector is based
on the use of the forward-backward (FB) algorithm [4].
Without lack of generality, we will consider transmis-
sion of binary symbols —these symbols are then modu-
lated (with high-order modulations) before being trans-
mitted over the channel. In the following, we will also
refer to the quantities at the input and output of a
SISO detector as reliabilities. If a SISO module imple-
ments a maximum a posteriori (MAP) symbol strat-
egy, the generated reliability values correspond to the
a posteriori probabilities (APPs). More generally, the
generated values approximate the APPs.

Since the observations at the output of the SISO
block are representative of the transmitted binary se-
quence, it is possible to compute the Mutual Informa-
tion (MI) between each transmitted bit and its a pos-
teriori reliability at the output of the SISO block. A
possible, and very generic, method for computing the
MI between the output of a SISO block and the trans-
mitted binary sequence can be based on Monte Carlo
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Figure 1: System model: (a) transmitter side and (b)
receiver side.

simulations. An EXIT chart for a SISO block S is a
function IS(I) which plots the average relationship be-
tween the MI of the a priori reliabilities at the input of
the block – indicated by I– and the MI of the a posteri-
ori reliabilities at the output of the block – denoted by
IS. Note that the MI values (both at the input and at
the output) are computed with respect to the original
transmitted sequence.

3. Communication System Model

In Figure 1(a), the model of the transmitter is
shown: it consists of a simple concatenation of an outer
LDPC encoder with an inner coded modulator which is
directly connected to the channel. The goal of the in-
ner block is to make the communication system robust
against possible channel impairments.

In Figure 1(b), the receiver structure is depicted. It
comprises the following blocks:

• A SISO block relative to the coded modulator
and the channel, which computes a posteriori re-
liabilities for the binary symbols at the input of
the coded modulator based on the channel obser-
vations and a priori reliabilities on the symbols,
generated by the block labeled “LDPC VND”
and described below.

• The LDPC Variable Node Detector (VND), rel-
ative to the variable nodes in the code bipartite
graph, computes the reliabilities of each binary
symbol. These reliabilities are sent to the “LDPC
CND” block, described below.

• The LDPC Check Node Detector (CND), rel-
ative to the check nodes in the code bipartite
graph, computes reliabilities of each binary sym-
bol based on the a priori reliabilities received from
the LDPC VND block and based on the relevant
code constraints.

Note that, in all the computations involved in the de-
coding process, only the so-called extrinsic informa-
tion, i.e. the a posteriori probability of a symbol com-
puted assuming complete a priori uncertainty about
that symbol, is exchanged [1]

The iterative decoding algorithm can be described
as follows. As initialization step, the a priori reliabil-
ities at the input of the coded modulator SISO block
correspond to complete uncertainty (the reliability val-
ues from the LDPC VND to the SISO block). At the
first step, the coded modulator SISO block generates
and passes extrinsic information to the LDPC VND
block, which, in turn, computes the extrinsic informa-
tion to be sent to the LDPC CND block. The LDPC
CND block computes extrinsic information values to be
passed to the LDPC VND block, which thus computes
extrinsic information to be passed to the coded modu-
lation SISO block. This algorithm is iterated from the
first step until some stopping condition is satisfied (e.g.,
an LDPC codeword is decoded). Finally, a posteriori
reliabilities, i.e., not simply extrinsic information, are
computed by the LDPC VND block and delivered to
the destination.

4. LDPC Code Optimization Algorithm

In Figure 1(b), the receiver is divided in two su-
perblocks labeled A and B, respectively: block A in-
cludes the SISO decoder and LDPC VND block; block
B includes the LDPC CND block. These superblocks
can be viewed as SISO blocks exchanging extrinsic in-
formation. For each superblock it is possible to plot
the corresponding EXIT chart [8]: IA(I) for block A

and IB(I) for block B. Plotting IA(I) and I−1
B

(I) in
the same diagram, the decoding process can be visual-
ized as a recursive update of the MI in the two EXIT
curves. If the MI eventually goes to 1, one can ex-
pect that the bit error rate (BER) will eventually be
zero. In order for the decoding process to converge, the
IA(I) curve should be always above the I−1

B
(I) curve.

In other words, in this case there is an open path be-
tween IA(I) and I−1

B
(I) which leads to the point (1,1),

and we refer to this situation by saying that the tunnel
is open. If these curves touch, we say that the tun-
nel is at pinch-off. Otherwise, the tunnel is closed. If
the LDPC code satisfies some conditions (i.e., absence
of short cycles in the code graph), one can show that
the EXIT charts are functions only of the degree dis-
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tributions, so that it is possible to optimize the overall
system by finding a good set of degree distributions.

In [6], a heuristic code optimization technique is
proposed, based on fitting the two EXIT chart curves
IA(I) and I−1

B
(I) as functions of the degree distribu-

tions (λ(x), ρ(x)). This technique seems appealing for
the following reason. If, for a given signal-to-noise ra-
tio (SNR), the tunnel between IA(I) and I−1

B
(I) is

at pinch-off, i.e., for a particular value Ipo the EXIT
curves touch but are separated anywhere else, then a
small1 variation of the degree distributions, maintain-
ing the same code rate, might open the tunnel at Ipo.
A possible observation about the fitting optimization
approach can be that it leads to a class of algorithms
that try to generate EXIT curves with the smallest pos-
sible distance.2 However, our actual goal is to keep the
tunnel open. It is reasonable to suppose that increasing
the SNR raises the EXIT curve of block A, and this is
confirmed by experience. Hence, if the distance of the
two EXIT curves, when the tunnel is closed, is small,
an SNR increment should open the tunnel. However,
this could not be true if the tunnel were closed around
the point (IA, IB) = (1, 1): in this region, in fact, an
SNR increment would lead to smaller increments of IA.
This technique is then effective when very accurate fits
are possible, i.e., when the parameter space has a large
dimensionality. In practice, the maximum degrees of
check and variable nodes need to be limited in order to
keep the girth of the graph sufficiently large.

We choose to optimize the degree distributions by
means of a simple algorithm performing a random walk
in the parametric space. Other techniques, such as lin-
ear programming over the check node degree distribu-
tion [11], could be applied with better computational
performance. Nevertheless the chosen technique is sim-
ple and efficient enough to identify a set of “good” de-
gree distributions. The random walk algorithm can be
described as follows.

We define a functional that has to be optimized.
This functional has to be representative of the tunnel
opening: the more the channel is closed, the lower the
functional must be. A possible choice is the following:

f(λ, ρ) , min
I

{

IA(I)− I−1
B

(I)
}

(3)

where we have explicitly indicated the dependence of
the functional on the degree distributions. This choice
guarantees that the optimization algorithm will first
try to open the tunnel, if closed. In fact, it first finds

1We remark that it is possible to consider a small variation

owing to the continuous nature of LDPC codes families in terms

of degree distributions.
2This “distance” could be any reasonable distance: mean

square distance, maximum distance, etc.

the point Imin in correspondence to which the tunnel
is most closed, and then returns the difference between
IA(Imin) and I−1

B
(Imin). This difference is negative if

and only if the tunnel is closed. Indeed, this functional
can not be larger than zero because in (IA, IB) = (1, 1)
the EXIT charts necessarily touch.

Every time a step in the random walk in the design
parameter space leads to a point in correspondence to
which the tunnel is not closed, i.e., f(λ, ρ) = 0, the
channel is worsened (i.e., the SNR is diminished) until
the tunnel closes.

The design parameter space is represented by the
two sets of polynomial coefficients {ρj} and {λi}. Ac-
cording to relations (1) and (2), three parameters are
linearly dependent from the others. Hence, one has
first to choose (i) a parameter from {λi}, (ii) a param-
eter from {ρj} and (iii) an additional parameter, either
from {λi} or {ρj}. Then, these three parameters have
to be expressed as functions of the remaining free pa-
rameters. The numbers of elements of the sets {λi}
and {ρj} can be any, provided that these sets are not
empty and contain at least four elements.

The random walk can be described as follows. Star-
ing from a tuple which satisfies the inequalities in (1), a
new tuple is obtained by adding to the previous tuple a
Gaussian random increment vector with zero mean and
standard deviation s. If this tuple does not satisfy all
the inequalities in (1), a new tuple is generated start-
ing from the previous tuple. This procedure is repeated
until a tuple which satisfies all the inequalities in (1)
is found. From this new tuple, one can compute λ(x)
and ρ(x) and then the new trial value of f(λ, ρ): if this
value is bigger than the previous one, we substitute
the previous tuple with the new one. The algorithm
stops when a specific requirement is met, such as, for
example, the obtained code ensemble corresponds to
an EXIT chart with an open tunnel for a desired SNR,
or a maximum number of iterations is reached. The
steps of the proposed optimization algorithm are sum-
marized in Table 1.

As a possible improvement, one can diminish the
step value s (standard deviation of the Gaussian in-
crement vector) after a given number of unsuccessful
trials. It is also possible to repeat the last successful
increment vector as a first trial, and, if unsuccessful,
use a random Gaussian increment vector. This tech-
nique offers the advantage of being effective also for
small sets of possible node degrees. Refined versions of
this optimization technique are currently under inves-
tigation.

5. Numerical Results

We applied the EXIT chart-based optimization al-
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Start Initialize λ(x) and ρ(x) and

compute f(λ, ρ).
1 While tunnel is open reduce SNR

by small steps and compute the

final value of f(λ, ρ).
2 Find a new (λ′, ρ′) compatible

with code rate at (small) random

distance from (λ, ρ).
3 Compute new f(λ′, ρ′); if not

larger than previous f(λ, ρ) goto

step 2, else (λ, ρ)← (λ′, ρ′).
4 If stop condition is not reached

goto 1 else output (λ, ρ) and

final SNR.

Table 1: Optimization Algorithm.

gorithm to LDPC codes concatenated with Differential
encoded M-ary PSK (DMPSK) and constellations of
order 4 and 8. The channel is AWGN, but, due to the
nature of DMPSK, the resulting codes are insensitive
to discrete phase ambiguities which may arise from the
use of a phase synchronization algorithm. The opti-
mization has been performed allowing only a small set
of degrees in the degree distributions to be nonzero. In
particular, the set of allowed variable node degrees is
dv ∈ {2, . . . , 12}, for all considered code rates. The op-
timization algorithm allows to perform 100 iterations (a
path of 100 successful points in the parametric space).
Figure 2 shows the EXIT chart of a D4PSK (Qua-
ternary DPSK, DQPSK) system, serially concatenated
with the relative optimized LDPC code: the solid curve
corresponds to block A (cfr. Figure 1) and the dotted
curve to block B. The SNR Eb/N0, where Eb is the
bit energy and N0 is the noise power spectral density,
is set to 0.8 dB. It is immediate to recognize that the
tunnel is at pinch-off. The dashed curve in Figure 2
is the EXIT chart of the LDPC VND only (i.e., with-
out DE): the tunnel is “heavily” closed, predicting that
the DE system should perform significantly better than
the single LDPC code without DE. Note that the con-
vergence SNR threshold for DQPSK predicted by the
results in Figure 2 is around 0.9 dB.

In Figure 3, the performance of various DMPSK
systems using ad-hoc optimized LDPC codes is shown.
The LDPC binary codeword length is 12000 and the
code rates (indicated in Figure 3) are chosen so that the
overall spectral efficiencies are 1 bps/Hz, 1.5 bps/Hz,
and 2.25 bps/Hz, respectively. In Figure 3, the perfor-
mance of the same codes is plotted both with DE (con-
sidered in the optimization process) and without DE.
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Figure 2: EXIT chart-based analysis of an opti-
mized LDPC code concatenated with a QPSK with DE
(Eb/N0 = 0.8dB: tunnel at pinch-off) and QPSK with-
out DE (tunnel is closed).

It is possible to see that, while the performance with-
out DE is very poor (thus meaning that these codes
are not powerful codes in a usual sense), the systems
using DE perform at about 1 dB from their respective
AWGN channel capacities, still enabling high robust-
ness against channel impairments, such as phase noise,
discrete phase uncertainty and small carrier frequency
offsets.

Obviously, in order to obtain good performance un-
der possible impairments it is mandatory to design a
SISO detector for DMPSK which takes into account the
presence of such impairments. We remark that the use
of conventional LDPC codes designed for the AWGN
channel, without an inner coded modulator, in this con-
catenated scheme would entail a performance loss, with
respect to the AWGN channel capacity, between 2 dB
and 3 dB.

An interesting property of the variable nodes degree
distributions optimized for the presence of DE is that
they are characterized by the presence of a very high
fraction (0.6÷ 0.7) of degree-2 variable nodes. Bounds
for the degree-2 variable nodes fraction for irregular
LDPC codes directly “connected” to the channel, i.e.,
without an inner coded modulator, were investigated
in [5]. The degree distributions optimized for the pres-
ence of DE violate these bounds, leading to codes with
poor performance if used without DE. A useful remark
is that, LDPC codes with high fraction of degree-2 vari-
able nodes are very efficiently decodable codes. In fact,
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Figure 3: BER, as a function of the SNR, for three
systems using codes optimized for DE-PSK. The per-
formance is shown with and without the DE.

since a high fraction of the edges is connected to degree-
2 variable nodes, these codes are characterized by a
small number of edges in their Tanner graph. Since
the decoding complexity is known to be proportional
to the number of edges in the graph, these codes are
therefore decodable with low complexity.

6. Conclusions

In this paper, we have considered communication
systems which use, at the transmitter side, an LDPC
encoder concatenated with a DMPSK modulator. We
have made use of the fact that LDPC codes families
can be characterized by continuous parameters in terms
of degree distributions (of check and variable nodes).
Using a particular sub-block decomposition of the re-
ceiver, a novel optimization algorithm, based on the
use of EXIT charts, has been proposed. By means of
a semi-random search in the space of the degree dis-
tributions, this algorithm generates good degree distri-
butions which characterize LDPC codes minimizing the
SNR convergence threshold of the concatenated LDPC-
DMPSK scheme. The analysis of the optimized LDPC
code ensembles in the presence of a DMPSK modula-
tor has shown that their internal structure significantly
differs from that of standard LDPC codes designed for
transmission over an AWGN channel. In particular, it
has been shown that the introduction of DE induces a
significant increase in the percentage of degree-2 vari-
able nodes: this implies that decoding complexity is
likely to decrease. For all the obtained code ensembles,
the BER performance, evaluated by means of Monte
Carlo simulations, turned out to be close to the chan-

nel capacity, indicating that the proposed optimization
procedure is effective.
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