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Abstract

In the last decade, research on detection algorithms capable
of mitigating the effects of colored Gaussian thermal noise
and transition noise in storage systems, has proposed a num-
ber of solutions. In this paper, we present a new detection
scheme based on a multidimensional receiver front-end and
linear prediction applied to Maximum A-Posteriory Prob-
ability (MAP) sequence detection, which improves the Bit
Error Rate (BER) performance with respect to previous so-
lutions.

1. Introduction

Recording densities in magnetic storage systems con-
tinue to increase at a considerable rate. These high record-
ing densities require sophisticated detection schemes in or-
der to preserve system reliability. High-density longitu-
dinal and vertical magnetic recording systems based on
thin-film media exhibit severe intersymbol interference, col-
ored Gaussian thermal noise and signal-dependent transi-
tion noise. The last kind of noise, also known as media
noise, increases with density and is due to the magnetic
interaction between data transitions in the information se-
quence stored on the medium: therefore transition noise is
data-dependent. In the literature, a few channel models have
appeared to facilitate the analysis and design of the opti-
mum detector, such as the microtrack model [1], the signal-
dependent autoregressive channel model [2] and the posi-
tion jitter and width variation model [3, 4]. The latter is
used in this paper.

After the definition of a suitable channel model, many
authors proposed detection schemes based on signal pro-
cessing algoritms to reduce the effects of noise in magnetic
recording channel: in [5] a detection scheme based on linear
prediction was applied to colored thermal noise, and in [6]
linear prediction was extended to signal-dependent transi-
tion noise. According to the model in [3, 4], the observable
can be viewed as conditionally Gaussian, given the data,

and one is enabled to exploit the principle of linear predic-
tive detectors proposed for fading channels [7, 8].

In this paper, we extend the results in [6] to a receiver
based on a multidimensional front-end for magnetic record-
ing channels. In more detail, the presence of transition noise
and the need for statistical sufficiency yield a receiver front-
end with a number of filters proportional to the modelling
order of the transition noise. Numerical analysis and sim-
ulations have demonstrated good improvements in terms of
minimum mean square prediction error (MMSPE) and bit
error rate (BER) of receivers using a front-end based on two
or three filters, with respect to conventional receivers.

2. Channel Model

We consider a magnetic recording channel modeled by a
first-order position jitter and width variation [4]. Let h(t, w)
denote the pulse response to an isolated magnetic transition
recorded in a thin-film longitudinal or vertical media where
t is time and w is half the width of the pulse at half height.
Let ak ∈ {±1} be the information bits to be stored. Assum-
ing that transition noise can be decomposed into position
jitter and width variation, the read back waveform r(t) cor-
rupted by additive white Gaussian thermal noise w(t) can
be expressed as

r(t) =
∑

k

bkh(t + ∆tk − kT, w + ∆wk) + w(t) (1)

where bk = ak − ak−1 ∈ {0,±2} denote transition sym-
bols, ∆tk and ∆wk , modeled as independent Gaussian ran-
dom variables with standard deviations σ∆t and σ∆w, rep-
resent the effect of position jitter and width variation noise,
respectively, and T is the symbol period. Obviously, when
σ∆t = 0 and σ∆w = 0, the model reduces to a magnetic
recording channel without transition noise. For the pulse re-
sponse h(t, w) we have adopted the well known Lorentzian
approximation [9] for longitudinal recording, i.e.

h(t, w) =
1

1 + (2t/PW50)
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Figure 1: Lorentzian channel model with first-order media
noise and additive white Gaussian thermal noise.

where PW50 is the pulsewidth at half the maximum
amplitude and PW50 = 2w. We define the parameter
D = PW50/T as the normalized density. According to the
first-order channel model, the read back impulse can be ap-
proximated as

h(t + ∆tk, w + ∆wk)

' h(t, w) + ∆tk
∂h(t, w)

∂t
+ ∆wk

∂h(t, w)

∂w
.

Defining the impulse response of the filters modelling the
position jitter and width variation noise process as1

∂h(t, w)

∂t
= ht(t)

∂h(t, w)

∂w
= hw(t)

and using this first-order approximation in (1), the continu-
ous waveform at the output of the channel can be written as
r(t) = y(t) + w(t), where we have defined y(t) as

y(t) =
∑

k

[
bkh(t − kT ) + bk∆tkht(t − kT )

+ bk∆wkhw(t − kT ) + w(t)
]
. (2)

A block diagram descriptive of this channel model is shown
in Fig. 1.

3. Sufficient Statistics

We now derive a set of sufficient statistics for the con-
sidered magnetic recording channel affected by transition
noise. The signal at the output of the channel can be ex-
pressed as

r(t) = y(t, a, θ) + w(t) (3)

where a is the data information vector, θ is a random vec-
tor collecting the unknown parameters affecting the observ-
able, i.e. the sequences of random variables {∆tk} and
{∆wk}, w(t) is an additive white Gaussian thermal noise
process and y(t, a, θ) is defined2 as in (2). Given a prob-
abilistic model of θ with realizations in a suitable space Θ

1The subscript denotes the variable of differentiation.
2The used notation highlights the dependence of y(t) on the random

vector θ and the information vector a.

and noting that, for any finite number of transmitted bits,
an information lossless discretization of signal r(t) by ex-
pansion over an orthonormal finite-dimensional basis can be
achieved, the detection strategy can be formulated as

â = argmax
a

P (a)f(r|a) (4)

where P (a) is the a-priori probability of the information
sequence a and f(r|a, ) is the conditional probability den-
sity function (pdf) of the observation vector r, given the in-
formation sequence a. Under the assumption of statistical
independence between θ and a, the conditional probability
density function in (4) can be expressed as

f(r|a) =

∫

Θ

f(r|θ, a)f(θ) dθ (5)

in which the integral is over the parameters space Θ and
f(θ) is the probability density function of vector θ. Since
the random variables ∆tk and ∆wk are Gaussian, the ob-
servation vector r is also conditionally Gaussian, given the
data. Therefore it is possible to express the conditional pdf
of the observation vector as

f(r|θ, a) =
1

(πN0)
N

2

e
−

1

N0

‖r− y(a, θ)‖2

∼
1

(πN0)
N

2

e
−

1

N0

[
‖y(a, θ)‖2 − 2Re{rT

y(a, θ)
]

(6)

where ‖.‖ denotes the Euclidean norm, the quantity ‖r‖2

is irrelevant in the detection process and can be discarded,
y(a, θ) is the discretization of y(t, a, θ) and the symbol ∼
denotes a monotonical relationship with respect to the vari-
able on interest (i.e., the data sequence a). Using (6) in (5),
we obtain

f(r|a) ∼
1

(πN0)
N

2

·

∫

Θ

e
−

1

N0

[
‖y(a, θ)‖2 − 2Re{rT

y(a, θ)
]

f(θ) dθ .

The discrete correlation between the observation vec-
tor r and the signal vector y(a, θ) can be equivalently ex-
pressed in the time domain, thanks to the optimal discretiza-
tion procedure, as a correlation integral

r
T
y(a, θ) =

∫
∞

−∞

r(t)y(t; a, θ) dt . (7)

Similarly, the square Euclidean norm pf y(a, θ) is equal to
the energy of the signal

‖y(a, θ)‖2 =

∫
∞

−∞

y(t; a, θ) dt .
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Figure 2: Multidimensional receiver front-end for the
Lorentzian channel model with first-order media noise and
additive white Gaussian noise.

Using (2), the correlation integral in (7) can be ex-
pressed as

∫
∞

−∞

r(t)y(t; a, θ) dt

=
∑

k

[∫
∞

−∞

bkr(t)h(t − kT ) dt

+ bk∆tk

∫
∞

−∞

r(t)ht(t − kT ) dt

+ bk∆wk

∫
∞

−∞

r(t)hw(t − kT ) dt

]

. (8)

Defining the quantities

xk =

∫
∞

−∞

r(t)h(t − kT ) dt

yk =

∫
∞

−∞

r(t)ht(t − kT ) dt

zk =

∫
∞

−∞

r(t)hw(t − kT ) dt

equation (8) becomes
∫

∞

−∞

r(t)y(t; a, θ) dt

=
∑

k

bkxk +
∑

k

bk∆tkyk +
∑

k

bk∆wkzk . (9)

Equation (9) shows that (xk , yk, zk)T is a vector of
sufficient statistics for the detection process in a magnetic
recording channel with data-dependent transition noise, ac-
cording to the model of Fig. 1. These sufficient statistics
can be obtained from the time-continuous received signal
r(t) by means of a multidimensional receiver front-end, as
illustrated in Fig. 2. The proposed front-end is based on a
bank of filters, each followed by a sampler at the symbol
rate: the first filter is the usual matched filter, whereas the
second and the third filters are matched to the second and
third impulse responses modelling transition noise, respec-
tively. We remark that commonly-used front-ends are based

on the matched filter h(−t, w) only, whereas in the pres-
ence of transition noise the discrete observation sequence
{xk} is not a sufficient statistic. An intuitive explanation of
the fact that {xk} is not a sufficient statistic in the presence
of transition noise may be based on at its moltiplicative na-
ture with respect to the transition sequence {bk}. In fact,
the transition noise waveform can be viewed as a noise sig-
nal corrupting information bits, but also as another kind of
information-bearing signal superimposed to the useful sig-
nal. With the proposed front-end, we are able to extract this
residual information from the observation of r(t) and to use
it in order to improve system reliability, i.e. to improve bit
error rate performance.

It has to be highlighted that our derivation of the suffi-
cient statistics can be straightforwardly extended to a mag-
netic channel model with transition noise of higher order:
the number of filters in the multidimensional front-end is
controlled by the degree of approximation of the transition
noise process. For example, a second order channel model
would result in a receiver front-end composed of a bank of
5 matched filters.

Linear prediction can be applied to estimate the realiza-
tion of the transition noise process in order to incorporate
its realization into a Viterbi algorithm and enable maximum
a-posteriori sequence detection (MAP). With respect to the
algorithms proposed in the literature [5, 6], which deal with
colored Gaussian thermal noise and transition noise, respec-
tively, and are based on the observation of {xk} only, we
can now operate on a wider set of useful samples, allow-
ing the proposed receiver to outperform the previously pro-
posed detection schemes.

Since the relevant impulse responses are caracterized
by a great amount of intersymbol interference, in order to
reduce the complexity of the receiver, instead of adopt-
ing a partial response equalizer with the purpose of chan-
nel shortening, a bank of Whitening Filters (WF) matched
to the impulse responses of the multidimensional front-end
can be used. We found that the whitening process reduces
the dispersion of the impulse response of the information-
bearing signal as well as the length of the position jitter and
width variation modelling impulses. These whitening filters
decorrelate the thermal noise samples in the space domain
at time k only (i.e. they decorrelate the samples at the output
of the three matched filters), but they are still correlated in
time and space. This is not a limiting factor because linear
prediction can cope with this correlation.

Having obtained a set of sufficient statistics, we can now
investigate how this quantities can be used to perform se-
quence detection: this issue is addressed in the next section.

4. Detection Strategy based on Linear Prediction

Assuming a first-order channel model, we have shown
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that the quantities (xk, yk, zk) are sufficient statistics for
sequence detection. Collecting these quantities into suit-
able vectors x,y, z at the output of the multidimensional
receiver front-end, we can reformulate the detection strat-
egy (4) in equivalent form as

â = argmax
a

P (a)f(x,y, z|a) . (10)

Assumying causality and applying the chain factorization
rule to the multidimensional conditional pdf, we obtain

f(x,y, z|a) =

K−1∏

k=0

f(xk, yk, zk|x
k−1
0 ,yk−1

0 , zk−1
0 ; ak

0)

=
K−1∏

k=0

[

f(xk|x
k−1
0 ,yk

0 , zk
0 ; ak

0)

·f(yk|x
k−1
0 ,yk−1

0 , zk
0 ; ak

0)

·f(zk|x
k−1
0 ,yk−1

0 , zk−1
0 ; ak

0)

]

'

K−1∏

k=0

[

f(xk|x
k−1
k−ν ,yk

k−ν , zk
k−ν ; ak, ζk)

·f(yk|x
k−1

k−ν ,yk−1

k−νz
k
k−ν ; ak, ζk)

·f(zk|x
k−1
k−ν ,yk−1

k−νz
k−1
k−ν ; ak, ζk)

]

(11)

where x
k2

k1
is a shorthand notation for the vector collecting

signal observations from time epoch k1 to k2 and K is the
length of the transmission. In the last step of (11), in order
to limit the receiver’s memory, we have assumed Marko-
vianity of order ν in the observation sequences. Moreover
we have defined the state of the system accounting for the
postcursors, precursors and the order of Markovianity ν as

ζk = (ak−1, ak−2, ak−3, . . . , ak−L) (12)

where L = δ1 +δ2 +ν, with δ1 and δ2 denoting the number
of precursors and postcursors in the impulse responses. The
assumed Markovianity results in an approximation whose
quality increases with ν.

Keeping in mind that, since the thermal and the transi-
tion noise processes have Gaussian distribution, the obser-
vation is Gaussian, given the data. The application of the
chain factorization rule allows us to split the multidimen-
sional conditional pdf in (10) in a product of 3K one di-
mensional conditional Gaussian pdf, completely defined by
the conditional means

x̂k = E{xk|x
k−1

k−ν ,yk
k−ν , zk

k−ν ; ak, ζk}

ŷk = E{yk|x
k−1

k−ν ,yk−1

k−ν , zk
k−ν ; ak, ζk}

ẑk = E{zk|x
k−1

k−ν ,yk−1

k−ν , zk−1

k−ν ; ak, ζk}

and the conditional variances

σ̂2
xk

= E{[xk − x̂k]2 |xk−1
k−ν ,yk

k−ν , zk
k−ν ; ak, ζk}

σ̂2
yk

= E{[yk − ŷk]2 |xk−1
k−ν ,yk−1

k−ν , zk
k−ν ; ak, ζk}

σ̂2
zk

= E{[zk − ẑk]2 |xk−1

k−ν ,yk−1

k−ν , zk−1

k−ν ; ak, ζk} .

It should be now clear that x̂k , ŷk and ẑk can be interpreted
as linear predictive estimations of xk, yk, and zk, respec-
tively and σ̂2

xk
, σ̂2

yk
and σ2

zk
as the relevant minimum mean

square prediction error. It is also possible to express explic-
ity the conditional mean values as

x̂k = E{xk|x
k−1

k−ν ,yk
k−ν , zk

k−ν ; ak, ζk}

= s1,k(ak, ζk)

+

ν∑

i=1

p1,1,i(ak, ζk)[xk−i − s1,k−i(ak, ζk)]

+

ν∑

i=0

p1,2,i(ak, ζk)[yk−i − s2,k−i(ak , ζk)]

+

ν∑

i=0

p1,3,i(ak, ζk)[zk−i − s3,k−i(ak, ζk)]

ŷk = E{yk|x
k−1

k−ν ,yk−1

k−ν , zk
k−ν ; ak, ζk}

= s2,k(ak, ζk)

+

ν∑

i=1

p2,1,i(ak, ζk)[xk−i − s1,k−i(ak, ζk)]

+

ν∑

i=1

p2,2,i(ak, ζk)[yk−i − s2,k−i(ak , ζk)]

+

ν∑

i=0

p2,3,i(ak, ζk)[zk−i − s3,k−i(ak, ζk)]

ẑk = E{zk|x
k−1
k−ν ,yk−1

k−ν , zk−1
k−ν ; ak, ζk}

= s3,k(ak, ζk)

+

ν∑

i=1

p3,1,i(ak, ζk)[xk−i − s1,k−i(ak, ζk)]

+
ν∑

i=1

p3,2,i(ak, ζk)[yk−i − s2,k−i(ak , ζk)]

+

ν∑

i=1

p3,3,i(ak, ζk)[zk−i − s3,k−i(ak, ζk)] .

In the definition of the conditional means, s1,k(ak, ζk),
s2,k(ak, ζk) and s3,k(ak, ζk) are the information-bearing
signal at the output of the first, the second and the third
matched filter, respectively, and the coefficients pα,β,i at
time i are the solution of the Wiener-Hopf matrix equa-
tion [10], with index α denoting the branch number in the
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channel model of Fig.1 (from top to bottom) and β denoting
the branch number in the receiver front-end.

Therefore, given the detection strategy (10) and the fac-
torization (11) and taking the logarithm, we can express the
branch metrics of a Viterbi detector as

λk(ak, ζk) = ln f(xk|x
k−1

k−ν ,yk
k−ν , zk

k−ν ; ak, ζk)

+ ln f(yk|x
k−1

k−ν ,yk−1

k−ν , , zk
k−ν ; ak, ζk)

+ ln f(zk|x
k−1

k−ν ,yk−1

k−ν , , zk−1

k−ν ; ak, ζk)

+ ln P [ak(ζk)] .

Assuming that the information bits are indipendent and
equally distributed, the branch metrics can be finally ex-
pressed as

λk(ak, ζk) = −
[xk − x̂k]2

σ̂2
xk

− ln σ̂2
xk

−
[yk − ŷk]2

ˆ̂σ2
yk

− ln σ̂2
yk

−
[zk − ẑk]2

σ̂2
zk

− ln σ̂2
zk

.

The state-complexity of a linear prediction receiver can
be naturally decoupled from the prediction order ν by
means of state-reduction techniques. Let Q < L denote the
memory parameter to be taken into account in the definition
of a reduced trellis state

ωk = (ak−1, ak−2, . . . , ak−Q) .

The branch metric can be obtained by defining a pseudo
state

ζ̃k(ωk) = (

ωk

︷ ︸︸ ︷
ak−1, . . . , ak−Q
︸ ︷︷ ︸

Q bits

, ăk−Q−1(ωk), . . . , ăk−Q−P (ωk)
︸ ︷︷ ︸

P bits

,

ˆ̂ak−Q−P−1, . . . , ˆ̂ak−L
︸ ︷︷ ︸

L−Q−P bits

) . (13)

where P bits may be choosen by a per-survivor processing
technique [11], and the last L − Q − P bits can be defined
as tentative (or preliminary) decisions ˆ̂ak at the detector out-
put. Note that ăk−Q−1(ωk), . . . , ăk−Q−P (ωk) are the infor-
mation bits associated with the survivor of ωk. The branch
metric in the reduced-state trellis can be defined in terms of
the pseudo state (13) as

λ̃k(ak, ωk) = λk(ak, ζ̃k(ωk)) .

5. Simulation Results

In Fig. 3 we show curves of prediction error ob-
tained both for a monodimensional front-end (indicated
by 1D), for a bidimensional front-end (2D) and for a
three dimensional front-end (3D), for a normalized density
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Figure 3: Minimum Mean Square Prediction Error versus
number of prediction coefficients ν.

D = 2.50. In the bidimensional case, the second front-
end filter was selected to be matched to either the time
derivate of the Lorentzian pulse (2Dt curves) or the width
derivate of the Lorentzian pulse (2Dw curves). Since me-
dia noise arises in transitions, a bit pattern characterized
by continuous changes of the writing current’s polarity, i.e.
{1,−1, 1,−1, . . .}. An averaged MMSPE is also shown,
by averaging over all possible bit patterns defining a trellis
branch (ak, ζk).

The SNR with transition noise [12] is defined at the in-
put of the Viterbi detector for a one dimensional front-end
as

SNRα =
Ps

σ2
n + σ2

m

(14)

where Ps is the signal power, σ2
n is the thermal noise

power, σ2
m is the transition noise power measured with

an all-transition bit pattern ±{+1,−1, +1,−1, . . .} and
α = 100× [σ2

m/(σ2
n + σ2

m)]. In order to evaluate the MM-
SPE, the signal to noise ratio was fixed at SNR95 = 10 dB,
i.e. assuming a 95% transition noise consisting of 50% po-
sition jitter and 50% width variation, when measured with
the “all-transition” bit sequence. Fig. 3 shows that, with
the use of a bidimensional front-end and a prediction order
ν = 2, it is possible to obtain a gain in the MMSPE varying
between 4.5 dB to 7.0 dB for the all-transition bit pattern,
with respect to the gain obtained by a monodimensional re-
ceiver front-end (1D curves). Finally, looking at the MM-
SPE obtained for the complete multidimensional receiver,
it is possible to outperform the results of the bidimensional
front-end by at least 1.5 dB.
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Figure 4: Bit error probability for the Lorentzian channel
model with transition noise.

Fig. 4 shows the BER obtained for a monodimen-
sional front-end without transition noise (ISI+AWGN
curve), with transition noise but without linear prediction
(ISI+Transition Noise curve) and with both transition noise
and linear prediction (Linear Prediction curve), for a density
D = 2.50 and a 95% transition noise (50% position jitter
and 50% width variation). These curves are obtained with
δ1 = 3 precursors, δ2 = 8 postcursors, a prediction order
ν = 2, per-survivor processing with state-reduction param-
eter P = 4 and 4 preliminar decisions (L − P − Q = 4).
Therefore, the Viterbi algorithm searches a trellis diagram
with 2δ1+ν = 32 states. The BER curve obtained with lin-
ear prediction and a monodimensional front-end shows an
SNR gain of almost 2.5 dB, with respect to the one ob-
tained without linear prediction. With a bidimensional re-
ceiver front-end the BER (Linear Prediction 2D curves) out-
performs the 1D linear prediction curve by approximately
0.6 dB (note that the 2Dt curve lays upon the 2Dw one),
while with the multidimensional receiver the gain, with re-
spect to the ISI+Transition Noise curve , is nearly 3.5 dB.

6. Conclusions

A set of sufficient statistics for the magnetic recording
channel in the presence of data-dependent transition noise
has been proposed. These sufficient statistics can be ob-
tained through a multidimensional receiver front-end. Mul-
tidimensional linear prediction can be used to modify the
Viterbi branch metric in order to improve the detector per-
formance and make it very insensitive to transition noise.
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